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Abstract——Accurate short-term prediction of overhead line
(OHL) transmission ampacity can directly affect the efficiency
of power system operation and planning. Any overestimation of
the dynamic thermal line rating (DTLR) can lead to the life‐
time degradation and failure of OHLs, safety hazards, etc. This
paper presents a secure yet sharp probabilistic model for the
hour-ahead prediction of the DTLR. The security of the pro‐
posed DTLR limits the frequency of DTLR prediction exceed‐
ing the actual DTLR. The model is based on an augmented
deep learning architecture that makes use of a wide range of
predictors, including historical climatology data and latent vari‐
ables obtained during DTLR calculation. Furthermore, by intro‐
ducing a customized cost function, the deep neural network is
trained to consider the DTLR security based on the required
probability of exceedance while minimizing the deviations of
the predicted DTLRs from the actual values. The proposed
probabilistic DTLR is developed and verified using recorded ex‐
perimental data. The simulation results validate the superiority
of the proposed DTLR compared with the state-of-the-art pre‐
diction models using well-known evaluation metrics.

Index Terms——Deep neural network, dynamic thermal line rat‐
ing, overhead line, prediction, recurrent neural network.

I. INTRODUCTION

THERMAL line rating (TLR) is the primary culprit limit‐
ing the current carrying capability of the overhead line

(OHL) [1]. Both IEEE [2] and CIGRE [3] have put forward
TLR calculation methods. Although these methods provide
very similar results, the one proposed by IEEE is simpler
and easier to use [4]. The TLR of OHL is a weather-depen‐
dent variable and conventionally calculated using the heat
balance equation in the worst-case weather scenarios [5]. De‐

spite its conservativeness in some cases, this static TLR
(STLR) might exceed the real OHL thermal constraint. Con‐
sequently, the OHL might be exposed to damage due to the
lack of TLR monitoring.

To overcome the shortcomings of the STLR, dynamic
TLR (DTLR) is proposed in which the thermal condition of
OHL can be monitored. Thus, DTLR unlocks the additional
capacity headroom of current OHLs in a secure way, thereby
addressing network congestion and postponing/eliminating
the need for transmission expansion [6]. As a significant ad‐
ditional benefit, DTLR facilitates the delivery of highly vari‐
able and uncertain power from renewable energy systems
(RESs) to the end-users due to perceptible correlation be‐
tween RES generation and the additional capacity provided
by the DTLR. For such reasons, DTLR has recently grasped
the attention of governments and transmission companies
and is considered as an enabling tool for enhancing the pene‐
tration of RESs [7]-[9]. DTLR applications and technologies
are comprehensively reviewed in [10], [11].

DTLR is a function of several climatology variables such
as wind speed, wind direction, etc. [2]. Therefore, its values
for upcoming hours need to be predicted. The DTLR predic‐
tion can be employed in various power system problems
such as unit commitment, economic dispatch, optimal power
flow, etc. [5], [12]. In this respect, specialized research com‐
munities have devoted momentous efforts to develop DTLR
monitoring and prediction models [9] - [22]. As the DTLR
monitoring and prediction may not be feasible through the
entire OHL, critical spans are identified for this purpose. In
[23]-[25], heuristic methods are brought forward to identify
the number and locations of the monitoring stations required
to make the OHL fully observable from the TLR perspective.

Relying on the literature, the DTLR prediction has been
interpreted with two different viewpoints. Some researchers
predict the maximum allowable current at the OHL thermal
limit [12]-[16]. In contrast, others consider DTLR prediction
as estimating the future value of an OHL temperature provid‐
ed that it carries a certain amount of current [19] - [20].
While both perspectives bring about intriguing advancements
to the field and provide insightful information about OHL
thermal constraints, this paper focuses on DTLR prediction
based on the first definition.

