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Low Impedance Fault Identification and
Classification Based on Boltzmann Machine
Learning for HVDC Transmission Systems

Raheel Muzzammel and Ali Raza

Abstract—Identification and classification of DC faults are
considered as fundamentals of DC grid protection. A sudden
rise of DC fault current must be identified and classified to im-
mediately operate the corresponding interrupting mechanism.
In this paper, the Boltzmann machine learning (BML) ap-
proach is proposed for identification and classification of DC
faults using travelling waves generated at fault point in voltage
source converter based high-voltage direct current (VSC-
HVDC) transmission system. An unsupervised way of feature
extraction is performed on the frequency spectrum of the travel-
ling waves. Binomial class logistic regression (BCLR) classifies
the HVDC transmission system into faulty and healthy states.
The proposed technique reduces the time for fault identification
and classification because of reduced tagged data with few char-
acteristics. Therefore, the faults near or at converter stations
are readily identified and classified. The performance of the
proposed technique is assessed via simulations developed in
MATLAB/Simulink and tested for pre-fault and post-fault data
both at VSC1 and VSC2, respectively. Moreover, the proposed
technique is supported by analyzing the root mean square error
to show practicality and realization with reduced computations.

Index Terms—Binary class logistic regression (BCLR),
Boltzmann machine learning (BML), DC grid protection, fault
identification and classification, voltage source converter based
high-voltage direct current (VSC-HVDC) transmission system.

[. INTRODUCTION

RECENTLY, renewable energy generation develops rap-
idly. Therefore, ample attentions are captured by volt-
age source converter based high-voltage direct current (VSC-
HVDC) systems for power transmission. Reactive power sup-
port [1], black start capability [2], small filter size [3], and
the ability to change the power direction without altering the
polarity of the DC link voltage [4] make VSC-HVDC a via-
ble candidate for multi-terminal HVDC rather than the tech-
nology of line commutated converter (LCC) [5], [6]. Howev-
er, DC grid protection is a significant hindrance to the devel-
opment of practical multi-terminal VSC-HVDC systems.
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Typically, the DC grid protection is divided into two cate-
gories: fault diagnosis and fault interruption (FI). Fault diag-
nosis includes fault identification and classification (FIC)
and fault location (FL). FIC is the leading research problem
in the area of the VSC-HVDC system because of the abrupt
rising nature of DC fault current, resulting in damaging the
converter stations (CSs) [3], [7], [8]. Moreover, the FI tech-
nique can only be designed after FIC. We mainly focus on
the new FIC based on the Boltzmann machine learning
(BML) approach.

Normally, faults are located via impedance-based meth-
ods, compromising the accuracy as the fault distance varies
on the transmission line (TL) with FL [9]. Therefore, FIC
based on voltage and current samples is proposed but is af-
fected by electrical noise and fault loop impedance [10],
[11]. Since the aforementioned methods provide little infor-
mation about FIC, travelling wave (TW) based FIC tech-
niques are developed in [3], [8], [12]. Naturally, the maxi-
mum information is retrieved from the first TW wavefront
[3]. However, the difficulty in the detection of the first TW
wavefront leads to imprecisions [3], [7], [8]. The single-end-
ed protection system is also designed to enhance the speed
of FIC [13], but its application is limited to HVDC transmis-
sion systems comprising large capacitors in parallel. The DC
fault protection based on transient voltage [14], frequency
and time characteristics of fault current [15]-[17], electro-
magnetic time reversal (EMTR) [18], [19], Pearson similari-
ty [20]-[22], K means classification [23], linear discriminant
analysis [24], [25] are also proposed in literature. Further,
with an introduction of the concept of time lag for the FL,
the two-terminal measurement-based method is devised for
FIC near CSs [22], [26], [27].

Knowledge-based methods like fuzzy logic [28], neural
networks [29], Bayesian networks [6], and support vector
machines [30] offer convincing benefits [3], [7]. Moreover,
the accuracy of FIC is compromised for incomplete informa-
tion and the analysis of complex power system [3].

