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Abstract——This paper develops deep reinforcement learning
(DRL) algorithms for optimizing the operation of home energy
system which consists of photovoltaic (PV) panels, battery ener‐
gy storage system, and household appliances. Model-free DRL
algorithms can efficiently handle the difficulty of energy system
modeling and uncertainty of PV generation. However, discrete-
continuous hybrid action space of the considered home energy
system challenges existing DRL algorithms for either discrete ac‐
tions or continuous actions. Thus, a mixed deep reinforcement
learning (MDRL) algorithm is proposed, which integrates deep
Q-learning (DQL) algorithm and deep deterministic policy gra‐
dient (DDPG) algorithm. The DQL algorithm deals with dis‐
crete actions, while the DDPG algorithm handles continuous ac‐
tions. The MDRL algorithm learns optimal strategy by trial-
and-error interactions with the environment. However, unsafe
actions, which violate system constraints, can give rise to great
cost. To handle such problem, a safe-MDRL algorithm is fur‐
ther proposed. Simulation studies demonstrate that the pro‐
posed MDRL algorithm can efficiently handle the challenge
from discrete-continuous hybrid action space for home energy
management. The proposed MDRL algorithm reduces the oper‐
ation cost while maintaining the human thermal comfort by
comparing with benchmark algorithms on the test dataset.
Moreover, the safe-MDRL algorithm greatly reduces the loss of
thermal comfort in the learning stage by the proposed MDRL
algorithm.

Index Terms——Demand response, deep reinforcement learn‐
ing, discrete-continuous action space, home energy manage‐
ment, safe reinforcement learning.

I. INTRODUCTION

DEMAND response (DR), which offers consumers the
opportunity to change their consumption patterns in re‐

sponse to incentives or electricity prices to balance power de‐
mand and power supply, is considered as an integral part of
smart grid [1]. The residential sector contributes greatly to
the total consumption of electricity, e.g., the residential sec‐
tor consumes 14.2% of total electricity consumption by 2019
in China [2]. Therefore, it is valuable to develop efficient
DR programs for energy management in the residential sec‐
tor.

In the residential sector, price-based DR programs includ‐
ing time-of-use (TOU) pricing program and real-time (RT)
pricing program are most frequently studied [3], [4]. Within
these DR programs, home energy management systems
(HEMSs) are required to automatically make optimal sched‐
uling of household appliances in response to electricity price
signals. The application of renewable energies such as solar
energy and wind energy in homes further complicates the de‐
velopment of HEMSs due to their nature of uncertainty [5].
Hence, a well-developed HEMS under a given DR program
can provide positive effects such as improved human com‐
fort level, reduced electricity cost, and reduced carbon emis‐
sion by accommodating renewable energies.

The objectives of HEMSs are usually to minimize electric‐
ity cost and maximize human comfort [6]. However, the
methods underlying HEMSs are different, including rule-
based methods, model-based methods, and model-free meth‐
ods. In [7], deterministic rules were applied for the manage‐
ment of household appliances. To improve the capacity in
learning and adapting to occupant’s pattern change, an adap‐
tive rule-based technique was proposed for automatic control
of air conditioner in [8]. In [9], an analytical rule-based ap‐
proach was developed for combined heat and power residen‐
tial energy system. Almost all rule-based methods use “if-
then” rules, which are easy to implement. However, the set‐
tlement of rules highly depends on expert knowledge and
these methods are less efficient for complex home energy
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systems with continuous changes in environmental condi‐
tions such as electricity price and renewable generation.

With model-based methods, a numerical model is required
to characterize home energy system and an optimization
problem is formulated considering the objective and system
constraints [10], [11]. The operation of home energy system
is optimized by solving the optimization problem. The main
challenges of model-based methods lie in the modeling accu‐
racy of energy system and prediction accuracy of unknown
variables. In [12], a mixed-integer linear programming
(MILP) based HEMS was developed for day-ahead optimal
scheduling of household appliances including both thermo‐
statically and non-thermostatically controlled appliances un‐
der hourly pricing DR program. Scenario-based stochastic
programming was used for home energy management consid‐
ering uncertainty of renewable energy and electrical vehicle
availability in [13]. In [14], a stochastic model predictive
control strategy was proposed for a residential building ener‐
gy management. In [15], a game theory based strategy was
developed for home energy management. With model-based
methods, however, simplified thermal dynamic models are
usually employed for modeling of thermostatically controlled
loads, which deteriorate the modeling accuracy and quality
of decisions.

With the advancement of artificial intelligence, model-free
methods based on reinforcement learning (RL) have been de‐
veloped for home energy management [16], [17]. To deal
with the uncertainty of electricity price, a multi-agent deep
Q-learning (DQL) algorithm was developed for scheduling
of multiple home appliances in [18]. In [19], an actor-critic
learning based load scheduling algorithm was proposed to re‐
duce electricity cost of households and peak-to-average ratio
in the aggregate load. In [20], a generalized actor-critic learn‐
ing based optimal control method was developed to mini‐
mize the consumption cost of home users. A deep determinis‐
tic policy gradient (DDPG) based home energy management
algorithm was developed in [21] for the control of heating,
ventilation, and air conditioning (HVAC) system and energy
storage system considering the uncertainty of electricity
price, photovoltaic (PV) generation, and outdoor tempera‐
ture. In addition to home energy management, DDPG was al‐
so applied for energy management in sensor networks with
renewable generations [22].

