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Abstract——Security-constrained unit commitment (SCUC) has
been extensively studied as a key decision-making tool to deter‐
mine optimal power generation schedules in the operation of
electricity market. With the development of emerging power
grids, fruitful research results on SCUC have been obtained.
Therefore, it is essential to review current work and propose fu‐
ture directions for SCUC to meet the needs of developing pow‐
er systems. In this paper, the basic mathematical model of the
standard SCUC is summarized, and the characteristics and ap‐
plication scopes of common solution algorithms are presented.
Customized models focusing on diverse mathematical properties
are then categorized and the corresponding solving methodolo‐
gies are discussed. Finally, research trends in the field are pros‐
pected based on a summary of the state-of-the-art and latest
studies. It is hoped that this paper can be a useful reference to
support theoretical research and practical applications of SCUC
in the future.

Index Terms——Security-constrained unit commitment, electrici‐
ty market, accurate model, AC power flow, data-driven.

I. INTRODUCTION

AS a critical decision-making tool for power system op‐
erations and as a theoretical basis for day-ahead elec‐

tricity markets, independent system operators (ISOs) execute
unit commitment (UC) to determine the optimal commitment
and dispatch of thermal generation units at minimal opera‐
tion cost, subject to prevailing unit and system constraints
[1]. Therefore, different UC models and solutions have at‐

tracted considerable attention in academia and industry for
their research and practical benefits [2]. Nevertheless, net‐
work security constraints such as transmission capacity and
nodal voltage limits are not widely considered or utilized in
UC models. With the continual growth of power demands,
transmission networks may be operated close to their physi‐
cal limits in market-oriented power systems [3]. Consequent‐
ly, generation scheduling based only on UC models may
lead to transmission congestion and increased operation
costs due to potential network violations. Accordingly, ISOs
must consider network security constraints when dispatching
generation units [4], [5]. In this context, traditional UC prob‐
lems are gradually developed into security-constrained unit
commitment (SCUC) models [6], [7].

Several review papers related to SCUC have been pub‐
lished. Reference [7] analyzed network models under normal
and contingency cases and introduced two-level optimization
methods for SCUC. However, [7] mainly summarized the
SCUC models and solutions introduced prior to 2006, which
is effectively outdated. In [8], solutions for deterministic and
uncertain UC were reviewed, but the corresponding mathe‐
matical models were hardly introduced. Two- and multi-
stage stochastic SCUC models and current solution algo‐
rithms were investigated in [9]. However, the study mainly
focused on the effects of uncertainties on SCUC while fail‐
ing to cover other aspects of the existing research. The study
in [10] detailed the characteristics and application status of
intelligent optimization algorithms for solving SCUC but did
not consider mathematical optimization methods or the po‐
tential integration of the two types of methods. In [11], the
models, methods, and challenges of profit-based UC in re‐
structured power systems were discussed, but the surveys on
SCUC were relatively limited. Recently, an increasing num‐
ber of novel theories of and methods for SCUC have been
presented in response to the considerable changes in energy
structures and the rapid development of power systems.
However, comprehensive surveys of the latest research
achievements of SCUC and prospects for future research
trends have rarely been reported.

Based on the state of the art of SCUC, this paper con‐
ducts a comprehensive summary of the modeling approaches
and solution algorithms according to practical needs and
then prospects future research trends. This paper can act as a
reference for researchers and engineers interested in theoreti‐
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cal research and practical application of SCUC.
The remainder of this paper is organized as follows. Sec‐

tion II presents the mathematical model of the standard
SCUC and summarizes the characteristics and application
scopes of common solution algorithms. The modeling and so‐
lution methodologies of SCUC with diverse mathematical
properties are reviewed in Section III. Section IV prospects
the research trends of SCUC based on the latest achieve‐
ments. Finally, conclusions are drawn in Section V.

II. MATHEMATICAL MODEL OF STANDARD SCUC AND

SOLUTION ALGORITHMS

A. Mathematical Model of Standard SCUC

1) Objective Function
The objective of the standard SCUC model is to minimize

the total cost during a particular scheduling cycle subject to
various physical constraints [9], [11]. The objective function
covering operation costs of conventional thermal power units
is given as:

min FG (UGitPGit )=min∑
t = 1

T∑
i = 1

NG

[UGit (1 -UGit - 1 )× SUGit +

]UGit - 1 (1 -UGit )× SDGit +UGit RGit (PGit ) (1)

where FG (UGitPGit ) is the overall operation cost; T is the
number of time periods; NG is the number of thermal units;
UGit is the on/off status of unit i at time t, which equals 0
when unit i is off, and 1 otherwise; PGit is the active power
output of unit i at time t; and RGit (PGit ), SUGit, and SDGit

are the generation cost, start-up cost, and shut-down cost of
unit i at time t, respectively.
2) Unit Constraints

1) Generation power limits. The unit output is limited by
the minimum technical output. In addition, the sum of the
output and spinning reserve is also restricted by its capaci‐
ty [12].

ì
í
î

ïï

ïï

PGit + SRGit £UGit P
max
Gi

UGit P
min
Gi £PGit

(2)

where P min
Gi and P max

Gi are the minimum and maximum power
limits of unit i, respectively; and SRGit is the spinning re‐
serve of unit i at time t.

2) The minimum on/off time constraints. The frequent
start-up/shut-down of a generator over a short period can in‐
duce excessive tear and wear, which should be avoided [2].
Thus, generators are required to stay in the on/off status for
an extended period before they can be switched off/on.

ì
í
î

(X on
Git - 1 - T on

Gi )(UGit - 1 -UGit )³ 0

(X off
Git - 1 - T off

Gi )(UGit -UGit - 1 )³ 0
(3)

where X on
Git and X off

Git are the on and off time counters of unit
i at time t, respectively; and T on

Gi and T off
Gi are the minimum

on and off time requirements of unit i, respectively.
3) Ramping rate constraints. The power adjustment ranges

of generators per unit time are constrained by the maximum
ramping up/down capability [13].

ì
í
î

ïïPGit -PGit - 1 £RUi

PGit - 1 -PGit £RDi

(4)

where RUi and RDi are the ramping up and down limits of
unit i, respectively.

In particular, for units that can provide ancillary services,
the spinning and operation reserve capabilities should be con‐
strained [12]:

ì
í
î

ïïSRGit £ 10 ×MSRi ×UGit

ORGit = (1 -UGit )×QSCi

(5)

where MSRi is the maximum sustained ramping rate of unit
i; ORGit is the operation reserve of unit i at time t; and QSCi

is the quick-start capacity of unit i.
3) System Constraints

1) System power balance constraint. The total output of
operating units must meet the system load demand and is ex‐
pressed as:

∑
i = 1

NG

UGit PGit =PLt +P loss (6)

where PLt is the system load forecasting value; and P loss is
the total losses.