The objectives of this paper are as follows: () accurate
FIC, even close to the VSC station; 2 decrease in DC FIC
time; 3 reduced tagged data; @) reduced training time and
dimensions of the feature space. Moreover, almost all of the
techniques in literature fail to identify and classify the faults
near or at CSs [1]-[4]. This is the main motive to consider
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DC faults near or at CSs in this paper. Furthermore, voltage
measurements are used to analyze the normal and faulty
states of the HVDC transmission system.

In this paper, the BML-based approach is proposed for
FIC in the HVDC transmission system. BML performs unsu-
pervised feature extraction by selecting a small time frame
from the spectrum [31]-[38]. BML-based FIC is not present-
ed in the literature. TWs generated at fault points are em-
ployed for the preparation of training and testing data. Fea-
ture extraction for the pole-to-pole fault identification is car-
ried out on the frequency spectrum of TWs using BML. Bi-
nomial class logistic regression (BCLR) is employed to clas-
sify the HVDC transmission system into faulty and healthy
states. BCLR works on the dimensionally reduced data for
classification [39], [40]. Moreover, the realization of the pro-
posed technique is supported by the root mean square analy-
sis. Although the FIC methodology is tested for a two-termi-
nal HVDC transmission system, it can be extended to multi-
terminal systems.

The rest of the paper is organized as follows. Section II
and Section III briefly describe the structure and mathemati-
cal formulation of BML and BCLR. The detailed design of
the algorithm of FIC is added in Section IV. Section V pro-
vides a brief description of the DC test grid under study.
The simulation results of the test system for the validation
of the proposed technique are presented in Section VI. Final-
ly, conclusions are drawn in Section VII.

II. BML

The BML is a stochastic learning method with reduced
featured data [31]-[38]. Testing and training data are pre-
pared from random values, which serve as the initiation for
the influencing factors of BML. Many training examples and
excessive iterative approaches are required for random initial-
ization of the influencing factors of BML to obtain the glob-
al minima of its objective function. Only local minima are
achieved with the help of a few training data. This results in
the inconsistency of learned features and influencing factors.
As a result, the performance of identification and classifica-
tion is compromised. Therefore, to cope with this situation,
these random influencing factors are initiated with the values
that have the features closer to the training data.

Training is a two-step process in BML. In the first step,
BML-X is trained on the untagged data, which learns fea-
tures from the data. These untagged features serve as the ini-
tial influencing factors for the second step, i.e., BML-Y. The
training of BML-Y is done with initial influencing factors
and tagged training data. Thus, the global minima of the ob-
jective function of BML-Y are obtained within a short time
and with few training data. This learning approach for an un-
tagged data is known as self-taught learning [41].

The untagged data, i.e., unknown fault class, is termed as
an unknown classification of TW data. The tagged data, i.e.,
known fault class, is termed as the known classification of
TW data, as shown in Fig. 1. The untagged and tagged data
may originate from the same source. Practically, it is not fea-
sible to gather data of a particular type of faults from sever-
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al HVDC transmission systems. However, it is easier to col-
lect data of faults from an HVDC transmission system for
which fault tags are unknown. A regression classifier is fur-
ther employed for the classification of training and testing
data [42].

Fig. 1. Organization of tagged and untagged TW data for BML.

BML possesses hidden and visible layers. The energy of
the hidden and the visible layers £ ( p,q) are calculated as:

E(p.q) =—ap—bg—qWp (M
where p and ¢ denote the visible and the hidden layers, re-
spectively; a and b are the biases of the elements of visible
and hidden layers, respectively; and W is an influencing fac-
tor of the link between the elements of visible and hidden
layers. The joint probability of the elements of hidden and
visible layers P( p,q) is:

1
P(p.q)= e 2)

where Z is a partition function. It is presented as a sum of
the energies of all possible configurations:

/= zeE(ﬂq) (3)
Pq

The activation of a particular g for a visible layer status v
is defined by conditional probability P(q: 1|p) as:

P(q=1p) =a(W'q+b) )

where o is a logistic function. Similarly, the activation of p
for ¢q is:

P(p=1lg)=c(W'p+a) (5)

The training parameters of BML, W, a, and b are carried

out by contrastive divergence (CD) [43]. In this paper, the

structures of BML-X and BML-Y are precisely the same.