DTLR can be broadly divided into direct [12] - [18], indi‐
rect [19], and hybrid [20]-[22] methods. In the direct meth‐
od, the required values are calculated based on the straight‐
forward computation of the conductor’s maximum allowable

Manuscript received: August 28, 2020; revised: October 26, 2020; accepted:
November 16, 2020. Date of CrossCheck: November 16, 2020. Date of online
publication: January 25, 2021.

The views expressed in this paper are those of the authors and do not repre‐
sent the view of SaskPower. This paper was prepared when N. Safari was with
the Department of Electrical and Computer Engineering, University of Saskatch‐
ewan, Saskatoon, SK, S7N 5A9, Canada. The work was supported in part by
the Natural Sciences and Engineering Research Council (NSERC) of Canada
and the Saskatchewan Power Corporation (SaskPower).

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

N. Safari (corresponding anthor) is with Grid Operations Support, SaskPower,
Regina, SK, S4P 0S1, Canada (e-mail: n.safari@usask.ca).

S. M. Mazhari, C. Y. Chung, and S. B. Ko are with the Department of Electri‐
cal and Computer Engineering, University of Saskatchewan, Saskatoon, SK,
S7N 5A9, Canada (e-mail: s. m. mazhari@usask. ca; c. y. chung@usask. ca; seok‐
bum.ko@usask.ca).

DOI: 10.35833/MPCE.2020.000641

378



SAFARI et al.: SECURE PROBABILISTIC PREDICTION OF DYNAMIC THERMAL LINE RATING

current considering the maximum permissible temperature.
In this respect, the process is accomplished by employing
weather data and a heat balance equation. In contrast, the
measured values such as sag position, mechanical tension,
etc., are used in indirect DTLR calculation. In the hybrid
method, the indirect DTLR calculation along with weather-
related factors is employed. Direct methods are currently of
notable interest as they are less dependent on external equip‐
ment and lead to low-cost outcomes compared with their
counterparts [7].

From the prediction output, DTLR prediction models can
be divided into deterministic [18]-[22] and probabilistic [12]-
[17] methods. In the deterministic method, a single quantity
associated with the most likely value of DTLR in the next
sample point is considered as the output. In the probabilistic
method, the information of uncertainty in the DTLR predic‐
tion can be acquired. Since any overestimation of DTLR
may lead to unprecedented issues, the probabilistic predic‐
tion is the most welcome by power system operators [5]. Ac‐
cordingly, this is the focus of this paper. The recommenda‐
tions of IEEE and CIGRE joint task force (JTF) [4] further
emphasizes the importance of probabilistic prediction of
DTLR. According to JTF’s recommendation, the conductor
temperature of OHL should be less than the maximum allow‐
able conductor temperature for 99% of the time [4]. There‐
fore, it is critical to assess the performance of the DTLR pre‐
diction models for extreme probability of exceedance (POE)
values, e.g., 99%. However, this is not well-discussed in the
recent literature [12], [15]-[17].

In [12] and [13], parametric distributions model the uncer‐
tainties associated with climatology variables. In [14], Taylor
series expansion is employed to find the mean and variance
of DTLR in the coming hours based on the mean and vari‐
ance of the forecasted values, which correspond to the mete‐
orological variables. To consider the interdependency among
meteorological variables in the DTLR prediction, multivari‐
ate Gaussian distributions, resulting from different meteoro‐
logical variables, are used in a Monte Carlo simulation pro‐
cess to extract the distribution of DTLR [26].

In [12]-[24], [25], a parametric representation is assumed
for the uncertainties associated with meteorological vari‐
ables. However, this assumption may be erroneous due to
the high nonstationarity of the meteorological time series
(TS). To this end, [15] proposes a non-parametric autoregres‐
sion framework for probabilistic prediction of DTLR based
on quantile regression (QR). References [5] and [16] put for‐
ward a non-parametric prediction of DTLR based on QR for‐
est (QRF), in which meteorological measurements and nu‐
merical weather predictions (NWPs) compose the input fea‐
tures of the prediction model. Overall, the studies on non-
parametric DTLR prediction are still in their infancy. Thus,
this paper is devoted to further contributing to the current lit‐
erature.