2) Reserve requirements. To cope with unforeseen condi‐
tions such as generator outages and/or load fluctuations, suf‐
ficient spinning and operation reserves should be considered
[14], [15]. These can be expressed as:

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

∑
i = 1

NG

SRGit ³ SRt

∑
i = 1

NG

ORGit ³ORt

(7)

where SRt and ORt are the system spinning and operation re‐
serve requirements at time t, respectively.

3) Network security constraints. To maintain secure opera‐
tion, power flows of transmission lines cannot exceed their
limits [16], [17]. For network contingencies, N - 1 transmis‐
sion security checking is applied to ensure system operation‐
al security against any single line failure:

-P max
lc £∑

i = 1

N ( )Gli + dlcGci PGit -

∑
d = 1

D ( )Gld + dlcGcd PLdt £P max
lc cÎC (8)

where P max
lc is the capacity limit of line l under line outage

contingency c; dlc is the line outage distribution factor; Gli,
Gci, Gld, and Gcd are the power transfer distribution factors;
D is the number of load nodes; PLdt is the load of node d at
time t; and C is the set of N−1 contingencies.

B. Solving Algorithms of Standard SCUC Model

The standard SCUC model can be formulated as a mixed-
integer non-linear programming (MINLP) problem. The com‐
mon solving algorithms include heuristic, mathematical opti‐
mization (DP, BBA, LR, BD, OA, OO, C&CG), and intelli‐
gent optimization algorithms. The advantages and disadvan‐
tages of these algorithms are summarized in Table I.
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1) Heuristic Algorithm
The heuristic algorithm is one of the earliest algorithms

employed to solve the SCUC. The most common heuristic al‐
gorithms are the local search method [18] and priority list al‐
gorithm [19]. These types of algorithms are simple in princi‐
ple and efficient in calculation. However, the global optimali‐
ty cannot be theoretically guaranteed, so these algorithms are
usually applied to UC in combination with other algo‐
rithms [20].
2) Mathematical Optimization Algorithm

The mathematical optimization algorithm solves SCUC
problems by leveraging analytical methods and the proper‐
ties of the model. As the physical meaning of this process is
clear, mathematical optimization algorithms have been wide‐
ly applied to SCUC problems including the dynamic pro‐
gramming (DP) [21], branch-and-bound algorithm (BBA)
[22], Lagrangian relaxation (LR) [23], Benders decomposi‐
tion (BD) [24], outer approximation (OA) [25], ordinal opti‐
mization (OO) [26], [27], and column-and-constraint genera‐
tion (C&CG) [28].

DP is used to solve multi-stage optimization problems.
The main idea is to phase solution seeking to compress the
feasible space. However, this requires that the problem satis‐
fy the basic premise of the optimality theorem; otherwise,
the global optimality cannot be guaranteed. In addition, the
“curse of dimensionality” may incur with the increasing
number of generation units. In practice, DP is typically uti‐
lized in combination with the priority list algorithm [29].

The main idea of BBA is to solve a series of relaxation
problems of the original problem along the branch-and-
bound tree and to update the upper and lower bounds of the
objective function iteratively. In essence, BBA uses different
searching strategies to find the optimal solution and im‐
proves the searching efficiency through reasonable branch-
and-bound actions. The number of subproblems, however, in‐
creases sharply, leading to a considerable reduction in compu‐
tational efficiency with the expansion of power systems [22].

LR is widely used in solving SCUC problems. Its main
strategy is to convert the inequality constraints as penalty
terms into the objective function. Then, based on the duality
principle, it decouples the UC problem into a series of sub‐
problems. LR is flexible in application and overcomes the
obstacle of dimensionality but is easily affected by the initial
value and Lagrangian multiplier update strategies, which

may cause oscillations in the iterative process [23].
To reduce the solving complexity, the BD decouples the

SCUC model into a master problem and several subprob‐
lems, which coordinate through Benders cuts iteratively. Cur‐
rently, the BD, which has been employed in SCUC problems
extensively, is one of the most effective algorithms to ad‐
dress the complicated constraints in SCUC [30].

As a decomposition strategy to solve MINLP, the OA in‐
volves solving an alternating sequence of primal and relaxed
mixed-integer linear programming (MILP) problems. A se‐
quence of valid lower and upper bounds on the global opti‐
mum are generated, which offers a theoretical guarantee of
convergence to the global optimum in a finite number of iter‐
ations. Different from the BD, the OA and its variants are
based on the use of optimal primal information [25].

In the solving process of OO, a rough model with a rela‐
tively simple structure is used to screen the feasible space
rapidly, obtaining the selected set. Then, the suboptimal solu‐
tion that satisfies the practical needs is identified through the
accurate model through complicated calculation that renders
higher accuracy [26]. This algorithm focuses on seeking the
suboptimal solutions that satisfy practical needs rather than
the global optimality. In addition, the calculation space of
the accurate model can be significantly reduced by the rough
model for preliminary screening. Thus, OO presents great ad‐
vantages in improving calculation efficiency.

C&CG has been widely applied to solve two-stage optimi‐
zation problems, where the column generation step adds new
decision variables of the second stage to the master problem,
and the constraint generation step adds the cutting planes.
As new variables are introduced in each iteration, the dimen‐
sionality of the solution space increases significantly [28].
3) Intelligent Optimization Algorithm

Unlike mathematical optimization algorithms based on
model analysis, intelligent optimization algorithms seek the
optimal solution directly through a multi-point random mi‐
gration strategy. They include two core steps: an evaluation
method and a migration strategy. The first evaluates the per‐
formance of the results generated in the current stage and de‐
termines the direction of the next stage. The second uses a
fixed strategy to promote the algorithm convergence with an
optimal direction. As the lesser requirement on model infor‐
mation and multi-point optimization, intelligent optimization
algorithms offer better application and faster calculation.

TABLE I
ADVANTAGES AND DISADVANTAGES OF SOLVING ALGORITHMS FOR STANDARD SCUC MODEL

Algorithm

Heuristic

DP

BBA

LR

BD

OA

OO

C&CG

Intelligent optimization

Advantage

Solving process is relatively easy

Solving space is compressed

High searching efficiency

Dealing with constraints effectively

Original large-scale problem can be decoupled

Optimal solution can be obtained

Fast convergence

Effective for two-stage optimization

Rapid convergence

Disadvantage

Global optimum cannot be guaranteed

Curse of dimensionality issue may incur

Inapplicability for large-scale problems

Oscillation along iterations

Slow convergence

Time-consuming calculation

Only suboptimal solution is guaranteed

Solving speed is relatively limited

Uncertainty and instability in solving process
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Therefore, they are widely applied in solving SCUC. Re‐
searchers usually seek inspiration for migration strategies
from nature or human social behavior. Depending on the dif‐
ferent migration strategies, intelligent optimization algo‐
rithms include the genetic algorithm [31], particle swarm op‐
timization [32], immune algorithm [33], and simulated an‐
nealing algorithm [34].