Linear transformation of input training data x, and testing da-

ta x, into the reduced dimensional vector is carried out by W
as:

X,=W/x, (6)
X,=W/x, (7
where x, and x, are the transformed vectors. x, is applied to
train the BCLR discussed in the subsequent section. Re-
duced training vectors optimize the objective function of

classification rapidly. Hence, the performance of BML is im-
proved.

1I. BCLR
BCLR has a dependent variable that has two possible val-
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ues tagged as 0 or 1. In the logistic model, the logarithm of
the log odds for the value tagged “1” is a linear combina-
tion of one or more independent variables (predictors). Inde-
pendent variables can be binary variables, i.e., two classes,
coded by an indicator variable, or a continuous variable with
any real value. The probability of the value tagged as “1”
has the probability of either 0 or 1. A sigmoid function maps
the predicted values to the probabilities. Any real value can
be mapped into another value that exists between 0 and 1. A
threshold point is chosen, which serves as a decision bound-
ary for the classification. BCLR is extended to more than
two levels of the dependent variables. Less training data for
feature extraction and less computation time are the notable
advantages as compared with fuzzy logic [28], neural net-
works [29], [30], Bayesian networks [6], and support vector
machines based classification [31], [39], [40].

The relationship between output values of BML and
BCLR is given in (8) for joint probability.

P(y=10)=——

SX,;+T
(S

®)

where S is the influencing factor and 7 is the bias, which are
trained by the maximum likelihood problem. The objective
function of the maximum likelihood problem F (S, T) is:

F(S,T)=min —Ztilg(p,.) + (1 —t,-) 1g(1 —p,-) ©

where p, is the probability of x, and is given by (10); and
the threshold ¢, is given by (11).

1
pi= l+esx(x,]+r (10)
N, +1
) i=1,2,...n
=1 (11)
N 12 i=1,2,...n

where N, and N_ are the positive and negative class num-
bers, respectively. The generalized structure of the proposed
technique based on BML and BCLR is presented in Fig. 2.

‘ TW data of HVDC transmission system ‘
v

‘ Computation of frequency spectrum ‘

|
v I

‘ Untagged data ‘ ‘ Tagged testing data

Tagged training data ‘

Untagged weight

Transformation of | BML weight Transformation of

training data testing data
[ I

BML tagged : BML testing
training data BCLR classifier data

Structure of proposed technique based on BML and BCLR.

Fig. 2.
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The possible structure of BML-based protection scheme is
presented in Fig. 3. Influencing factors trained by BML are
fed as an input of primary relay and backup relay. The trip-
ping mechanism of relay works based on the threshold analy-
sis of root mean square error (RMSE). The backup relay fol-
lows relay coordination properly by considering the opera-
tion of the primary relay and circuit breaker (CB).

’BML-based primary relay‘
x :

ACgrid YS€l

Ot

l 1

Y Y
’ BML-based backup relay ‘

X CB; - -> Measurement signal; > Trip signal

Fig. 3. Possible structure of BML-based protection scheme.

IV. BML AND BCLR BASED FIC

Tagged and untagged data are generated from the frequen-
cy spectrum under pre-fault and post-fault conditions as
shown in Supplement Material A, Fig. Al. The training of
the BML is carried out in two stages, as explained in Sec-
tion II. In the first stage, untagged data are fed as an input
to the BML algorithm, resulting in the extraction of un-
tagged influencing factors. Untagged influencing factors are
converted to tagged influencing factors in the second stage.
These tagged influencing factors are then used to transform
the training data and testing data as tagged training data and
tagged testing data, respectively. The transformed data are
then used by BCLR to classify the faults as shown in Sup-
plement Material A, Fig. A2. The algorithm for identifying
the state of a test system based on types of data transforma-
tion is presented in Fig. 4. DC faults are classified in terms
of faults at CS 1 and CS 2, respectively.

The proposed technique is validated with an analysis of
RMSE. True response and predicted response are evaluated
for RMSE, as shown in Supplement Material A, Fig. A3.
Furthermore, RMSE is fed to BCLR to classify the faults, as
presented in Fig. 5.