The RL-based methods learn optimal decision-making
strategy by iteratively interacting with the energy system,
which do not require prior knowledge on the energy system
[23]. This character of RL is valuable for complex energy
systems composed of unknown variables, e. g., renewable
generation, and dynamic processes that are difficult to mod‐
el, e.g., thermal dynamic model for HVAC control. Howev‐
er, current RL-based methods mainly consider either discrete
action space or continuous action space. Discrete action
space usually includes “on/off” operation modes of house‐
hold appliances such as washing machine and dish washer,
while continuous action space is commonly reserved for the
control of HVAC system and energy storage system. A sim‐
ple way to dealing with discrete-continuous hybrid action
space is to discretize continuous action in order to apply ex‐

isting RL framework for discrete action space. In [24], a
DQL algorithm was developed for optimal scheduling of
dish washer, air conditioner, and electric vehicle, where dis‐
crete action space was used to model operation patterns of
air conditioner and electric vehicle. However, the granularity
of discretization of continuous action space significantly af‐
fects the performance of DQL. In [25], a DDPG-based strate‐
gy was proposed for residential multi-energy system manage‐
ment considering discrete-continuous hybrid action space
where the discretization of continuous outputs from actor net‐
work was performed to derive discrete actions. However, the
treatment of discrete actions as continuous ones may signifi‐
cantly improve the complexity of action space. With the
above concerns, an RL-based method with capability in han‐
dling discrete-continuous hybrid action space is valuable for
home energy management.

In many practical engineering problems, however, unsafe
actions, which violate system constraints, can lead to system
damages and high cost, especially during the learning stage
[26], [27]. For the problem in this study, improper control of
home appliances, i. e., the HVAC system, can give rise to
high loss in human comfort. To handle the challenge from
unsafe actions, two main trends for safe-RL were studied in
[28]. The first trend lies in the modification of optimality cri‐
terion such as the worst-case criterion and risk-sensitive cri‐
terion instead of generally considered mean expected return.
The second one lies in the modification of exploration pro‐
cess with external knowledge to avoid the actions that can
lead the learning system to undesirable situations. In [29], a
constrained cross-entropy-based RL method, which explicitly
tracked its performance with respect to constraint satisfac‐
tion, was proposed for safety-critical applications. For RL-
based energy management system, however, safety is seldom
considered in published literature [30], [31].

This paper investigates deep reinforcement learning
(DRL) based optimization algorithm for HEMS. The main
contributions of the paper are outlined below.

1) The operation cost optimization problem of grid-con‐
nected home energy system including various household ap‐
pliances, e. g., HVAC system, wash machine, dish washer,
etc., renewable generation, and battery energy storage sys‐
tem (BESS) is formulated as a Markov decision process
(MDP) without the prediction of unknown variables or ther‐
mal dynamic model. The operation modes of household ap‐
pliances and BESSs constitute discrete-continuous hybrid ac‐
tion space for the MDP, which challenges existing RL algo‐
rithms for either discrete action space or continuous action
space.

2) A mixed deep reinforcement learning (MDRL) algo‐
rithm that integrates DQL and DDPG is developed to solve
the MDP. The proposed MDRL algorithm inherits the merits
of DQL in handling discrete action space and takes advantag‐
es of DDPG in dealing with continuous action space. More
precisely, the MDRL algorithm leverages the actor-critic
framework as in the DDPG algorithm. The actor network
with the proposed MDRL algorithm, however, receives dis‐
crete action and state as input and outputs continuous ac‐
tions. The critic network evaluates the combination of dis‐
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crete action and continuous action for the given state. Simi‐
lar to DQL, the optimal combination of discrete action and
continuous action is determined by selecting the one that
maximizes the Q-value. Meanwhile, to facilitate the training
of the proposed MDRL algorithm, a special exploration poli‐
cy is designed for discrete-continuous hybrid action space.

3) To avoid high loss of human thermal comfort with the
HVAC system in the learning stage, a prediction model guid‐
ed safe-MDRL algorithm is further proposed. In the safe-
MDRL algorithm, an online prediction model is developed
and applied to evaluate actions associated with the HVAC
system to avoid severe violation of thermal constraints.

4) Simulation studies based on real data illustrate that the
proposed MDRL algorithm can efficiently reduce operation
cost while maintaining human thermal comforts compared
with benchmark algorithms on the test dataset. Moreover,
the safe-MDRL algorithm greatly reduces the loss of human
thermal comfort in the learning stage by the MDRL algo‐
rithm.

The remainder of the paper is organized as follows. In
Section II, the HEMS is introduced with mathematical for‐
mulations. In Section III, the optimization problem of
HEMS is firstly formulated as an MDP, which is followed
by the development of the proposed MDRL algorithm and
its safe version. Simulation results are provided in Section
IV, and conclusions are given in Section V.

II. HEMS

The HEMS considered in this paper is illustrated in Fig. 1.

The home is equipped with PV panels, BESS, and house‐
hold appliances. The household appliances can be generally
classified into non-shiftable loads, shiftable and non-inter‐
ruptible loads, and controllable loads in terms of their char‐
acteristics [32]. The non-shiftable loads, e.g., lighting, televi‐
sion, microwave, refrigerator, etc., which are essential to the
home cannot be scheduled and their power demands should
be satisfied without delay. The shiftable and non-interrupt‐
ible loads such as washing machine, wash dryer, and dish
washer can be scheduled to time slots of low electricity
price. However, their operations cannot be interrupted and
power demands are non-controllable. The controllable loads
can be operated in a flexible manner in terms of operation
time and power demand. Thermostatically controlled loads
such as HVAC system and electric water heater are the most
common controllable loads in a home, while the HVAC sys‐
tem consumes more energy than other loads [21]. Hence,
this paper considers non-shiftable loads, shiftable and non-in‐
terruptible loads, and HVAC system in a smart home. The
scheduling problem of home energy management is formulat‐

ed in a discrete form where the scheduling horizon T is di‐
vided into a number of time slots tÎ [1T ] with equivalent
time interval ΔT = 1 hour in this paper. The HEMS makes de‐
cisions for optimal operation of electric loads. In this sec‐
tion, mathematical formulations associated with the home en‐
ergy system will be investigated.