In general, uncertainty and instability exist in the solving
process of intelligent optimization algorithms. The algo‐
rithms may also rapidly converge to suboptimal solutions re‐
stricted by migration strategies. To enhance calculation effi‐
ciency, some intelligent optimization algorithms have been
used in a hybrid manner. These include the chaotic particle
swarm optimization [35] and chaotic immune genetic [36] al‐
gorithms.

III. MODELING AND SOLVING METHODOLOGIES OF SCUC
WITH DIVERSE MATHEMATICAL PROPERTIES

With the increasing complexity of power systems, stan‐
dard SCUC model usually cannot satisfy practical engineer‐
ing needs. Accordingly, many researchers have made efforts
to improve the mathematical models in terms of the objec‐
tive function, complicated constraints, or a combination of
the two. Based on the mathematical models from particular
applications, we categorize them into SCUC models with
multiple objectives, with uncertainties, with additional vari‐
ables, with complicated constraints, as well as with multiple
areas and timescales.

A. SCUC Model with Multiple Objectives

With the transformation of energy infrastructures and in‐
creasing environmental concerns, the standard SCUC model
with minimal economic cost as the optimization objective
may not be sufficient. To this end, many efforts have been
made to study SCUC with multiple objectives [37], [38].
1) Mathematical Formulation

The SCUC with multiple objectives can be commonly ex‐
pressed as:

ì

í

î

ïïïï

ïïïï

min(F1 (UGitPGit )Fm (UGitPGit ))

s.t. ga (UGitPGit )£ 0 a = 12A

hb (UGitPGit )= 0 b = 12B
(9)

where Fm (UGitPGit ) is the mth subobjective function;
ga (UGitPGit )£ 0 is the ath inequality constraint;
hb (UGitPGit )= 0 is the bth equality constraint; and A and B
are the numbers of inequality and equality constraints, re‐
spectively.

In addition to the economic cost, the SCUC with multi-ob‐
jectives usually includes pollutant emission and social wel‐
fare. Specifically, the objective function for minimizing pol‐
lutant emission can be expressed as [38]:

min FPE (UGitPGit )=min∑
v = 1

Nv∑
t = 1

T∑
i = 1

NG

UGit (αiv + βiv PGit + γiv P 2
Git )

(10)

where FPE (UGitPGit ) is the overall pollutant emission; Nv is
the number of pollutant types, including CO2, SO2, and NO2;

and αiv, βiv, and γiv are the coefficients of pollutants.
The objective function of social welfare is [39]:

max FS (UGitPGit )=max∑
t = 1

T∑
n = 1

Nb∑
i = 1

NG

(FU -FG (UGitPGit )) (11)

where FS (UGitPGit ) is the social welfare function; FU is the
gross earnings of utility with the implemented electricity
price; and Nb is the number of buses.
2) Solving Methodology

For SCUC with multiple objectives, the solution is to
transform the multi-objective problem into a single-objective
one. The corresponding methodologies include the weighted
sum method, fuzzy optimization algorithm, and Pareto opti‐
mization.

The main idea of the weighted sum method is to endow
individual objectives with weights, converting the multi-ob‐
jective problem into a single-objective one. A primary issue
is to determine the weights of individual objectives. Accord‐
ing to the setting strategies, weighted sum method can be
categorized into subjective [40], objective [41], and compre‐
hensive [42] weighting methods.

The fuzzy optimization algorithm commonly normalizes
each subobjective first and then establishes the correspond‐
ing membership function by using a real number between 0
and 1 to indicate the membership degree. It then sums the
membership functions of individual subobjectives to convert
the multi-objective problem to a single-objective one [43].

The common idea of the Pareto optimization is to guaran‐
tee the optimality for at least one objective without exacer‐
bating others [37]. Specifically, it first seeks a Pareto opti‐
mal front that satisfies the dominating conditions and then
obtains the optimal solution by sorting the non-dominating
solution. Compared with other methods, it seeks to identify
a set of optimal solutions rather than just one.

B. SCUC Model with Uncertainties

The large-scale penetration of intermittent renewable ener‐
gy such as wind power and photovoltaic power produces nu‐
merous uncertainties in power systems [44]-[46]. According‐
ly, SCUC with generation or load uncertainty has attracted
widespread attention [8], [47]. These studies have investigat‐
ed how to formulate the uncertainties precisely and improve
the solving accuracy and robustness of SCUC.
1) Mathematical Formulation

When a single type of uncertainty is considered in an
SCUC problem, the general model mainly includes stochas‐
tic and robust SCUC according to whether the probabilistic
distribution of uncertain parameters is known.

If the probability distribution of uncertainty has been as‐
sumed, the SCUC with uncertainty can be formulated as a
stochastic SCUC:

ì

í

î

ïïïï

ïïïï

min EΩ (FG (UGitPGit ))

s.t. gl (UGitPGitω)£ 0 l = 12L

hm (UGitPGitω)= 0 m = 12M
(12)

where EΩ (FG (UGitPGit )) is the expected total operation cost
of generation units under the assumed distribution Ω; ω is a
random variable that obeys the distribution Ω;
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gl (UGitPGitω)£ 0 is the lth inequality constraint;
hm (UGitPGitω)= 0 is the mth equality constraint; and L and
M are the numbers of inequality and equality constraints, re‐
spectively.

If the probability distribution of uncertainty is not given,
the SCUC model with uncertainties can be formulated as a
robust SCUC model:

ì

í

î

ï
ïï
ï

ï
ïï
ï

min max
μÎ[μ-μ+ ]

FG (UGitPGit )

s.t. gx (UGitPGitμ)£ 0 x = 12X

hy (UGitPGitμ)= 0 y = 12Y

(13)

where [μ-μ+ ] is the uncertainty interval of parameter μ;
gx (UGitPGitμ)£ 0 is the xth inequality constraint;
hy (UGitPGitμ)= 0 is the yth equality constraint; and X and Y
are the numbers of inequality and equality constraints, re‐
spectively.

In general, these stochastic and robust SCUC models are
regarded as two-stage optimization problems. In other
words, the commitment solution is solved in the first stage
with the aim of minimizing the operation cost of traditional
units. In the second stage, the initial decisions are checked
and generation dispatches are further determined to satisfy
the uncertainty realizations in real time [15], [37].

Overall, these two-stage SCUC models cannot rigorously
consider the situations in which uncertainty realizations are
reviewed gradually and decisions are made at each time step
along the scheduling horizon with all uncertainty realization
information available up to the current time point. Accord‐
ingly, some researchers have proposed multi-stage optimiza‐
tion models that can make decisions dynamically by leverag‐
ing uncertainty information over time. The operation costs
can be reduced by the more accurate interaction between de‐
cision-making and uncertainty in the multi-stage stochastic
model. However, as the numbers of stages and decisions
within each stage increase dramatically, the multi-stage mod‐
els are harder to solve. The multi-stage model can be trans‐
formed into a two-stage problem to obtain the solution. Ad‐
vanced decomposition algorithms have also been developed
to accelerate the solving process [48], [49].