Weather-based DTLR prediction models mainly limit their
inputs to those features obtained directly from meteorologi‐
cal measurements. However, from the DTLR formulations
proposed in [2] and [3], the relations of meteorological vari‐
ables with DTLR value are evidently both complex and non‐

linear. In addition, many latent variables, e. g., convection
cooling, radiated heat loss rate, etc., are acquired in the pro‐
cess of DTLR calculation and may provide the information
about the complex relationship between the DTLR value and
meteorological variables. However, these important predic‐
tors have thus far not been considered in DTLR prediction.
Hence, this paper scrutinizes the impact of latent variables in
the DTLR prediction.

The remarkable advancements in deep learning and its suc‐
cessful implementation in prediction have resulted in the en‐
hancement of prediction accuracy for a range of power sys‐
tem applications [27]-[30]. In deep neural network (DNN) ar‐
chitectures, highly efficient unsupervised dimension reduc‐
tion blocks, i.e., autoencoder (AE) variants, can be employed
to tackle the high-dimension feature space issues, posed due
to numerous meteorological and latent variables [30], [31].
Using DNNs, more complex patterns, which cannot be iden‐
tified in shallow networks, can be perceived. Compared with
various building blocks of DNNs, long short-term memory
(LSTM) [32], which is a recurrent neural network (RNN),
has demonstrated superior performance in meteorological
variable prediction problems [28]. The benefit of LSTM
compared with conventional RNNs is its ability to capture
long- and short-term dependencies in a sequence while ad‐
dressing the vanishing and exploding gradient problems of
prevalent RNNs [33]. Despite successful applications of
RNNs, specifically LSTM, and the benefits of DNNs, these
methods have not been adapted to the DTLR prediction. In
this paper, LSTM is employed to develop the DTLR predic‐
tion, while the stacked denoising AE (SDAE) [31] is devel‐
oped for unsupervised feature learning and extraction. Most
of the DNN models developed so far have been trained de‐
terministically in power system applications [27]-[30]. A ma‐
jor impediment that makes past methods incapable of offer‐
ing a probabilistic model in DNNs may originate from the
lack of a proficient probabilistic cost function. Such function
should consider the reliability level and sharpness together
so that the DNN parameters are tuned according to the sys‐
tem operator’s preference. To address this need, inspired by
the optimization function in QR problem, a cost function is
presented. The proposed cost function can be used to train
the model for the preferred POEs.

This paper proposes a DTLR for predicting the various
POEs using accessible latent variables in addition to meteo‐
rological measurements. A DTLR model is developed using
the SDAE and LSTM unit in the DNN architecture. The pre‐
diction engine is trained by considering a novel cost func‐
tion to meet the JTF recommendation, while the sharpness is
maximized. The performance of the proposed models is com‐
pared with the state-of-the-art DTLR prediction models us‐
ing publicly available data. Briefly, the main contributions of
this work are three-fold.

1) For the first time, latent variables are introduced in
DTLR prediction as valuable predictors.

2) A cost function is proposed to train the deep-learning
model for probabilistic prediction.

3) A deep learning model is trained for the DTLR predic‐
tion.
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The remainder of the paper is organized as follows. Sec‐
tion II presents the proposed framework for DTLR predic‐
tion. The proposed training framework for probabilistic deep-
learning-based prediction of DTLR is explained in Section
III. Data, evaluation metrics, and simulations results are pre‐
sented in Section IV, followed by discussion in Section V
and remarkable conclusions in Section VI.

II. PROPOSED FRAMEWORK FOR DTLR PREDICTION

Define {WSt}
N

t = 1
and {WDt}

N

t = 1
as TSs associated with

wind speed and wind direction, respectively, where N is the
length of the TSs, and t is the tth sample of the TS. Also, the
TSs of the wind speed components decomposed by a Carte‐

sian coordinate system are denoted by {WSXt}
N

t = 1
and

{WSYt}
N

t = 1
, respectively. The TSs of ambient temperature and

solar irradiance are denoted by {ATt}
N

t = 1
and {SIt}

N

t = 1
, respec‐

tively.