V. VSC-HVDC TEST SYSTEM UNDER STUDY

A single-line diagram of the proposed two-terminal VSC-
HVDC test system is shown in Fig. 6. Positive and negative
DC voltages are considered in the bi-polar system. At an on-
shore VSC station, fixed DC voltage and reactive power con-
trols are employed to control the DC voltage [18]. At an off-
shore VSC station, the P-V,. control mode is set. With these
arrangements, constant active power flow is assured across
the power grid, and the AC voltage level is regulated at the
point of common coupling (PCC) [43]. The dg control ap-
proach [43] is employed at the primary level. An average
two-level VSC value model is used for HVDC modelling,
while the wind farm is demonstrated as a fixed power
source. Parameters of the VSC-HVDC test system and DC
link are presented in Table I and Table II, respectively.
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Fig. 4. Algorithm for identification of normal and faulty states of HVDC transmission system.
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TABLE I
PARAMETERS OF VSC-HVDC TEST SYSTEM

Parameter VSC 1 VSC 2
Power (MVA) 2000 2000
AC voltage (kV) 230 230
DC voltage (kV) +100 +100
Nominal frequency (Hz) 50 50
Switching frequency (kHz) 1350 1350
Reactive power of AC filter (Mvar) 40 40
Phase reactor (p.u.) 0.150 0.150
DC capacitance (uF) 70 70
Smoothing reactor () 2.510 2.510
TABLE II

PARAMETERS OF DC LINK IN VSC-HVDC TEST SYSTEM

Parameter Value
DC line length (km) 100
End DC line resistance (£/km) 0.0139
DC line inductance (mH/km) 0.16
Fig. 5. Algorithm for classification of faults in HVDC transmission system. DC line capacitance (uF/km) 0.23
Number of pi-sections 2
VSC 1 VSC2 Wind farm
AC grid
@@} J@ | — @L —@—‘F\?H\ The classification of the conditions is conducted by major-
L =100 km ity voting-based criteria among faulty and healthy states.

Fig. 6. VSC-HVDC test system under study.

VI. SIMULATION

Voltages are observed at VSCs/CSs to explain the behaviour
of test system under pre-fault and post-fault conditions, as
shown in Supplement Material A, Fig. A4.

The performance of the proposed BML and BCLR for the 4~ DC Voltage Analysis
FIC is tested on the VSC-HVDC test system of Fig. 6. The The voltage data pattern of VSC-HVDC test system under
data for training and testing are prepared from the TWs in no-fault condition are shown in Fig. 7. Sub-transient and

healthy and faulty states of the DC grid.

transient voltages are recorded before 2.5 ms because DC
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voltages achieve steady-state value (1 p.u.) within approxi-
mately 2.5 ms at both CSs, which depicts the normal condi-
tions of the HVDC transmission system. Transients are de-
cayed down because of DC capacitors and the deployment
of DC filters that are used to eradicate the harmonic con-
tents.

i

Voltage (p.u.)
Lo =0
Voltage (p.u.)

w2

0 I 2 i 2 3
Time (ms) Time (ms)
(a) (b)

— Positive pole voltage; — Negative pole voltage

(=)

Fig. 7. Voltage data patterns of VSC-HVDC test system under no-fault
condition. (a) VSC 1. (b) VSC 2.

When a pole-to-pole fault of DC occurs in the VSC-
HVDC test system, the variations in voltage profiles at VSC
1 and VSC 2 are recorded and presented in Fig. 8. Voltages
are reduced to zero in less than 0.5 ms. It means that the
DC fault current achieves the maximum steady-state value in
less than 0.5 ms, which is highly vulnerable. Therefore, DC
fault current needs to be interrupted before attaining the max-
imum value. It is only possible if FIC is carried out within
permissible time. Healthy and faulty states of an HVDC
transmission system can be easily identified with the help of
voltage measurements. However, it is difficult to classify the
fault with only voltage measurements due to similar decay-
ing voltage patterns at both VSC 1 and VSC 2. Therefore,
more in-depth investigations are required to analyze the fea-
tures.

g 0.6 E 0.3
< 02 <5 0.1
g’ -0.2 %" -0.1
S -0.6 . . . - . 5-03 . . .
> 0 01 02 03 04 05> 0 1 2 3
Time (ms) Time (ms)
(@) (b)

— Positive pole voltage; — Negative pole voltage

Fig. 8. Voltage data patterns of VSC-HVDC test system under faulty con-

dition. (a) VSC 1. (b) VSC 2.