In addition, there are various uncertainty factors in practi‐
cal power systems [37], [50]. Conventional stochastic SCUC
models regard all types of uncertainties as independent fac‐
tors, and they determine the worst-case scenarios using a
simple linear weighted sum. However, because of the instal‐
lation location of intermittent energy units, time sequence of
unit dispatching, and other factors, certain correlations exist
between different uncertainty factors. The worst-case scenari‐
os of these uncertainty factors with probability correlations
may not appear simultaneously [51]. Therefore, the conven‐
tional stochastic SCUC that ignores these correlations may
obtain an overly conservative decision. To improve decision
accuracy, the probability correlations of multiple uncertain‐
ties in SCUC should be considered. In [51], intervals were
used to describe the uncertainties of wind power and photo‐
voltaic power, and a function was then constructed to reflect
the correlation between these two intervals. This method is
simple and efficient but can only deal with correlations be‐

tween two uncertainty factors. Thus, its applicability is limit‐
ed. Reference [52] introduced Cholesky decomposition to
transform uncertainties with probability correlations into in‐
dependent ones and then employed robust optimization (RO)
to seek the worst-case scenario and make SCUC decisions.
By comparison, the number of uncertainties that can be han‐
dled by this method is not limited. It can also be combined
with existing stochastic methods despite the increase in com‐
putational complexity.
2) Solving Methodology

Currently, the common solution methodologies to solve
SCUC models with uncertainties include the scenario-based
approach (SBA), chance-constrained optimization (CCO),
RO, and information-gap decision theory (IGDT).

The main idea of the SBA is to generate a set of scenarios
for simulating the possible conditions of uncertain factors.
With the two-stage model, the sampling method is used to
generate multiple independent scenarios based on the pre‐
sumed probabilistic distribution functions. With the multi-
stage model, a scenario tree with random paths is generated
based on the dynamic stochastic process. However, many
scenarios are needed to formulate the uncertainties (up to a
point precisely), which complicates the solving process [8].
Therefore, scenario reduction and scenario aggregation tech‐
niques are employed to reduce the computational burden
without significantly compromising the solution accura‐
cy [53].

CCO is another technique for handling stochastic prob‐
lems, where constraints can be violated by a specified small
level of probability [54]. CCO converts certain stochastic
equivalents into chance constraints that are satisfied at a cer‐
tain probability. For instance, the overloaded probability of
transmission line can be specified to be no larger than a as‐
signed value. Then, the chance-constrained stochastic SCUC
is converted into a deterministic SCUC that can be solved
by the standard techniques [16].

RO seeks the optimal solution in a worst-case scenario in
which the uncertain factors have the greatest impact on sys‐
tem economics and/or reliability and then seeks the corre‐
sponding optimal solution [28]. For SCUC problems with in‐
termittent energy, this method minimizes the worst-case total
cost over all possible realizations and converts the min-max
model to an equivalent single-level model with the same op‐
timal decisions. RO requires only fluctuation intervals of in‐
termittent energy rather than an exact distribution of random
parameters.

IGDT constructs the robust model hedging risk and the
chance model pursuing risk benefits by estimating the im‐
pact of uncertainties on the specified goals. The obtained ro‐
bust and chance results can provide decision guidance for
system operators. It does not require probability distribution
functions of uncertainties and is suitable for the cases with
numerous uncertainties or lacking uncertainty informa‐
tion [55].

The aforementioned solution methodologies for SCUC
models with uncertainties are compared in Table II. Consid‐
ering the diverse limitations of the aforementioned solving
methodologies, some researchers have addressed stochastic
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SCUC problems by improving the existing uncertainty pro‐
cessing methods. The most effectively applied methods in‐
clude distributionally robust optimization (DRO) [56] and
stochastic RO [57]. DRO can incorporate some distribution
information into the ambiguity sets for describing probability
distributions of uncertainties. As the worst-case distribution
becomes less conservative when more distributed informa‐
tion is included into the ambiguity set, it results in a lower
expected cost than RO. Reference [58] proposed an extreme
distribution generation method based on DRO to solve the
SCUC problem much more efficiently. Stochastic RO takes
advantage of both stochastic and RO approaches by achiev‐
ing a low expected cost while ensuring system robustness.
By introducing weights for the stochastic and robust parts in
the objective function, system operators can adjust the
weights based on their preferences [57].

C. SCUC Model with Additional Variables

With the rapid development of smart grids, system opera‐
tors can leverage flexible demand-side resources along with
supply-side dispatching. In this regard, some researchers
have attempted to plug demand response (DR) resources into
the SCUC model as additional variables [59]. In this paper,
the additional variables in the SCUC model include interrupt‐
ible load (IL) and energy storage system (ESS).
1) SCUC Model with IL

As a potential demand-side response resource, ILs may re‐
duce the system operation cost effectively by load shedding
during peak or system fault periods. In addition, regarding
the output fluctuation of intermittent resources, they could al‐
so be applied to balance system loads and to optimize the
configuration of system resources. Therefore, the general ob‐
jective function of SCUC model with IL is [59]:

min (∑t = 1

T∑
i = 1

NG

FG (PGitUGit ) +∑
t = 1

T∑
j = 1

NIL

FILj (PILjtUILjt ) ) (14)

where FILj (PILjtUILjt ) is the compensation expense of IL j
at time t; NIL is the number of ILs; PILjt is the demand level
of ILs; and UILjt is the state of IL j at time t, which equals 1
when the IL participates in scheduling, and 0 otherwise.

In addition to the prevailing constraints, the constraints
such as the minimum interrupted time and maximum contin‐
uous invocation time [60] for IL should be considered.
2) SCUC Model with ESS

As an efficient resource to mitigate the fluctuation and un‐

certainty of intermittent energy, ESSs can be embedded into
SCUC models. The operation cost of ESSs should be consid‐
ered in the SCUC model, and the specific function is [61]:
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(15)

where NESS is the number of dispatchable ESSs; Cc and Cd

are the coefficients of charging and discharging expenses, re‐
spectively; and P c

ESSnt and P d
ESSnt are the charging power and

discharging power of ESS n at time t, respectively.
Similar to the ESS, an electric vehicle (EV) can operate

as load under charging state and inject power to the system
by vehicle-to-grid (V2G). As a result, some studies have em‐
bedded EVs into the SCUC model [62]. Correspondingly,
the charging/discharging power limits, and charging/discharg‐
ing time constraints of the ESS and EV should also be satis‐
fied [63].