Figure 1 demonstrates the overall framework of the pro‐
posed DTLR prediction model. The suitable number of lags
l to form the input vector is identified using the embedding
dimension method [34]. From the measurements, l lags of
meteorological TS are imported to the calculation model of
DTLR described in Section II-A. Using the model,

[ DTLRt - l + 1DTLRt - l + 2DTLRt ], [ qct - l + 1qct - l + 2qct ],
and [ qrt - l + 1qrt - l + 2qrt ], which represent the DTLR, con‐

vection cooling, and radiated heat loss rate for lags of meteo‐
rological inputs, respectively, are calculated. The features ob‐
tained from this step along with the meteorological input
vector are utilized in a feature reduction and extraction stage
as discussed in Section II-B. In Fig. 1, [ f m

t - l + 1f m
t - l + 2f m

t ]
(m = 12M) represents a vector associated with the mth

feature resulting from the dimension reduction and feature
extraction stage, and M and l are the total number features
and number of lags, respectively. Thereafter, various trained
models are employed to acquire the final DTLR prediction

- -- ----- --DTLR
t + 1

as elaborated in Section III.

A. DTLR Calculation

In this study, the power system is assumed to be in nor‐
mal operation. Therefore, the current fluctuations and the re‐
sulting variations in the OHL temperature can be considered
negligible, provided that the system does not require any

abrupt or temporary switching [21]. Studies reveal that the
maximum time required to reach the steady state due to a
step change in current is approximately 30 minutes [35].
Based on these points, the transients in DTLR can be ig‐
nored, and DTLR can be estimated for every hour.

 

 

Conduct prediction using Model 2

Measure historical
meteorological data

[WSt�l+1, WSt�l+2, �, WSt]
[WSXt�l+1, WSXt�l+2, �, WSXt]

[WSYt�l+1, WSYt�l+2, �, WSYt]
[WDt�l+1, WDt�l+2, �, WDt]
[ATt�l+1, ATt�l+2, �, ATt]
[SIt�l+1, SIt�l+2, �, SIt]

[DTLRt�l+1, DTLRt�l+2, �, DTLRt] [DTLRt�l+1, DTLRt�l+2, �, DTLRt]
[qrt�l+1, qrt�l+2, �, qrt]
[qct�l+1, qct�l+2, �, qct]

Section II-A 

Section II-B 

Section III

Calculate dynamic thermal line rating, convection
cooling, and radiated heat loss rate 

[ ft�l+1, ft�l+2, �, ft   ]
[ ft�l+1, ft�l+2, �, ft  ]

[ ft�l+1, ft�l+2, �, ft ]

Reduce feature dimension and extract feature

1

m

M M M

m m

1 1

Conduct autoregressive prediction using Model 1  

Conduct ensemble prediction using Model 3  

Output DTLRt+1 

Fig. 1. Overall framework of proposed DTLR prediction model.

380



SAFARI et al.: SECURE PROBABILISTIC PREDICTION OF DYNAMIC THERMAL LINE RATING

Figure 2 schematically represents the factors influencing
the DTLR of OHLs.

As per IEEE Std 738-2012, in the steady state, the heat
balance equation for an OHL at the tth sample can be written
as follows [2]:

qct + qrt = qst + I 2
t R(Tcon ) (1)

where qct and qrt are the convection cooling and radiated
heat loss rates per unit length, respectively; qst is the heat
gain rate from the sun; R(Tcon ) is the alternating current
(AC) resistance associated with the conductor temperature
Tcon; and It is the allowable conductor current at Tcon, which
can be simply obtained as:

It =
qct + qrt - qst

R(Tcon )
(2)