B. Frequency Analysis

Frequency analysis is used to extract the information avail-
able in the variations of voltages at CSs, as shown in Supple-
ment Material A, Fig. AS. Frequency spectrum patterns of
VSC-HVDC test system under no-fault condition for CSs
are shown in Fig. 9.

EH EL

g3 g4

22 ER)

= 1 =

A S B N
< 0 100 200 300 400 500 < O 100 200 300 400 500

Frequency (Hz) Frequency (Hz)
(a) (®)

Fig. 9. Frequency spectrum patterns of VSC-HVDC test system under no-
fault condition. (a) VSC 1. (b) VSC 2.
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However, it is observed that the decaying pattern is differ-
ent in different ranges of frequencies observed at CS 1 and
CS 2. In the range of frequencies of 50-100 Hz, the first rise
of 2 p.u. is experienced for CS 1, as shown in Fig. 9(a),
while the first rise for CS 2 is of 1 p.u. as shown in Fig. 9(b).
In the range of frequencies of 300-400 Hz, a small change
in the amplitude is observed for CS 1, as shown in Fig. 9(a),
while a significant decay in the amplitude is observed for
CS 2. This information helps identify untagged data ob-
served in the VSC-HVDC test system, which is used in the
first step training of BML. Decaying patterns of the frequen-
cy spectrum are also observed at CSs under the faulty condi-
tion, as shown in Fig. 10. In the range of frequencies from
200 Hz to 250 Hz, a clear difference in the characteristic
curves of frequency for CSs can be observed in Fig. 10. A
decay with a small change in amplitude is observed for a
DC fault close to CS 2, while a significant change in ampli-
tude is recorded for a DC fault close to CS 1. The difference
in the characteristics of the frequencies is employed for FIC.

25 EE

= S3

<3 g3

£2 22

% 1 ‘ ‘ ‘ ‘ ) % 1 ‘ : ‘ )
< 0 100 200 300 400 500 < O 100 200 300 400 500

Frequency (Hz) Frequency (Hz)
(a) (b)

Fig. 10. Frequency spectrum patterns of VSC-HVDC test system under
faulty condition. (a) VSC 1. (b) VSC 2.

C. Different Cases of VSC-HVDC Test System

Various cases are performed on an VSC-HVDC test sys-
tem of Fig. 6, as shown in Table III. In the following graphi-
cal results, blue dots represent true response (TR), while red
dots represent predicted response (PR).

TABLE 111

DIFFERENT CASES OF VSC-HVDC TEST SYSTEM BASED ON TRAINING AND
TESTING DATA

Case CS Testing data

1 Pre-fault data of CS 1
Post-fault data of CS 1
Pre-fault data of CS 2
Post-fault data of CS 2
Pre-fault data of CS 2
Post-fault data of CS 2
Pre-fault data of CS 1
Post-fault data of CS 1

CS1

CS 2

0 N O Wk LN

1) Case 1

In case 1, untagged data are fed into BML-X, as shown in
Fig. 11(a). Untagged influencing factors obtained are provid-
ed into BML-Y along with the tagged training data of CSI.
PR obtained from the BML is precisely matching the tagged
data of CS 1 under the no-fault condition, as shown in Fig.
11(b). The perfect regression model pattern of PR against
TR is obtained, as shown in Fig. 12(a). As a result, all
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points lie on the line. Residuals of PR against the frequency
are symmetrical about an axis, as shown in Fig. 12(b). Thus,
it is identified that CS 1 of the VSC-HVDC test system is
under no-fault condition.

5 5
4t, 4r,
-4 3 . =4 3 .
) . Aot .
1 ° ® e o eee 1 ° ® e o eee
0 100 200 300 400 500 0 100 200 300 400 500
Frequency (Hz) Frequency (Hz)
(a) (®)
Fig. 11. Untagged and tagged data pattern in case 1. (a) Untagged data pat-

tern of CS. (b) Tagged data pattern of CS 1 under no-fault condition.