D. SCUC Model with Complicated Constraints

Researchers have also proposed SCUC models with com‐
plicated constraints. These mainly include SCUC models
with transmission switching, with AC constraints, and with
frequency constraints.
1) SCUC Model with Transmission Switching

The high penetration of wind power and EVs in day-
ahead electricity markets usually causes disturbances to pow‐
er systems. In addition, abnormal changes of power flows
and line losses under extreme conditions may increase the
system operation costs. Accordingly, transmission switching
is typically adopted to maintain secure operations. Therefore,
the constraints of transmission switching have been intro‐
duced into SCUC models [64], [65]. With this, the SCUC
model can reconfigure the transmission network to control
line power and optimize the system operation cost with re‐
duced line losses.

The objective function of the SCUC model with transmis‐
sion switching remains the same as that of the standard
SCUC model. The additional constraints are formulated
as [64]:

-zkt Pkmax £Pkt £ zkt Pkmax (16)

where Pkmax is the active power limit of line k; zkt is the
state of line k at time t, which equals 0 when line k is
switched off without active power; and Pkt is the active pow‐
er of line k at time t.

To maintain system voltage stability, the voltage phase an‐
gle constraint before closing lines should also be considered
as [65]:

-Dδmax
k - J(zkt - 1 - zkt + 1)£ δkt £Dδ

max
k + J(zkt - 1 - zkt + 1) (17)

where δkt is the phase angle of line k at time t; Dδmax
k is the

maximum stable phase angle difference of line k; and J is a
large positive constant.
2) SCUC Model with AC Constraints

As the DC power flow model can be solved directly with‐
out iterative calculation, it is always adopted to formulate
the network security constraints in SCUC models [66]. This
can effectively mitigate to a certain extent the solving diffi‐

TABLE II
COMPARISON OF SOLVING METHODOLOGIES FOR SCUC MODELS WITH

UNCERTAINTIES

Methodology

SBA

CCO

RO

IGDT

Advantage

Easy to solve for simple prin‐
ciple

Rigid constraints can be re‐
laxed

Only fluctuation intervals of
uncertainties are required

Requirement of uncertain in‐
formation is not strict

Disadvantage

May come with higher com‐
putational burden

Solutions only provide prob‐
abilistic guarantees

Could result in over-conser‐
vative solutions

Computational burden is rel‐
atively heavy
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culties while satisfying network security. However, the DC
power flow model is based on the assumption that conven‐
tional generators have good regulation performance and hard‐
ly absorb reactive power from the grid. Moreover, some
wind turbines may absorb reactive power from the grid
when started up. Therefore, large-scale penetration of wind
power will result in severe reactive power issues and invali‐
date the application premise of the DC power flow model.
In this case, the DC power flow based SCUC model may re‐
sult in the shortage of reactive power, the drop in grid volt‐
age, and the over-limit of transmission power. In this regard,
the AC power flow model is used to accurately describe the
security constraints in the SCUC [67].

Because of strong non-linearity, the AC power flow model
must be solved using an iterative calculation. The computa‐
tional complexity also increases sharply with the increase in
grid scale. The SCUC model itself is a non-convex problem,
and the introduction of AC constraints in the SCUC model
will considerably complicate the solution and may result in
non-convergence [68]. Therefore, solving efficiency is the
main bottleneck of this model. Existing studies can be divid‐
ed into the following categories.

1) Introduce network loss factor or voltage index into the
DC power flow model [69], [70]. In essence, this approach
still utilizes a DC power flow based SCUC model and can
consider fluctuations in system reactive power and voltage
to a certain extent. Overall, it effectively balances the solv‐
ing difficulty and decision accuracy, but its decision accura‐
cy remains limited.

2) Introduce an AC power flow model but linearize it in
the solving process [71], [72]. Compared with [69], the accu‐
racy of this approach is further enhanced. Although the lin‐
earization method can simplify the solving process to some
extent, this method requires many iterations and may there‐
fore be challenging when applied to large-scale power sys‐
tems.

3) Directly introduce AC power flow constraints into the
SCUC model without simplifications [73], [74]. Reference
[74] facilitated solving efficiency by utilizing an OO algo‐
rithm to ensure decision accuracy and realize a stable solu‐
tion.
3) SCUC Model with Frequency Constraints

For power systems with high penetration of renewable ener‐
gy sources, because of the low inertia and limited reserve ca‐
pacity of renewable energy sources, the frequency is likely to
exceed the limit when disturbances occur, leading to a frequen‐
cy collapse of the entire system [75]. Accordingly, to improve
the frequency stability of the power grid with large-scale re‐
newable energy sources, some researchers have introduced
system frequency constraints into SCUC decision-making.

The existing SCUC models that consider frequency con‐
straints mainly focus on steady-state [76], [77] and dynamic
frequency constraints [78], [79]. For the former, in terms of
the maximum adjustable reserve capacity, the primary and
secondary frequency control schemes were implemented to
satisfy the steady-state frequency constraints [77]. For the
latter, [79] analyzed the dynamic frequency response of re‐
newable energy sources and took the frequency nadir against

system disturbance as the evaluation index. The SCUC mod‐
el with dynamic frequency constraints was then decomposed
into the UC master problem and frequency over-limit detec‐
tion subproblem for calculation.

E. SCUC Models with Multiple Areas and Timescales

Based on the dispersed locations of generation resources
and the solving timescale, some researchers have also con‐
centrated on the modeling and solutions of SCUC models
with multiple areas and timescales.
1) SCUC Model with Multiple Areas

To tackle the problems of uneven energy distribution and
power-supply/demand balance, inter-regional electricity inter‐
connection has become a major choice for system operators
[80]. However, it also poses new challenges to SCUC prob‐
lems. Currently, the solution strategy for SCUC models with
multiple areas can be categorized into centralized and distrib‐
uted decision-making strategies.

1) Centralized decision-making strategy
With superior dispatching centers as participants, the cen‐

tralized decision-making strategy is a vertical decision-mak‐
ing, multi-level coordination, and level-by-level refinement
process. This strategy is implemented to break information
blocking between multiple areas and to further realize opti‐
mal allocation of resources in a larger scope. Based on dif‐
ferent operation modes of power systems, we categorize the
centralized decision-making strategy into two types: regional-
provincial grid coordination and transmission-distribution
system coordination.

For the regional-provincial grid coordination, we take the
coordinated dispatching of regional-provincial grid as an ex‐
ample, which can be described as a bi-level optimization
problem. Its decision framework can be illustrated by Fig. 1.

In Fig. 1, the inner level uses U n
Git and P n

Git as decision
variables, where U n

Git and P n
Git are the on/off status and pow‐

er of unit i at time t in the province n, respectively. Based
on the power of transprovincial transmission line k Plk deter‐
mined at the outer level, each province takes its total genera‐
tion cost F n

G (U n
GitP

n
Git ) as the optimal objective at the inner

level. Based on the obtained generation schemes of units in
all provinces, the outer level takes the power adjustment of
coordinating unit i at time t in province n DP n

Cit and Plk as
the variables with the goal of reducing the losses of transpro‐
vincial transmission lines [81]. In addition, P loss is the power
loss of transprovincial transmission lines.