From (1) and (2), one can observe that qct and qrt are the
cooling elements in the heat-balance equation, and that their
increase helps obtain more OHL ampacity. qst is a heating
component and is a culprit of ampacity reduction. qct is a
function of WSt, WDt, and ATt. qct is calculated as [2]:

qct =max(qcf1
t qcf2

t qcn
t ) (3)

qcf1
t =Ka[1.01 + 1.35 ´(N t

Re )0.52 ] kf (Tcon -ATt ) (4)

qcf2
t =Ka ´ 0.754 ´(N t

Re )0.6kf (Tcon -ATt ) (5)

qcn
t = 3.645 ´ ρ0.5

f D0.75
o (Tcon -ATt ) (6)

N t
Re =

Do ρ fWSt

μ f
(7)

where qcf1
t , qcf2

t , qcn
t , and N t

Re are intermediate variables; Ka is
the wind direction factor; ρ f, μ f, kf are the air density, abso‐
lute air viscosity, and coefficient of thermal conductivity of
air, respectively; and Do is the outside diameter of the con‐
ductor. As can be seen from (3) - (7), qct is a nonlinear and
complicated function of meteorological variables while the
relationship between qct and It is simple as shown in (2).
Therefore, it can be beneficial to consider

[ qct - l + 1qct - l + 2qct ] as the elements of the predictor set

for predicting DTLRt + 1. Moreover, qrt in (1) and (2) can be

calculated as [2]:

qrt = 17.8 ´Doϵ
é

ë

ê
êê
ê( Tcon + 273

100 ) 4

- ( ATt + 273
100 ) 4ù

û

ú
úú
ú (8)

where ϵ is the emissivity and has a value between 0.23 and
0.91, which increases with the age of conductor. As can be
seen from (8), qrt is related to the fourth power of ATt.
Therefore, it may not be adequate to consider the simple vec‐
tor of [ ATt - l + 1ATt - l + 2ATt ] as the elements of the feature

set to reflect the importance of ambient temperature and radi‐
ative heat loss in the DTLR prediction. It is worthful to ana‐
lyze the influence of considering historical data of radiated
heat loss rate. For a solar irradiance at time t SIt, the rate of
solar heat gain qst can be estimated by a linear function of
SIt [2]. Therefore, its consideration as a feature cannot be in‐
formative.

The calculated DTLR, [ DTLRt - l + 1DTLRt - l + 2DTLRt ],
as well as the latent variables obtained during the DTLR cal‐
culation, is used in a feature reduction and feature learning
stage as elucidated below.

B. Feature Reduction and Extraction in DTLR Prediction

As detailed in Section II-A, several climatic variables
strongly influence the DTLR value including wind speed,
wind direction, wind speed Cartesian components, ambient
temperature, and solar irradiance. A tensor, formed by a se‐
ries of lags associated with these variables, contains the po‐
tential informative predictors for DTLR. Moreover, the latent
variables, i.e., convection cooling and radiated heat loss rate,
may also contain valuable information about the complex re‐
lationship between climatic variables and DTLR. Historical
DTLR values could also contain useful information.
1) Feature Reduction

It is a principal stage in the DTLR prediction to properly
optimize the input features of the prediction engine by elimi‐
nating the non-informative and redundant features and identi‐
fying the features, which can demonstrate the DTLR pattern
more efficiently. To this end, we first employ a feature reduc‐
tion stage based on minimal-redundancy and maximal-rele‐
vance (mRMR) [36]. mRMR is a mutual information (MI)-
based method employed in various power system problems
to identify the subset of features providing the most informa‐
tion of the observation (target variable) [37]. MI is widely
used in the feature selection literature to evaluate the degree
of uncertainty that a predictor can alleviate from an observa‐
tion by measuring the mutual relevancy of predictor and tar‐
get variable. For two random variables with domains A and
B, MI is defined as follows [33]:

MI(AB)=∑
aÎA
∑
bÎB

P(ab)ln
P(ab)