5 2r
4 _ 1
<
o 3 '3 0 | ‘ ‘ ‘l —
> 2 3 ‘ H {
~ i
| -
2 . . . . ,
0 100 200 300 400 500
Frequency (Hz)
(b)
Fig. 12. TR and PR in case 1. (a) TR and PR patterns under no-fault con-

dition. (b) Residual PR pattern against frequency to depict performance.

2) Case 2

In case 2, the proposed technique is trained with untagged
data and is tested for post-fault tagged data of CS 1. A sig-
nificant difference between PR and TR patterns of post-fault
exists, as shown in Fig. 13(a). Larger values of RMSE
(0.56425) mean that PR and TR are not following a similar
pattern. Imperfections are indicated as shown in Fig. 13(b),
which leads to the differences between TR and PR. Outliers
occur as shown in Fig. 13(c), which means that few residu-
als are more extensive in the magnitude than the rest of the
outliers. RMSE is sensitive to outliers. A clear non-linear pat-
tern is observed in Fig. 13(c), which depicts the difference
between PR and TR, resulting in FIC at CS 1.
3) Case 3

In case 3, untagged data of CS are used to train BML-X.
Then, the tagged data of CS 1 are used to train BML-Y. The
data of CS 2 are used to test an algorithm. A difference be-
tween TR and PR is observed, as shown in Fig. 14(a). Few
points lie on the line as shown in Fig. 14(b). The non-linear
pattern of residuals is observed in Fig. 14(c), which indi-
cates that TR belongs to the data of CS 1 obtained after the
training algorithm and PR belongs to the data of CS 2 ob-
tained after the testing algorithm. As a result, the large value
of RMSE (0.45087) indicates the difference between PR and
TR, leading to the identification of normal states of CS 1
and CS 2. Moreover, the RMSE value is less than the thresh-
old RMSE, i.e., 0.5, leading to the discrimination between
normal and faulty states of the VSC-HVDC test system,
as depicted in Fig. 5.
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Fig. 13. Characteristics of PR in case 2. (a) PR of fault and TR of VSC 1

plotted against frequency. (b) PR against TR of VSC 1. (c¢) Residuals of PR
in post-fault state of VSC 1 against frequency to depict performance of
trained model.
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Fig. 14. Characteristics of PR in case 3. (a) PR of VSC 2 and TR of VSC
1 plotted against frequency. (b) PR of VSC 2 against TR of VSC 1. (c) Re-
siduals of PR of VSC 2 against frequency to depict performance of trained
model.

4) Case 4

In case 4, the proposed technique is trained with the data
of CS 1 and tested with the tagged data under the post-fault
condition of CS 2. The difference between TR and PR indi-
cates the discrimination between training and testing data, as
shown in Fig. 15(a). Scattered points below and above the
line indicate that the trained algorithm is imperfect for test-
ing data, as shown in Fig. 15(b). RMSE value is larger than
the threshold value of RMSE, i.e., 0.5, but is less than the
RMSE value observed at CS 1. These observations lead to
the FIC based on the fault at CS 1 and CS 2. The larger val-
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ues of RMSE indicate the presence of outliers in the residu-
als plot, as shown in Fig. 15(c).

5
o 4
5
2
eyl
teptelisb,y, o
0 100 200 300 400 500 0 1 2 3 4 5
Frequency (Hz) TR
() (b)
2.
- Ir
]
S oLl Ll Ll :
O T
1t
2 . . . . ;
0 100 200 300 400 500
Frequency (Hz)
()
Fig. 15. Characteristics of PR in case 4. (a) PR of post-fault of VSC 2 and

TR of VSC 1 plotted against frequency. (b) PR of post-fault condition of
VSC 2 against TR of VSC 1. (c¢) Residuals of PR in post-fault state of VSC
2 against frequency.

5) Case 5

In case 5, tagged data of CS 2 are used for training and test-
ing, as shown in Fig. 16(a). PR follows the pattern of TR, as
shown in Fig. 16(b). Matching of PR with TR indicates that
PR represents the data of CS 2, as shown in Fig. 17(a). Residu-
als are symmetrical about an axis, indicating the similarity be-
tween TR and PR, as shown in Fig. 17(b).The small values of
RMSE are an indication of the presence of less sensitive outli-
ers, which help identify the normal state of CS 2.