For the transmission-distribution system coordination, in
market-oriented power systems, ISOs derive the day-ahead
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Fig. 1. Framework of regional-provincial grid coordination.
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generation scheme through market clearing, where the distri‐
bution systems are usually directly simplified as loads. With
the rapid deployment of distributed generators (DGs), the
distribution network has changed from the fixed load form
with unidirectional power flow to a new network pattern
with bidirectional power flows between power supply and
demand. In this context, as simplifying distribution systems
as fixed load fails to reflect the internal operation features of
distribution systems, the corresponding SCUC model may
lead to problems such as over-voltage and transmission line
congestion. Therefore, some researchers have embedded dis‐
tribution systems with DGs into the SCUC problem, where a
bi-level optimization-based transmission-distribution system
coordination was established in [82]. In other words, genera‐
tion units are taken as decision subjects by the ISO at the up‐
per model, whereas the outputs of DGs are determined by
distribution system operators (DSOs) at the lower model.
This strategy does not require the ISO to directly observe
the configuration details of distribution systems. However, it
must be solved repeatedly and iteratively, significantly in‐
creasing the computational burden.

To cope with the issue of computational efficiency, in
[82], the distribution system was modeled through a linear
function to describe the relationship between the operation
cost and injected power of the transmission network (where
the day-ahead decision is then made by the ISO). However,
this method assumes that the transmission system is connect‐
ed with the distribution system through a single line. Accord‐
ingly, a transmission-distribution system model with multiple
connections was established in [83], and the feasible region
of bus voltages and line power flows of the distribution sys‐
tem was formulated based on the operation data. In turn, the
generation schedule was determined based on the feasible re‐
gion of the distribution system operation. Overall, the mod‐
els in [83], [84] could reflect the internal operation informa‐
tion of the distribution systems and improve the calculation
efficiency compared with previous bi-level models.

2) Decentralized decision-making strategy
With the expansion of the scale of interconnected power

systems, for the centralized decision-making strategy, it is
difficult to obtain global information of large-scale power
systems without compromising the information privacy
among interconnected areas. As a result, the generation re‐
sources of interconnected regional power grids cannot be op‐
timally scheduled. Accordingly, studies have been conducted
that utilized decentralized decision-making strategies to cal‐
culate SCUC decisions [85], [86].

Without the participation of superior dispatching centers,
the decentralized decision-making strategy could maximize
the overall economic benefit of interconnected power sys‐
tems by adjusting the tie-line power flows through neigh‐
bors’ information. The general framework of decentralized
decision-making strategy is shown in Fig. 2.

The common solutions of decentralized decision-making
strategies include the alternating direction method of multi‐
pliers (ADMM) and synchronous alternating direction meth‐
od of multipliers (SADMM). ADMM solves a convex opti‐
mization problem by decomposing it into several smaller
subproblems that can be easily handled. It can guarantee the
independent autonomy of each subsystem and information
privacy simultaneously [87]. SADMM requires only the nec‐
essary information exchange among the areas during the iter‐
ative procedure without the participation of superior coordi‐
nators [88]. This can accelerate the iterative process and
achieve distributed autonomy.
2) SCUC Model with Multiple Timescales

SCUC models use 1 hour as a basic time step size to cal‐
culate day-ahead schedules. However, with the increasing de‐
ployment of intermittent energy and flexible loads, some re‐
searchers have strategically adopted different time resolu‐
tions for the SCUC calculation. The main types include adap‐
tive timescale, intraday multi-timescale, and long-term multi-
timescale SCUC models.

1) Adaptive timescale SCUC model
The decision step size is generally fixed at 1 hour or 30

min in most day-ahead SCUC models. Therefore, these mod‐
els may fail to accurately capture the random fluctuations of
load or intermittent power at a finer time resolution. There‐
fore, shortening the time step size is a possible means of im‐
proving decision accuracy. However, this would increase the
computational burden considerably. To this end, [89] pro‐
posed a UC model that adopted a finer time resolution in the
first few hours of the scheduling horizon and a coarser time
resolution for the rest. In addition, [90] adopted a hierarchi‐
cal clustering algorithm to determine different time resolu‐
tions according to the fluctuation amplitude of load, and an
adaptive-timescale model was established accordingly. In
this model, the generation decision is made intensively when
the load fluctuates sharply and less frequently when the load
fluctuation is slight. However, the time resolution must be
calculated prior to modeling. Furthermore, the modifications
of temporal constraints are rather complicated, and certain
constraints may have to be approximated or even excluded if
they cannot be properly modified.

2) Intraday multi-timescale SCUC model
Currently, the forecasting accuracy of intermittent energy

increases gradually with a finer time resolution. In addition,
the response characteristics of loads vary under different tim‐
escales [91]. Consequently, some studies have investigated
the intraday multi-timescale SCUC model [92], as shown in
Fig. 3.

Region 3

Region 1

Region 2

Fig. 2. Framework of decentralized decision-making strategy.
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Real-time
decision-making
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dispatch are
determined with
1 hour or 30 min

The intraday
schemes are

calculated every
rolling 15 min

in one day

The decisions are
updated every 5 min

to deal with
real-time power

deviation

Fig. 3. Intraday multi-timescale SCUC model.
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The intraday multi-timescale SCUC model first must
make day-ahead decisions based on day-ahead load forecast‐
ing. Then, based on continual updated forecasting, it derives
intraday and real-time schemes to allocate flexible load re‐
sources and intermittent energy reasonably.

3) Long-term multi-timescale SCUC model
Start-up processes of thermal generators, particularly those

with large capacities, may require considerable time with
multiple steps, thereby limiting the economics and operabili‐
ty of the day-ahead SCUC [93]. To guarantee that the units
are operated at the best working point, it is necessary to opti‐
mize the UC scheme on a weekly or even monthly time
span. In addition, when the load notably fluctuates over con‐
secutive days such as holidays, in extreme weather, or ac‐
cording to other factors, day-ahead SCUC methods cannot al‐
locate generation resources reasonably and economically on
a long-term timescale. Accordingly, researchers have attempt‐
ed to study long-term multi-timescale SCUC models [94], as
shown in Fig. 4.

Compared with standard SCUC models, the optimization
periods as well as the decision variables and constraints of
long-term multi-timescale SCUC models are multiplied. In
addition, the critical factors affecting the calculation efficien‐
cy are the coupling relationships among constraints such as
the minimum start-up/shut-down time constraints. Regarding
the processing of time coupled constraints, existing studies
have utilized cutting plane methods to adjust the constraint-
variable relationship of valid inequalities [95]. Then, the
SCUC model can be constructed and solved.