A. Shiftable and Non-interruptible Loads

Consider a set of N shiftable and non-interruptible loads.
For each individual load n, n = 12N, it is characterized

by a tuple (TniniTnendTndPn ), where Tn,ini and Tn,end are the

initial time and end time of working period, respectively; Tn,d

is the time slot required to complete the task; and Pn is the
power demand. For shiftable and non-interruptible loads,
there are two operation modes, i. e., “on” and “off”. Power
demand for all this kind of appliances in time slot t is ob‐
tained by:

Pshiftt =∑
n = 1

N

xnt Pn (1)

where xn,t is a binary decision variable for appliance n and 1/
0 corresponds to “on/off”, respectively. The operation of
shiftable and non-interruptible loads should satisfy following
constraints:

xnt = 0 t < Tnini (2)

xnt = 1 t = Tnend - Tnd + 1Tnt - 1 = Tnd (3)

xnt = 1 0 < Tnt - 1 < Tnd (4)

xnt = 0 Tnt - 1 = 0 (5)

where Tn,t - 1 is the remaining time slot required to complete
the task at the end of time slot t - 1 for appliance n satisfy‐
ing Tnt - 1 = Tnt - 2 - xnt - 1 and Tn0 = Tnd. The constraint (2) en‐
sures that the appliance should be “off” before initial time
of the working period; the constraint (3) enforces the start‐
ing of the task to ensure the completion of the task in the
working period; the constraint (4) ensures non-interruption
of the task; and the constraint (5) enforces the appliance to
be “off” once the task has been completed.

B. HVAC System

This paper considers an HVAC system that can adjust its
input power continuously to maintain human thermal com‐
forts.

0 £PHVACt £PHVACmax (6)

where PHVAC,t and PHVAC,max are the input power of the HVAC
system at t and its maximum power, respectively.

Indoor air conditions such as air temperature, air speed,
and relative humidity are essential for the determination of
human thermal comfort level. To simplify the representation
of human thermal comfort, human comfort temperature zone
is considered as in [21], [33]:

Kmin £Kint £Kmax (7)

where Kin,t is the indoor temperature at t; and [Kmin, Kmax ] is
the human comfort temperature zone. Indoor temperature de‐
pends on many factors including HVAC input power, out‐
door temperature, and home thermal dynamics, which is dif‐

HMES

Information flow
Power flow

Utility grid

PV panels

Household appliances

BESS

Fig. 1. Considered HEMS.
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ficult to model. However, thermal dynamic model for HVAC
system is not required by the proposed MDRL/safe-MDRL
algorithm because it can learn such dependence from experi‐
ences by trial-and-error. This demonstrates the advantage of
model-free RL algorithm for HVAC system control.

C. BESS

Consider a BESS with the maximum capacity of Bmax. The
dynamics of the BESS in terms of state of charge (SoC) is
given by:

SoCt + 1 = SoCt +
PBt + 1ηBDT

Bmax
(8)

where SoCt = Bt Bmax is the level of available energy Bt with

respect to BESS capacity; PBt + 1 is the charging (if PBt + 1 > 0)
or discharging (if PBt + 1 < 0) power; and ηB is the charging/dis‐
charging efficiency with ηB = ηBc for charging process and ηB =
1/ηBd for discharging process.

To sustain lifespan of the BESS, the following operation
constraints are considered:

PBminηBd £PBt £
PBmax

ηBc
(9)

SoCmin £ SoCt £ SoCmax (10)

where PB,min < 0 and PB,max > 0 are the limitations of charging
and discharging power, respectively; and SoCmin and SoCmax

are the minimum and maximum levels of SoC, respectively.

D. Energy Cost Minimization Problem

The home energy system exchanges energy with the utili‐
ty grid to balance supply and demand:

Pgridt =Pnont +Pshiftt +PBt +PHVACt -PPVt (11)

where Pnon,t, PPV,t, and Pgrid,t are the power demand from non-
shiftable loads, PV generation power, and power exchanged
with utility grid, respectively. Pgrid,t > 0 represents electricity
purchased from the utility grid with TOU electricity price,
while Pgrid,t £ 0 represents surplus energy sold to the utility
grid with fixed feed-in tariff (FT).

The operation cost of the home energy system for each
time slot t is given by:

Ct = ut PgridtDT + vB| PBt | DT (12)

where ut is the electricity price; and vB is the degradation
cost coefficient of the BESS. In (12), the first term repre‐
sents the electricity cost, while the second term represents
the BESS degradation cost, which is proportional to charg‐
ing/discharging power [34].

The objective of the scheduling problem is to minimize
operation cost of the home energy system while maintaining
human thermal comforts and satisfying constraints over
scheduling horizon. Such optimization problem is summa‐
rized as:

ì

í

î

ïïïï

ïïïï

min∑
t = 1

T

Ct

s.t. (1)-(12)
(13)

Decision variables in (13) include xnt, PHVACt, and PBt for
t = 12T. It is a great challenge to solve the mixed-inte‐

ger optimization problem due to the following difficulties.
Firstly, due to the randomness of PV generation, power de‐
mand from non-shiftable loads, and outdoor temperature, it
is difficult to make leading decisions. Secondly, indoor tem‐
perature is not only affected by input power of HVAC sys‐
tem but also highly depends on outdoor temperature and
thermal properties of the home, while it is not easy to devel‐
op a proper model to describe such dependence. In this pa‐
per, DRL algorithms will be developed to solve the optimiza‐
tion problem without thermal dynamic model for HVAC sys‐
tem or prediction of unknown variables.

III. SAFE-MDRL FOR DISCRETE-CONTINUOUS HYBRID

ACTION SPACE

RL is an area of machine learning concerned with how ar‐
tificial agents take actions in an environment in order to
maximize accumulative future rewards. The fundamental
principle underlying RL is the MDP. In this section, the for‐
mulation of household sequential scheduling problem as an
MDP will firstly be investigated, which is followed by the
development of the MDRL algorithm and its safe version to
solve the problem.

A. MDP

An MDP is usually defined by a 4-tuple (SAPR),
where S is the state space consisting of a set of environment
states; A is a set of actions called action space; P: S ´A ´
S®[01] is a function which determines the state transition
probability considering environment uncertainty; and R: S ´
A®R is the reward function which returns immediate re‐
ward after state transition [35].

Considering the framework of MDP in Fig. 2, the agent
represents the HEMS while the home energy system and oth‐
er variables such as indoor/outdoor temperature constitute
the environment. At each time slot t, the agent observes envi‐
ronment state st and takes action at following the proposed
MDRL algorithm. With the execution of action at, the envi‐
ronment moves to a new state st+1 and returns reward rt+1 as‐
sociated with (statst + 1). Details on the MDP for the HEMS
are as follows.