6 61
5t St
4t 4+
&3t &3t
2t . 2t .
[ Lot t N Lot t
0 100 200 300 400 500 0 100 200 300 400 500
Frequency (Hz) Frequency (Hz)
(a) (b)
Fig. 16. Data patterns in case 5. (a) Untagged data pattern. (b) Predicted

data pattern of VSC station.
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(=]

100 200 300 400 500
Frequency (Hz)
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Fig. 17. Characteristics of PR in case 5. (a) TR of VSC 2 and PR. (b) Re-
siduals of PR of VSC 2 against frequency to depict performance of trained
algorithm.
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6) Case 6

In case 6, the post-fault data of CS 2 are used to validate
the performance of the proposed technique trained on un-
tagged data. The difference between TR and PR is observed
in Fig. 18(a). This is an indication that the training data and
testing data are different. Because of scattered values below
and above the line in Fig. 18(b), the TR of CS 2 is different
from PR. Larger values of unsymmetrical residuals are anoth-
er indication of the fault at CS 2, as shown in Fig. 18(c).
RMSE value is greater than the threshold value of RMSE,
which is an indication of the fault at CS 2 of the VSC-
HVDC test system. In the event of a fault, the RMSE value
at CS 2 is lower than the RMSE value at CS 1.
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Fig. 18. Characteristics of PR in case 6. (a) PR of post-fault of VSC 2

against response of VSC 2. (b) PR of post-fault condition of VSC 2 plotted
against TR of VSC 2. (c¢) Residuals of PR of post-fault state of VSC 2
against frequency.

7) Case 7

In case 7, tagged data of CS 1 under pre-fault condition
are applied to test an algorithm trained on CS 2 data. Differ-
ences between the PR of CS 1 and data of TR of CS 2 are
observed and shown in Fig. 19(a) and (b), respectively.
Points are scattered below and above the line. Unsymmetri-
cal residuals are recorded, as shown in Fig. 19(c). RMSE
value (0.447006) is less than the threshold value of RMSE.
Based on the dissimilarity between TR and PR and a smaller
value of RMSE, no-fault is identified at CS 1 based on the
training of BML with the data of CS 2.
8) Case 8

In case 8, the data of CS 2 are employed to train the pro-
posed technique and are tested with the post-fault data of CS
1. The differences between TR and PR are substantial and re-
corded in Fig. 20(a) and (b), respectively, which lead to FIC.
The magnitude of the largest residual is greater than 1.
Smaller magnitudes of the remaining residuals indicate a
fault in CS, as shown in Fig. 20(c). Based on the compari-
son of RMSE, it is found that the fault occurs at CS 1. The
test system is summarized in Table IV, and the observations
and results of BML and BCLR are summarized in Fig. 21.
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Fig. 19. Characteristics of PR in case 7. (a) PR of VSC 1 and TR of VSC  Fig. 20. Characteristics of PR in case 8. (a) PR of post-fault of VSC 1 and

2 plotted against frequency. (b) PR of VSC 1 against TR of VSC 2. (c) Re- TR of VSC 2 plotted against frequency. (b) PR of post-fault condition of

siduals of PR of VSC 1 against frequency. VSC 1 against TR of VSC 2. (¢) Residuals of PR in post-fault state of VSC
1 against frequency.