IV. RESEARCH TRENDS OF SCUC

A. SCUC for Multi-energy Systems

To handle the problems of environmental pollution and to
promote the sustainable development of clean energy, inte‐
grated operations of multiple energy systems such as power,
natural gas, and heating are currently being considered. In‐
deed, integrated energy systems (IESs) with multiple supply‐
ing resources, loads, and coupled energy forms have been es‐
tablished to improve energy efficiency [96]. In this context,
it is critical to study the methods for optimizing the multi-en‐
ergy generation schedule in an IES. Existing studies have
mainly concentrated on SCUC for power-gas and heat-power
systems.
1) SCUC for Power-gas Systems

Due to their fast response, low pollution, and high energy
efficiency, gas turbines have had rapid growth in recent
years as connecting hubs between power and natural gas sys‐

tems. In addition, with the extensive application of power-to-
gas (P2G) technology, energy begins to flow bidirectionally
between power and natural gas systems. Taking gas turbines
and P2G devices as coupling nodes, power and natural gas
systems are tightly coupled into a highly dependent IES at
both the physical and information levels. For this type of
system, in addition to the standard SCUC model for power
systems, the constraints of natural gas pipeline networks and
related characteristics should be considered. Therefore, a
new SCUC framework has been developed [97].

Some similarities exist between models of natural gas and
power systems. The energy sources are limited by upper/low‐
er boundaries, and the energy transmission is limited by the
physical characteristics of lines or pipelines. However, the
operation characteristics and energy transmission speeds of
these models are different, which present new and signifi‐
cant challenges.

Existing studies have presented two main strategies in the
SCUC modeling of power-gas systems: sequential optimiza‐
tion [98] and co-optimization [99], [100]. The main idea of
sequential optimization is first to calculate the optimal gener‐
ation schemes of units, including gas-fired units in the pow‐
er systems. Then, the natural gas supplying scheme can be
solved according to the fixed gas demands of gas-fired units.
However, this strategy cannot guarantee global optimality.
By contrast, power and natural gas systems are taken as a
single unit into the co-optimization model, where the con‐
straints of the natural gas system are embedded into the mod‐
el with the aim of minimizing the total cost of the two ener‐
gy systems. As the extreme operation conditions of two ener‐
gy systems are considered, the operational security of the en‐
tire energy infrastructure can be ensured.

In terms of solution approaches, the main challenge is the
non-linearity of the natural gas pipeline constraints. In this
regard, the latest studies have mostly focused on refining the
static models, despite their required simplification in the
solving process. Specifically, non-linear constraints such as
the flow equations of natural gas are usually linearized or re‐
laxed. Under the assumption that pipeline gas flow direction
is known, [101] tackled the complex constraints of natural
gas networks using the second-order cone relaxation method.
In [102], the pipeline gas flow direction was expressed by in‐
teger variables, the pipeline formula was relaxed to a mixed-
integer second-order cone constraint, and the non-convex
problem was solved by transforming it into a convex one.

However, several challenging issues remain that must be
further studied. First, influenced by the price fluctuation and
supply shortage of natural gas, natural gas systems face cer‐
tain uncertainties. In addition, because of the different re‐
sponse speeds of power and natural gas systems, the influ‐
ence mechanisms and response characteristics of their uncer‐
tainty factors are also different. How to construct an SCUC
model that can comprehensively consider the uncertainties of
these two systems must be resolved [103]. Second, in recent
years, DR technology has been rapidly developed in power
systems. In fact, with the large-scale installation of natural
gas generating units, they represent a type of DR resource
that can be dispatched in natural gas networks. Consequent‐

Long-term SCUC
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condition
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Day-ahead generation
schemes of units
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Fig. 4. Long-term multi-timescale SCUC model.
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ly, how to consider the DR resources from both electricity
and natural gas sides simultaneously and how to formulate
precisely their interactions deserve further exploration
[104], [105].
2) SCUC for Heat-power Systems

The heat loss of conventional thermal power units in the
generation process usually leads to lower energy utilization
[106]. Accordingly, considering heating in the SCUC model
can partly improve the overall energy efficiency.

Regarding the SCUC for heat-power systems, because of
the slow dynamics of the heating, the heterogeneous time
step in the SCUC modeling is a major issue that deserves at‐
tention. In this regard, the studies employing a variable tim‐
escale to establish the model have been conducted [107]. In
addition, the heat flow model that considers temperature dy‐
namics and coupling constraints is complicated. Accordingly,
existing studies have usually converted non-convex quadratic
equality constraints and coupling constraints into convex
ones for the solution [108], [109]. Then, the solving method‐
ology can be generally partitioned into two algorithms based
on an iterative strategy and model hypothesis, respectively.
The former commonly uses a fixed time delay of heat trans‐
fer in each iteration but is often limited by application sce‐
narios [110], [111]. The latter assumes that the heat flow
model is linear. This can improve the solving efficiency but
derives only suboptimal solutions [112].

Limited by the “heat-led” mode, the outputs of combined
heating and power units must be adjusted based on the dy‐
namic changes of heating loads [113]. In addition, the heat‐
ing inertia varies among different devices. To identify deci‐
sion schemes for improving system flexibility and reducing
operation costs, it is essential to explore the methods for re‐
laxing the stringent constraints of the “heat-led” mode and
co-optimizing heat-power systems under multiple heating in‐
ertia [114]. Furthermore, because of the non-uniform spatial
distribution of heat pipe temperatures, it is necessary to pre‐
cisely formulate heating balance constraints to ensure the re‐
liability and comfort of energy consumers. In this regard,
based on existing quasi-steady-state models, the partial differ‐
ential dynamic model should be considered to formulate the
spatial dynamics of heat transfer [115], [116]. In addition, to
realize the cascade utilization of various forms of energy, re‐
gional IESs based on combined cooling, heating, and power
have been deployed. Accordingly, a potential research direc‐
tion is to describe the heat-to-electric ratio change in differ‐
ent operation modes in SCUC [117], [118]. Related studies
have provided some guidance for system operators to make
generation schemes based on the costs of various energy
forms.

B. Trade-offs Between Decision Accuracy and Computational
Efficiency of SCUC

As an optimization problem, the studies on SCUC have
consistently encountered the trade-offs between decision ac‐
curacy and computational efficiency. The pursuit of more ac‐
curate SCUC decisions requires a more refined model [119].
However, model refinements often aggravate computational
difficulties. Therefore, studying effective methods for refined

SCUC models are achieved.
1) Model-tightening Technology

Compact modeling is recognized as an effective means of
improving the solving efficiencies of SCUC [120]. Current‐
ly, inactive security constraint identification and decision
variable reduction are two typical strategies.

By the Buckets effect, optimal SCUC decisions are com‐
monly described by a small portion of constraints [121],
[122]. In other words, many existing security constraints do
not actually bind at the optimal solution; these are referred
to as inactive security constraints. Therefore, if these con‐
straints can be identified and eliminated before the solving
process, the model can be tightened and the computational
complexity can be greatly reduced. Reference [121] devel‐
oped an analytical sufficient condition to identify inactive se‐
curity constraints quickly without affecting the calculation
accuracy. To prevent over-relaxation and to identify proper
redundant constraints, [123] proposed an efficient feasibility-
based bound tightening strategy. Overall, although many re‐
searchers have worked on this problem, the approaches for
using as little system information as possible to identify re‐
dundant security constraints can be further studied.