1) State: the state st is composed of information available at
the end of time slot t, which reflects the status of components
in home energy systems. It is defined by a high dimensional
vector {hSoCtKintTntPPVtPPVt - 1PnontPnont - 1KouttKoutt - 1 },
where h denotes hour of day for time slot t. Lagged values
of PV generation, non-shiftable loads, and outdoor tempera‐

Environment
(home energy system 
and other variables)

Agent
(HEMS)

State

Reward

Action

Fig. 2. Framework of MDP.
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ture Kout,t are considered to capture their patterns of variation.
2) Action: the agent receives state st at the end of time slot t

and takes control actions at ={x1t + 1x2t + 1xNt + 1PBt + 1
PHVACt + 1 } following a policy. The action vector determines
the operation of the home energy system for time slot t + 1. It
is noticeable that the action vector consists of both discrete ac‐
tion and continuous action. To ensure non-violation of SoC
constraints, PB,t+1 should be bounded to [0min{(SoCmax -
SoCt )Bmax /(DTηBc )PBmax }] for charging process and to
[max{(SoCmin - SoCt )BmaxηBd /DTPBmin }0] for discharging
process.

3) State transition: the transitions of SoCt and Tn,t have
been discussed in Section II. The transitions of state features
including PV generation, non-shiftable loads, and outdoor
temperature are random, while indoor temperature depends
not only on actions but also on outdoor temperature and
home thermal properties. The values of these features in‐
dexed at t + 1 will be taken from observations. The devel‐
oped DRL algorithms will learn their correlations from the
training data to make optimal decisions.

4) Reward: the objective of the HEMS is to minimize op‐
eration costs while maintaining human thermal comforts con‐
sidering constraints. Hence, the reward consisting of opera‐
tion cost and penalty for temperature deviation from comfort
zone is given by:

rt + 1 =-Ct + 1 - βDKint + 1 (14)

where DKint + 1 =max{0Kint + 1 -Kmax }+max{0Kmin -Kint + 1 };
and β is a parameter which balances the operation cost and
penalty for temperature deviation.

5) State-action value function: the goal of the agent in RL
is to construct an optimal policy π* that maximizes accumu‐

lated discounted rewards in the future, i. e., Rt =∑
i = 1

¥

λi - 1rt + i

[36]. The discounted factor λÎ[01] balances the importance
between immediate reward and future rewards. Let Qπ( )sa
denote state-action value function under a policy π that esti‐
mates the expected accumulated discounted rewards Rt by
taking action at =a in state st =s following the policy π, i. e.,

Qπ( )sa =Eπ( )Rt| st = sat = a . The optimal policy π* can be

derived from the optimal Q-values by selecting the action
leading to the highest Q-value with the given state, i. e.,
Q*( )sa = max

π
Qπ( )sa . Moreover, the Q-value can be de‐

rived from Bellman equation in a recursive manner as in
(15) [37], which sets the foundation of RL.

Q ( sa) =E ( rt + 1 + λmax
a′

Q ( st + 1a′) | st = sat = a ) (15)

where Q ( sa) is the state-action value; E is a function that
returns expected value; and a′ is the action to be taken at the
following time step.

From the above analysis, this paper develops a DRL-
based algorithm for one-step ahead control of the home ener‐
gy system based on currently available information. The un‐
derlying principle of using currently available measurements
of PV generation, outdoor temperature, and non-shiftable
loads instead of their predictions is that these values are
highly temporally correlated and their temporal evolution

can be learned by the proposed MDRL algorithm. Moreover,
the dependence of indoor temperature variation on controlled
HVAC power, outdoor temperature, and building thermal
property is also learned from experiences by trail-and-error
in the learning stage. Hence, the proposed MDRL algorithm
does not need thermal dynamic model for HVAC system or
prediction of unknown variables.

B. MDRL Algorithm

For the existing DRL algorithms, most of them require ac‐
tion space to be either discrete or continuous. For instance,
DQL as well as its variants are applicable for discrete action
space; while DDPG is widely used for continuous action
space. To handle the discrete-continuous hybrid action space
with the HEMS, an MDRL algorithm that integrates DQL
and DDPG is developed.

Let adÎAd and acÎAc denote the discrete action and con‐
tinuous action, respectively, where Ad and Ac denote the dis‐
crete action space and continuous action space, respectively.
The discrete-continuous hybrid action is represented by a =
{adac }. Then Bellman equation becomes:

Q ( sadac ) =
E ( rt + 1 + λmax

a′da′c
Q ( st + 1a′da′c ) | st = sadt = ad act = ac )

(16)

where adt and act are the discrete and continuous actions at
time slot t, respectively; a′d and a′c are the discrete and con‐
tinuous actions to be taken at the following time slot, respec‐
tively.

If a′d
* = arg max

a′d
Q ( )sa′dac holds, (16) can be re-written

as:

Q ( sadac ) =
E ( rt + 1 + λmax

a′c
Q ( st + 1a′d

*a′c ) | st = sadt = ad act = ac )
(17)

It is noticeable that the right side of (17) deals with con‐
tinuous action only, which can be efficiently handled by ac‐
tor-critic framework. Similar to DDPG, a deep critic net‐
work Q ( sadac ; θ ) is deployed to approximate state-action

value function while a deterministic deep policy network
μ ( sad ; φ) is used to generate continuous action ac =

μ ( sad ; φ), where θ and φ are the corresponding network pa‐

rameters including weights and biases.
The illustration of networks of MDRL algorithm is depict‐

ed in Fig. 3. In this way, the optimal discrete action can be
easily reached by searching the discrete action space, i. e.,

a*
d = arg max

adÎAd

Q ( sadμ ( sad ; φ) ; θ ). The selection of dis‐

crete action corresponding to the highest Q-value is identical
to DQL. Hence, the proposed MDRL algorithm inherits the
merits of both DDPG and DQL. To facilitate the search of
optimal discrete action, the constraints in (2) - (5) associated
with state s can be used to depress discrete action space into
Ad( s) ÌAd. Thereby, the proposed MDRL agorithm always
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satisfies the constraints associated with shiftable and non-in‐
terruptible loads and will not cause any discomfort.