P(a)P(b) (9)

where P(ab) is the joint probability density function; and
P(a) and P(b) are the individual probability density functions
of a and b random variables, respectively, which are the dis‐
cretized format of continuous predictor and target variables.
Based on (9), the iterative mRMR algorithm is carried out
by the following optimization problem [33]:

 

Sun
Wind

 
Radiated heat

loss rate
qrt

Convection cooling
qct

Heat gain from
conductor resistance

It R(Tcon) 
2

Solar heat
gain rate

qst

Fig. 2. A schematic diagram of DTLR.
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MI(a t - p
j ; DTLRt + 1 )-

1
n - 1 ∑

at - q
i ÎΩn - 1

i = { }129

q = { }01l - 1

MI(a t - p
j ; a t - q

i )

(10)

A ={a t - l + 1
1 =WSt - l + 1a t - l + 2

1 =WSt - l + 2a t
1 =WSt

a t - l + 1
2 =WDt - l + 1a t - l + 2

2 =WDt - l + 2a t
2 =WDt

a t - l + 1
3 =ATt - l + 1a t - l + 2

3 =ATt - l + 2a t
3 =ATt

a t - l + 1
4 = SIt - l + 1a t - l + 2

4 = SIt - l + 2a t
4 = SIt

a t - l + 1
5 =WSXt - l + 1a t - l + 2

5 =WSXt - l + 2a t
5 =WSXt

a t - l + 1
6 =WSXt - l + 1a t - l + 2

6 =WSXt - l + 2a t
6 =WSXt

a t - l + 1
7 = qct - l + 1a t - l + 2

7 = qct - l + 2a t
7 = qct

a t - l + 1
8 = qrt - l + 1a t - l + 2

8 = qrt - l + 2a t
8 = qrt

a t - l + 1
9 =DTLRt - l + 1a t - l + 2

9 =DTLRt - l + 2a t
9 =DTLRt } (11)

where Ωn - 1 is the subset containing selected features at the
(n - 1)th iteration; a t - p

j is the random variable describing the
pth lag of the jth feature; and A is a set consisting of the ran‐
dom variables associated with feature candidates. In the first
iteration of solving (10), n = 1, Ω0 =Æ. In this paper, the opti‐
mization problem in (10) is iteratively solved until the MI of
the last component selected from solving (10) with
DTLRt + 1 is negligible.

After conducting mRMR, the feature types that are not
among the selected features in Ωn or constitute a negligible
portion of Ωn are removed from the feature pool. The select‐
ed features, along with their corresponding l lags, are then
used to build the tensor input of the deep-learning-based fea‐
ture extraction described in Section II-B-3).
2) LSTM

LSTM is a unit of RNNs in which the temporal dependen‐
cy among the elements of the TS can be captured. An
LSTM block consists of a memory cell, an input gate, an
output gate, and a forgetting gate. The memory cell stores
the values for arbitrary time intervals. In LSTM, the three
gates are neurons with activation functions. Figure 3 repre‐
sents an LSTM unit, where c t - 1 and h t - 1 denote the cell
memory state and hidden state at the previous time, respec‐
tively. The input vector x t, c t - 1, and h t - 1 are used to update
the memory state ct, and attain the output h t corresponding to
xt. In Fig. 3, the blocks labelled by σ refer to sigmoid layers.
The LSTM has been used in the proposed DTLR prediction
as described in the next sections.

3) RNN-based SDAE
AE is a type of neural network mainly employed for unsu‐

pervised feature learning in a wide range of applications

[30], [31]. An AE is composed of two fragments: the encod‐
er and decoder. The input of the encoder is the original fea‐
ture tensor, which is mapped to a different space in the out‐
put of the encoder, while the decoder uses the mapped fea‐
tures as the input and reconstructs the original feature space.
The output of the encoder part of the AE can be used as the
input features of the following hidden layers. In the conven‐
tional AE, in the case that the number of hidden layer nodes
is higher than the input feature, the AE can potentially find
the identity map. As a result, the AE can become inefficient.
To circumvent this issue, denoising AE (DAE) is proposed
[30], [31], where the original input features are reconstructed
from the corrupted ones. In this way, the number of nodes in
the DAE hidden layers can be larger than that of input fea‐
tures without identity mapping risk. Therefore, this overcom‐
plete DAE may disclose some informative features from the
interactions among the input features. In the following text,
the DAE is briefly described, while a detailed description of
DAE can be found in [31].