The on/off statuses of certain units remain unchanged
throughout a scheduling day. Thus, eliminating these integer
variables can effectively compress the solution space and fa‐
cilitate calculation efficiency [124]. In [27], deep learning
was used to identify those units with fixed on/off statuses,
and high solving efficiency was achieved. However, in the
long term, the statuses of these units in actual systems could
change dynamically, and the power generation configuration
of various systems could be considerably different. Thus, the
applicability of this method is limited. Accordingly, it is rec‐
ommended to study efficient and universally applicable iden‐
tification methods for the units with fixed on/off statuses.
2) Efficient Algorithms for SCUC

The efficient algorithm is an important theoretical guaran‐
tee for refining SCUC models. With the development of par‐
allel computing technology, [125] attempted to solve sparse
linear equations in an AC power flow model based on a het‐
erogeneous computing framework. Distributed optimization
has also been widely used as a computational framework,
where the basic idea is to reduce the size of the optimization
problem by decomposing the system into several zones. A
set of auxiliary variables is introduced between a master
problem and subproblems to coordinate the coupling vari‐
ables and/or constraints. As no direct link exists between the
subproblems, they must be solved in parallel using an im‐
proved solving methodology [126], [127].

Reference [128] decoupled the time coupling constraints
of SCUC problems to realize parallel computing. However,
because of the strong coupling in time and space, how to de‐
couple the SCUC effectively while making it suitable for
parallel computing without compromising solving accuracy
remains an open question for further study. In addition, the
rapid development of artificial intelligence offers a new op‐
portunity to break through the computational bottleneck of
SCUC. Based on existing artificial intelligence and big data
technologies, proposing an efficient solution method for
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SCUC is another research direction [129].

C. Application of Intellectual Technology in SCUC

Conventionally, the main idea behind an SCUC is first to
establish the corresponding models according to engineering
needs, introduce various mathematical methods to process or
simplify them, and finally study the applicable solving algo‐
rithms. The entire modeling and solving processes are based
on rigorous logical deductions and supported by mathemati‐
cal theories. These are referred to as physical-model-driven
SCUC (PMD-SCUC) [130]. However, PMD-SCUC has the
following two drawbacks. ① PMD-SCUC decision-making
may be less accurate for practical systems, where manual in‐
tervention to finalize its decisions is required. A PMD-
SCUC is typically formulated as a mixed-integer linear or
nonlinear programming problem. As a typical NP-hard prob‐
lem, its complex sample data could lead to high computa‐
tional burden [131]. To facilitate the calculation, many fac‐
tors such as weather conditions and maintenance schedules
[132] are often ignored in the modeling. This could compro‐
mise solving accuracy and require manual intervention to re‐
fine decision results in practice. ② PMD-SCUC decision-
making methods lack generalizability. In general, a PMD-
SCUC is constructed based on a particular situation. The
modeling and computation of PMD-SCUC are complicated.
Therefore, for new operation problems, the previous models
and algorithms must be modified, leading to a long research
cycle and the loss of generalizability.

In recent years, with the rapid development of artificial in‐
telligence technologies and their wide applications in various
fields of power systems [133], [134], data-driven SCUC
(DD-SCUC) based on artificial intelligence have been stud‐
ied. In practice, SCUC problems can be solved repeatedly
over similar typical days. Indeed, over a relatively long peri‐
od, power system conditions on different days can be regard‐
ed as unchanged [135] - [137]. In this regard, historical data
could be of great value in guiding optimal SCUC decision-
making in the subsequent days [135]. In addition, in practi‐
cal operations, the ISO would amend the decision results of
the PMD-SCUC by considering all factors and constraints
not included in the original SCUC. Accordingly, the histori‐
cal data of the ISO would include PMD-SCUC results and
expert guidances. Given these insights, it would be helpful
to explore a DD-SCUC based on historical data.

Some studies have conducted the applications of artificial
intelligence in SCUC problems. Long short-term memory
was previously introduced in [130], and a data-driven intelli‐
gent decision-making method for SCUC was proposed for
the first time. A single mapping model between system loads
and thermal power unit outputs was established by training
massive historical data. The simulation results showed that
the proposed data-driven method not only possessed superior
applicability and computational efficiency, but also had the
characteristics of self-learning and self-evolution. References
[130] and [138] introduced an expanded sequence-to-se‐
quence technology with multiple encoder-decoder configura‐
tions and full-connection expansion layers. They then con‐
structed decision-making models that could tackle multiple

input-output factors.
As one of the latest research directions in this field, the

following problems remain in DD-SCUC that must be
solved. ① Neural network training generally requires data
with a fixed structure. By contrast, in the long-term develop‐
ment of power systems, the dynamic changes of generation
resources and grid structures lead to non-stationary data sam‐
ples. To solve this issue, [138] constructed a larger neural
network architecture to withhold a margin for system devel‐
opment. However, this leads to a considerable waste of com‐
puting resources. Therefore, developing an adaptive deep
learning model that can deal with the dynamic changes of a
sample configuration represents a valuable research direc‐
tion. ② In supervised learning methods, the solving accura‐
cy of existing deep learning models is highly dependent on
the quality of training samples. Although the actual schedul‐
ing data are manually adjusted based on PMD-SCUC re‐
sults, as an optimization problem, global optimization is not
easily guaranteed. Therefore, it is still required to finalize
the results of DD-SCUC by mathematical methods [130]. Ac‐
cordingly, unsupervised learning technologies could be intro‐
duced to mitigate the limitations of existing supervised learn‐
ing in terms of sample accuracy [139]-[142].

V. CONCLUSION

With the continual changes in energy structures and the
rapid development of emerging technologies, SCUC prob‐
lems present new challenges and opportunities. This study re‐
viewed the major research findings of the studies on SCUC
and discussed future research trends. The basic mathematical
model of the standard SCUC was first summarized, and the
characteristics and application scopes of common solutions
were then presented. SCUC models from different research
focuses were next classified in terms of their mathematical
properties. These SCUC models included those with multi-
objectives, uncertainties, additional variables, complicated
constraints, and those designed for multiple areas and multi‐
ple timescales. The corresponding solution ideas were then
generalized. Finally, the research trends of SCUC were pros‐
pected based on a survey of the state-of-the-art and latest re‐
search achievements. The trends mainly include the challeng‐
es posed to SCUC by the interconnection of power and oth‐
er energy systems, the new contributions toward trade-off be‐
tween decision accuracy and computational efficiency
throughout SCUC research, and the potential opportunities
for SCUC presented by the rapid development of artificial in‐
telligence.
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