Similar to DDPG, the critic network parameter θ is opti‐
mized by minimizing the squared loss Lθ in (18) with gradi‐
ent descent methods [37].

Lθ =
1
2
E (Q ( stadtact ; θ ) - yt ) 2

(18)

where yt = rt + 1 + λ max
adt + 1ÎAd( )st + 1

Q ( st + 1adt + 1μ ( st + 1adt + 1; φ) ; θ )
is the target Q-value. To optimize the actor network parame‐
ter, the basic idea is to adjust φ in the direction of the perfor‐

mance gradient ÑφQ ( stadtμ ( stadt ; φ) ; θ ) that boosts Q-

value. With the application of chain rule, the performance
gradient can be decomposed into gradient of state-action val‐
ue function with respect to continous actions and gradient of
policy with respect to policy parameters, which results in
policy gradient Ñφ J for the update of policy parameters con‐
sidering state distribution ρμ( s) [38].

Ñφ J =E
s  ρμ( |

|Ñφ μ ( sad ; φ) × Ñac
Q ( sadac ; θ ) ac = μ ( sad ; φ) )

(19)

In DRL, the balance between exploration and exploitation
is critical to train an efficient agent for decision-making. To
facilitate the training of deep networks considering discrete-
continuous hybrid action space, a special exploration policy
in (20) which integrates the ε-greedy policy for DQL and the
policy by adding Gaussian noise N (0δ2 I ) into the actions
from actor network for DDPG is developed.

at =

ì

í

î

ï

ï
ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

adt uniformly sampled from Ad( )st

act uniformly sampled from Ac

rand £ ε

adt = arg max
adtÎAd( )st

Q ( )stadtμ ( )stadt ; φ ; θ

act = μ ( )stadt ; φ +N ( )0δ2 I

otherwise

(20)

To handle the challenges caused by temporal correlation
of samples for network optimization in DRL, experience re‐
ply is considered [36], [37]. Tuples (statst + 1rt + 1 ) are
stored in a reply buffer M with size of M, where the oldest
ones are dropped when the buffer is full. At each time step,
a mini-batch of B tuples are uniformlly sampled for the up‐
date of networks.

To stabilize the learning process, target networks are intro‐
duced for actor network and critic network, denoted as
μ′( sad ; φ′) and Q′( sadac ; θ′), respectively, to evaluate the

target Q-value [37]. The parameters of target networks are

updated with soft update strategy in (21).

ì
í
î

θ′¬ τθ′+ ( )1 - τ θ

φ′¬ τφ′+ ( )1 - τ φ
(21)

where τ 1 ensures slow change of target network parame‐
ters, and consequently improves the stability of learning pro‐
cess. Procedures for the training of networks are summarized
in Algorithm 1, which include the initialization of networks
and the main loop of training process. In the main loop,
each day constitutes an episode. In each time slot of an epi‐
sode, the agent receives state st and selects action at accord‐
ing to the exploration policy in (20). With the executation of
action, the state moves to st+1 and the reward rt+1 is obtained.
The tuples (statst + 1rt + 1 ) are then stored in the replay buf‐
fer. Next, B tuples uniformly sampled from the replay buffer
are used to update θ and φ based on sampled mean squared
loss and policy gradient. This is followed by soft update of
target networks.

C. Safe-RL

The fundamental idea of safe-RL is to develop a predic‐
tion model for action evaluation where safe actions are exe‐
cuted by the system while unsafe actions are modified to sat‐
isfy safe constraints. In this paper, indoor temperature is ex‐
pected to stay in comfort zone with well-controlled HVAC
input power. Thereby, unsafe actions refer to those that will
lead to violation of constraints on indoor temperature. To en‐
sure thermal comfort, an indoor temperature prediction mod‐
el fKin

based on multilayer perception (MLP) is developed for

HVAC input power evaluation.

Kint + 1 = fKin( KintKoutt + 1PHVACt + 1 ) + e (22)

Deep policy network

Q

Deep critic network
s
ad

s
ad

Q(s,ad,ac;θ)

μ	s,ad;φ
 ac

Fig. 3. Illustration of networks of MDRL algorithm.

Algorithm 1: training for MDRL

1. Initialize the actor network and the critic network with random weights φ
and θ, respectively

2. Initialize the target networks by copying θ'¬θ and φ'¬φ

3. Initialize the buffer M
4. for e = 1:E

5. Obtain the initial state s0 from a random day with random SoC and Kin

6. for t = 0:23 do

7. Select action at = { }adtact according to the exploration policy in (20)

8. Execute action at, observe reward rt + 1, and move to next state st + 1

9. Store tuple ( )statst + 1rt + 1 in M

10. Sample B tuples ( )sbabsb + 1rb + 1 for b = 12...B from M
11. Obtain target Q-values:

yb = rb + 1 + λmax
adb + 1

Q ( )sb + 1adb + 1μ ( )sb + 1adb + 1; φ' ; θ'

12. Update θ by minimizing the loss Lθ =
1

2B∑b = 1

B ( )Q ( )sbadbacb ; θ - yb

2

13. Update φ with the sampled policy gradient:
1
B∑b = 1

B { |
|Ñφ μ ( )sad ; φ s = sbad = adb

|
|
||||Ñac

Q ( )sadac ; θ s =

}sbad = adbac = μ ( )sad ; φ

14. Soft update of target networks

15. end for

16. end for
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The model in (22) predicts indoor temperature from the
most influential factors including lagged indoor temperature,
outdoor temperature, and HVAC input power. The term e
captures modeling error due to unconsidered weather condi‐
tions such as wind speed and humidity as well as uncertain‐
ty associated with thermal dynamic process.

Since leading outdoor temperature Kout,t+1 is usually un‐
known at time slot t, a probabilistic outdoor temperature pre‐
diction model fGPR based on Gaussian process regression
[39] is developed.