TABLE IV
SUMMARY OF RESULTS FOR VARIOUS CASES OF TEST SYSTEM

BCLR (transformed Prediction time Training time .
Case BML (untagged data) data in fault class) RMSE MAE (s) (s) FIC time (ms)
1 No-fault 5.8274x107"° 3.7668 x 107" 350 5.8895 2.85
2 CS 1 fault 0.56425 0.41352 460 4.7455 2.17
3 No fault 0.45087 0.36529 290 3.9169 3.40
4 Amplitude of frequency CS 2 fault 0.50965 0.39805 360 3.4066 2.77
5 spectrum values No-fault 1.5701 x 107" 1.0574x 107" 360 3.5554 2.77
6 CS 2 fault 0.49906 0.42459 290 4.4860 3.40
7 No-fault 0.44706 0.35378 370 3.3629 2.70
8 CS 1 fault 0.55446 0.40725 290 6.6462 3.40
Tran;f(t)rmed Observations Results
ata
PR vs PR against frequency follows the same pattern as TR No fault
frequency plot Errors are not presented between TR and PR
LI PR against frequency does not follow the same pattern as TR
PR vs Errors are indicated by a line connected between TR and PR Erausits fs
TR
observed at
- N PR is similar to TR CSlorCS2
Residual || PR against TR lies on diagonal line
g g
plotting
Ll PR is dissimilar to TR 1R
Training data PR against TR does not lies on diagonal line RMSE Vé.lllleS
frequency are obtained
based CS Residuals against frequency are of very small values to differentiate
data Residuals are scattered roughly and symmetrically around zero between fault
atCS1orCS2
Testing data Residuals have non-linear patterns
frequency Residuals against frequency change significantly in magnitudes from left to right
based CS
data

Fig. 21.  Summary of observations and results obtained from eight different cases of test system.
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D. Annotations of Proposed Technique for DC FIC

The benefits of the proposed technique for FIC are pre-
sented as follows.

1) The improvements in response time and fault classifica-
tion are found as compared with the methods in [13],
[22], [27].

2) The problem of fault detection with small arrival time
characteristics at the sensing terminal is solved by BML
with BCLR owing to advanced frequency-based features of
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TW for FIC.

3) Complexities and computations of FIC are reduced by
the incorporation of RMSE in BML with BCLR.

4) Voltage measurements are highly recommended for FIC
in faults of low-impedance DC grids.

E. Performance Comparisons

A detailed comparison of the proposed technique with dif-
ferent FICs in literature is presented in Table V.

TABLE V

COMPARISON OF DIFFERENT FIC TECHNIQUES

Parameter Proposed method

TW-based single-terminal
measurement-based method

TW-based two terminals
measurement-based method

Al Techniques

Arrival time

Not required
measurement

Faults at CSs
or near to
VSC stations

Readily identified and
classified

Implementation is rela-

Complexity tively easy
. Rapid FIC; and simple
Computatlon computation of RMSE
time . .
is required
Length of FIC is independent of

the time window length;

time window .
and 2 ms time is enough

More accurate; and even
CS faults are distin-

Aceuracy o iched with high effi-

Required and influenced by line
parameters

Not applicable. Additional approaches
(wavelet transform, Fourier transform,
S transform) are required

Complex digital processing techniques
are required for accurate FIC

Computation time is dependent upon
complex and time-consuming
computations but quicker than the two-
terminal methods

Accuracy is dependent on the length of
the time window; and a time window
of 10 ms gives reasonable results

Sampling frequency and noisy
measurements, especially at CSs,
cannot be distinguished effectively

Required and influenced by line
parameters. The difference between
arrival times at both terminals must be
acknowledged

Not applicable and additional
approaches (wavelet transform)
are required

Complex synchronization is required to
deal with the fault transients

Synchronization and complex
mathematical evaluations for accurate
FIC increase the computation time

Change in wave speed exerts a
significant influence on the length of
the time window, which influences the
accuracy of results

Accuracy is greatly influenced by the
change in wave speed and
non-synchronization

Not required

Not applicable and
additional transformations
are required

Complicated because of
extensive data handling

Extensive computation
time because of the
involvement of large

data for training

Relatively large for
training

Incomplete information
and large power systems
make artificial

ciency

intelligence techniques
less accurate

VII. CONCLUSION

The BML technique is proposed along with the BCLR for
low-impedance FIC in the VSC-HVDC test system. The pro-
posed technique operates well for TW data measured at ter-
minals of DC link with increased accuracy even for a small
tagged training data. Furthermore, external engineering is
not required for feature extraction. The two-terminal VSC-
HVDC test system is tested for eight different cases of
tagged and untagged data for FIC. DC fault can be classified
with accuracy, even for faults close to or at VSC station,
which is revealed as a drawback of the methods in literature.
Moreover, the realization and computation efficiency of the
proposed technique are proven with the analysis of RMSE.
The benefits to multi-terminal HVDC transmission systems
are extended for both forward and backward fault classifica-
tions.
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