{K̄outt + 1δoutt + 1} =

fGPR( KouttKoutt - 1sin (2π
h
24 ) cos (2π

h
24 ) ) (23)

The model in (23) predicts the mean value K̄outt + 1 and
standard deviation δoutt + 1 of outdoor temperature from its
lagged values and temporal information h. Outdoor tempera‐
ture illustrates the diurnal cycle that the sine and cosine func‐
tions are used to capture temporal periodicity. The input fea‐
tures are contained in the state st, hence, outdoor tempera‐
ture prediction model is simplied as:

{K̄outt + 1δoutt + 1} = fGPR( st ) (24)

With (22) and (24), it is easy to construct outdoor temper‐
ature prediction interval [ K low

outt + 1K
up
outt + 1 ] and indoor temper‐

ature prediction interval [ K low
int + 1K

up
int + 1 ]:

K low
outt + 1 = K̄outt + 1 - ηδoutt + 1 (25)

K up
outt + 1 = K̄outt + 1 + ηδoutt + 1 (26)

K low
int + 1 = fKin( KintK

low
outt + 1PHVACt + 1 ) (27)

K up
int + 1 = fKin( KintK

up
outt + 1PHVACt + 1 ) (28)

where η is a parameter which controls the confidence level
that actual outdoor temperature falls in the constructed inter‐
val.

The safety-checking function fsc in Algorithm 2 is devel‐
oped for action evaluation and modification associated with
the HVAC system.The idea of Algorithm 2 is that the input
power is modified if K low

int + 1 is greater than the upper limit of
comfort temperature zone or K up

int + 1 is lower than the lower
limit of comfort temperature zone; otherwise, modification is
not required.

The parameter α (α> 0 for heating system and α< 0 for
cooling system) denotes the moving step of HVAC input
power and the parameter ρ compensates modeling errors. In
Algorithm 2, outdoor temperature prediction model fGPR is
trained offline while indoor temperature prediction model fKin

is trained and renewed online in accordance with learning
process. The output a͂ct will be applied for home energy sys‐
tem control.

IV. SIMULATION RESULTS

A. Simulation Setup

1) Home energy system: normalized PV generation and
outdoor temperature obtained from National Renewable Ener‐
gy Laboratory (NREL), USA [40], are considered for simula‐
tion studies. Simulated hourly residential loads based on
Building America House Simulation Protocols is used to rep‐
resent non-shiftable loads [41]. Dish washer and washing
machine are considered to represent shiftable and non-inter‐
ruptible loads. This paper considers electrical HVAC system
for heating in cold winter. To simplify the simulation study,
a mathematical model in (29) is used to simulate the dynam‐
ics of indoor temperature [42], [43].

Kint + 1 =ωKint + (1 -ω) ( Koutt + 1 +
ηHVAC

ξ
PHVACt + 1 ) (29)

where ω= 0.93 [43], ηHVAC = 2.5 [43], and ξ= 0.14 [21] are
the factor of air inertial, coefficient of HVAC performance,
and thermal conductivity, respectively. Comfort temperature
zone is considered to be [66.2 ℉, 75.2 ℉] or [19 ℃, 24 ℃]
as in [21].

Outdoor temperature prediction model is trained on the da‐
ta from December 2011 to February 2012. The MDRL algo‐
rithm and safe-MDRL algorithm are trained on the data from
December 2012 to January 2013 and tested on data in Febru‐
ary 2013. The parameters for the home energy system are
listed in Table I and TOU electricity prices are given in Ta‐
ble II.

The profiles of PV generation and outdoor temperature in
February 2013 are illustrated in Fig. 4. As can be observed
from Fig. 4, PV generation and outdoor temperature illus‐

TABLE I
PARAMETERS FOR HOME ENERGY SYSTEM

Component

PV

BESS

HVAC

Dish washer

Washing machine

Grid

Parameter

PPV,r

(Bmax, νB)

(PB,min, PB,max)

(SoCmin, SoCmax)

(ηB,d, ηB,c)

(PHVAC,max, β)

(Tn,ini, Tn,end, Tn,d, Pn)

(Tn,ini, Tn,end, Tn,d, Pn)

FT

Value

5.6 kW

(12 kWh, 0.01 $/kWh)

(-4 kW, 4 kW)

(0.1, 0.9)

(0.98, 0.98)

(4 kW, 0.7 $/℉)

(08:00, 22:00, 2 hours, 1.2 kW)

(07:00, 22:00, 3 hours, 1.5 kW)

0.067 $/kWh

Algorithm 2: a͂ct = fsc( stactfKin
fGPR )

Step 1: obtain outdoor temperature prediction interval [ K low
outt + 1K

up
outt + 1 ]

with (24)-(26)

Step 2: obtain Kint from st and {PBt + 1, PHVACt + 1 } from act

Step 3: obtain indoor temperature prediction interval [ K low
int + 1K

up
int + 1 ] with

(27) and (28)

Step 4: if K low
int + 1 >Kmax + ρ then

PHVACt + 1 =PHVACt + 1 - α
Go to Step 3

Step 5: else if K up
int + 1 <Kmin - ρ then

PHVACt + 1 =PHVACt + 1 + α
Go to Step 3

Step 6: end if

Step 7: output a͂ct ={PBt + 1PHVACt + 1 }
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trate significant fluctuations, which imposes great challenge
to derive optimal actions.

2) DRL algorithms: deep neural networks consisting of in‐
put layer, hidden layers, and output layer are considered.
Rectified linear unit (ReLU) activation function is used for
hidden layers of both actor network and critic network;
while hyperbolic tangent activation function and linear acti‐
vation function are used for the output layers of actor net‐
work and critic network, respectively. Adam optimizer [44]
is deployed for the training of deep networks. Critical param‐
eters of deep networks including the number of hidden lay‐
ers and the number of hidden neurons, parameters associated
with the optimizer, and parameters in Algorithm 1 are given
in Table III.

TABLE III
CRITICAL PARAMETERS OF DEEP NETWORKS

Module

Actor or critic

Optimizer

Algorithm 1

Parameter

Number of hidden layers

Number of hidden neurons

Learning rate

(λ, τ, E, M, B)

Value

2

(128, 64)

10-4 (actor), 10-3 (critic)

(0.995, 10-3, 104, 104, 240)

To facilitate the training of deep neural networks, states
are normalized into [01]. The outputs from actor network are

in [-11] and should be mapped into the range of continuous
action space. For the exploration policy in (20), parameters ε
and δ decay with training episode as εe = max(0.11 - e/E)
and δe = max(0.011 - e/E). Indoor temperature prediction
model is represented by an MLP with one hidden layer.
There are three neurons in the hidden layer. Hyperbolic tan‐
gent activation function and linear activation function are
used for hidden layer and output layer, respectively. Parame‐
ters associated with safe-MDRL in Algorithm 2 are set as ρ=
0.1(Kmax -Kmin ) and α= 0.01PHVACmax.

B. Benchmark Algorithms

This paper considers the following benchmark algorithms
to illustrate the effectiveness of the proposed MDRL/safe-
MDRL algorithm for home energy management with dis‐
crete-continuous hybrid action space.

1) B1: the “on/off” operation modes are considered by
this benchmark algorithm. With this benchmark algorithm,
the shiftable and non-interruptible load is switched “on” at
its initial working time and maintains “on” until the comple‐
tion of the task. The HVAC system is turned “on” with the
maximum power if Kint <Kmin and turned “off” if Kint >Kmax;
otherwise, it maintains its operation mode. However, this
benchmark algorithm does not consider BESS.

2) B2: an algorithm based on MILP is developed for the
scheduling of home energy system supposing that all the in‐
formation including PV generation, outdoor temperature,
non-shiftable loads, and home thermal dynamics are known.
This is an ideal case that sets the lower limit in energy cost
while keeping thermal comforts.

3) DDPG algorithm: classical DDPG algorithm is applied
for the home energy system control where discretization is
used to derive the decisions for shiftable and non-interrupt‐
ible loads. The studies in [21], [25] have illustrated that
DDPG algorithm outperforms DQL for continuous control in
home energy management. Hence, DQL is not considered in
this study. The comparison of this benchmark algorithm
against B1 will illustrate the advantage of the BESS in re‐
ducing energy cost. More importantly, based on performance
comparison between the proposed MDRL algorithm and this
benchmark algorithm, the merits of the proposed MDRL al‐
gorithm in handling discrete-continuous hybrid action space
can be observed.

C. Simulation Results

The objective of simulation study is twofold: ① through
the comparison between the proposed MDRL algorithm and
its safe version to illustrate the effectiveness of the safe-
MDRL algorithm in reducing the loss of human thermal
comfort in the learning stage; and ② through the compari‐
son among all the applied algorithms to illustrate the merits
of the proposed MDRL algorithm and its safe version in
home energy management in terms of operation cost and sat‐
isfaction of human comforts on the test dataset. To verify
their robustness, the DDPG algorithm, the MDRL algorithm,
and the safe-MDRL algorithm are executed for 5 indepen‐
dent runs.

1) To illustrate the effectiveness of the safe-MDRL algo‐

TABLE II
TOU ELECTRICITY PRICES

Period

00:00-06:00

06:00-08:00; 12:00-15:00; 22:00-24:00

08:00-12:00; 15:00-22:00

Price ($/kWh)

0.067

0.140

0.250
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Fig. 4. Profiles of PV generation and outdoor temperature. (a) PV genera‐
tion. (b) Outdoor temperature.
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rithm in reducing the loss of human thermal comfort thereby
in improving rewards, average episode rewards over 5 runs
by the proposed MDRL algorithm and the safe-MDRL algo‐
rithm during the training process are depicted in Fig. 5. For
the first few thousands of episodes, the agent of the pro‐
posed MDRL algorithm is in its early learning stage with
large probability of taking inappropriate action, which gives
rise to low rewards with significant fluctuations. The reward
gradually increases with the growing number of training epi‐
sodes and finally converges with slight oscillations due to
randomness associated with the exploration policy and the
random environment such as PV generation, outdoor temper‐
ature, and non-shiftable loads. With the safe-MDRL algo‐
rithm, safety checking procedures in Algorithm 2 are activat‐
ed after few dozens of episodes (60 episodes) to obtain suffi‐
cient data for online training of indoor temperature predic‐
tion model. Compared with the proposed MDRL algorithm,
the reward is greatly improved with much smaller oscilla‐
tions by the safe-MDRL algorithm even at the early training
stage. This demonstrates the effectiveness of safe-MDRL in
improving rewards in the learning stage.

To further illustrate the effectiveness of the safe-MDRL al‐
gorithm in maintaining thermal comforts thereby in improv‐
ing rewards, average episode operation cost (including elec‐
tricity cost and battery degradation cost) and temperature de‐
viation from comfort zone for the first 2500, 5000, 7500,
and 10000 episodes over 5 runs are reported in Table IV.

It can be observed that both the MDRL algorithm and the
safe-MDRL algorithm improve decision quality in term of
operation cost and thermal comfort with increasing number
of training episodes. The difference in operation cost be‐

tween the MDRL algorithm and its safe version is minor.
The safe-MDRL algorithm reduces temperature deviation
from comfort zone by almost 80% compared with the pro‐
posed MDRL algorithm and, thereby greatly improves re‐
wards.

2) The statistics (mean value and standard deviation) over
5 runs on average daily operation cost and temperature devi‐
ation from comfort zone by the proposed algorithms and
benchmark algorithms on the test dataset are presented in Ta‐
ble V.

From Table V, it can be observed that the MDRL algo‐
rithm and the safe-MDRL algorithm outperform classical
DDPG algorithm and B1 with reduced operation cost and im‐
proved human thermal comforts. More precisely, the MDRL
algorithm saves operation cost by 25.8% and 7.1% against
B1 and the DDPG algorithm, respectively. The outstanding
performance of the MDRL algorithm over the DDPG algo‐
rithm can be explained by following factors: ① the treat‐
ment of discrete action as continuous action augments and
complicates decision space; and ② the discretization of out‐
puts from actor network to derive discrete actions impairs de‐
cision quality. The comparison between the MDRL algo‐
rithm and the safe-MDRL algorithm illustrates that neither
of them dominates the other on the blind test dataset. The
MDRL algorithm slightly outperforms its safe version in
terms of cost; conversely, the safe-MDRL algorithm per‐
forms better on temperature violation. The comparison of
MDRL/safe-MDRL algorithm against B1 also illustrates that
the application of BESS and advanced optimization methods
can reduce home energy cost and improve human thermal
comforts. However, there is a gap on the cost between the
MDRL/safe-MDRL algorithm and B2 due to randomness of
PV generation, outdoor temperature, and non-shiftable loads
which are difficult to be exactly captured by deep networks
with the MDRL/safe-MDRL algorithm. The B2 provides the‐
oretical optimal decisions supposing that accurate predictions
of PV generation, outdoor temperature, and non-shiftable
loads are available before decision-making. However, such
assumption does not hold in practice. With the MDRL/safe-
MDRL algorithm, the artificial agent strives to make leading
decisions based on current observations. However, the ran‐
dom nature of PV generation and outdoor temperature
makes it difficult to exactly capture their temporal evolution.

TABLE V
STATISTICS ON AVERAGE DAILY OPERATION COSTS AND TEMPERATURE DE‐

VIATION FROM COMFORT ZONE

Algorithm

B1

B2

DDPG (mean)

DDPG (standard)

MDRL (mean)

MDRL (standard)

Safe-MDRL (mean)

Safe-MDRL (standard)

Cost ($)

10.93

6.51

8.73

0.19

8.11

0.16

8.13

0.14

Temperature deviation (℉)

5.503

0

0.108

0.114

0.058

0.032

0.042

0.033

TABLE IV
AVERAGE EPISODE OPERATION COST AND TEMPERATURE DEVIATION FROM

COMFORT ZONE

Iteration

2500

5000

7500

10000

Cost ($)

MDRL

11.53

11.14

10.64

10.16

Safe-MDRL

11.63

11.22

10.70

10.20

Temperature deviation (℉)

MDRL

80.77

59.95

44.65

34.17

Safe-MDRL

14.64

11.32

9.03

7.14
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Fig. 5. Average episode rewards during training process.
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Hence, it’s not surprising that a gap on the cost between the
MDRL/safe-MDRL algorithm and B2 can be observed.

Temperature deviations from comfort zone are observed
with the DDPG algorithm, the MDRL algorithm, and the
safe-MDRL algorithm. This is because indoor temperature
dynamic model in (29) considers the impact of uncertainty
of outdoor temperature on indoor temperature. At the end of
time slot t when the decision on PHVAC,t+1 is issued, outdoor
temperature Kout,t+1 is actually unknown. The proposed

MDRL/safe-MDRL algorithm learns to handle the challenge,
however, it cannot be fully addressed in the extreme cases
where large variation of outdoor temperature occurs.

Figure 6 illustrates simulation results obtained by the pro‐
posed algorithms and benchmark algorithms. It can be ob‐
served that the indoor temperature, SoC of BESS, HVAC in‐
put power, and grid power obtained by the DDPG algorithm,
MDRL algorithm, and safe-MDRL algorithm generally cap‐
ture the trend of the results obtained by B2.

From Fig. 6(a), it can be observed that the indoor tempera‐
ture obtained by the DDPG algorithm, MDRL algorithm,
and safe-MDRL algorithm generally lies in the comfort zone
while large temperature deviation obtained by B1 is ob‐
served. From Fig. 6(b), it can be observed that the BESS is
charged during valley hours (the 1th-6th hour and the 25th-30th

hour) when electricity price is low and is discharged during
peak hours in the morning (the 9th-12th hour and the 33th-36th

hour) when electricity price is high. During flat hours in the
middle of the day when PV generation is high and electrici‐
ty price is moderate, the BESS is charged again. In the late
afternoon and early evening (the 19th-22th hour and the 43th-
46th hour), the BESS is discharged to provide energy. From
Fig. 6(c), it can be observed that the HVAC system operates
at high power during valley hours and flat hours and its pow‐
er is greatly reduced during peak hours. The PV system gen‐
erates power in the daytime and its power generation usually
arrives at peak in the middle of the day. The home energy
system can make use of PV generation in the daytime con‐
sidering that the power drawn from the grid is much lower
in the daytime than in the evening and in some hours the
surplus energy is sold to the grid, as illustrated in Fig. 6(d).

With the above analysis, it is reasonable to say that the
BESS and HVAC system take advantage of TOU electricity
price and PV generation to reduce the operation cost of the
home energy system while maintaining the human thermal
comfort.

V. CONCLUSION

In this paper, a novel DRL-based algorithm is developed
for home energy management under TOU pricing program.
The operation modes of various household appliances consti‐
tute discrete-continuous hybrid action space, which challeng‐
es the existing RL frameworks for either discrete action
space or continuous action space. The proposed MDRL algo‐
rithm integrates DQL and DDPG where the DQL deals with
discrete action space and the DDPG handles continuous ac‐
tion space. To reduce the loss of human thermal comfort dur‐
ing the learning stage with the MDRL algorithm, a safe ver‐
sion (safe-MDRL algorithm) which deploys a prediction
model to guide the exploration of the MDRL algorithm is
further developed.

To verify the effectiveness of the MDRL algorithm in cost
saving for home energy management and the safe-MDRL al‐
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gorithm in reducing the loss of human thermal comfort in
the learning stage, simulation studies based on real data are
conducted. The results illustrate that the MDRL algorithm
can efficiently handle the challenges from discrete-continu‐
ous hybrid action space for the existing RL frameworks.
Meanwhile, the MDRL algorithm reduces the operation cost
while keeping human thermal comforts by comparing with
benchmark algorithms including classical DDPG on the test
dataset. Simulation results also illustrate that the safe-MDRL
algorithm can greatly reduce the loss of human thermal com‐
forts in the learning stage.
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