At time t, all features that remain after the feature reduc‐
tion stage, which are described in Section II-B-1), are used
to construct the input vector of the DAE x t, a three-dimen‐
sional tensor (1 ´ l ´m), where m is the number of feature
variants. To capture the sequential correlation of the TS,
LSTM is used as the building blocks of the DAEs in this pa‐
per. An RNN-based DAE can be formulated as:

min
θθ'

LDAE (xz) (12)

x͂~qD (x t ) (13)

y t = fθ (x͂ tm t - 1 ) (14)

z t = gθ' (y tm't - 1 ) (15)

where LDAE (×) is the loss function that employs the mean-
square error (MSE); x (n ´ l ´m) is the tensor that contains
all tensors x tt = 12n, n is the number of available
points in the validation set; z is the tensor that consists of all
tensors z t, t = 12n, which are the outputs of a DAE cor‐
responding to input x; θ and θ' encapsulate the unknown pa‐
rameters of encoder and decoder blocks, respectively; y t and
z t are the outputs of encoder and decoder blocks, respective‐
ly; m t - 1 and m't - 1 are the information passed from the calcu‐
lation of y t - 1 and z t - 1, respectively, as the result of recurrent
units; and fθ (×) and gθ' (×) are the functions associated with en‐

coder and decoder blocks, respectively.
In (13), some elements of input vector x t are destroyed in

a stochastic process, i.e., qD (×), in order to form the corrupt‐
ed input x͂.

Stacking several DAE forms an SDAE, in which more in‐
formative features can be extracted. Using the ADAM sto‐
chastic optimization [38], the SDAE is trained layer-wise to
find the initial parameters of all DAEs. Thereafter, a fine-tun‐
ing process is conducted to further tune the SDAE, as elabo‐
rated in Section III. The output of the encoder portion of the
SDAE is used as the input of Model 2 in the proposed
DTLR prediction, as discussed in Section III.

ct�1 ct 

   tanh 

tanh

  

 

Forget Input Output

ht�1 ht

xt

+×

× ×
σ σ σ

+
+×

×

×
× ××

Fig. 3. Schematic of LSTM unit.
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III. PROPOSED TRAINING FRAMEWORK FOR PROBABILISTIC

DEEP-LEARNING-BASED PREDICTION OF DTLR

The training of the proposed DTLR is conducted in sever‐
al steps according to the scheme presented in Fig. 4. First,
the data are divided into three datasets: training, validation,
and test datasets. The training dataset is used to tune the
model parameters, while the validation dataset is used to as‐
sess the performance of the model during training. The test
dataset is used to evaluate the trained model. The redundant
or non-informative features are removed as described in Sec‐
tion II-B-1). Next, the SDAE is formed and trained as dis‐
cussed in Section II-B-3). The autoregressive prediction mod‐
el, named Model 1, is then trained using a series of DTLR
TS lags, and simultaneously, a many-to-one prediction mod‐
el, named Model 2, is trained using the feature tensor ob‐
tained from the encoder portion of the SDAE. Models 1 and
2 are both based on RNNs and trained using MSE as the
cost function, while the weights of the SDAE are frozen.
Then, the final model (Model 3) that employs the predic‐
tions of Models 1 and 2 as the input to provide a final pre‐
diction of the DTLR is trained deterministically using MSE
as the cost function.

Afterwards, Models 1-3 are further trained using the pro‐
posed cost function (16) - (20). Once Models 1-3 are tuned
considering the proposed cost function, SDAE layers are un‐
frozen to tune the model further using the proposed cost
function.

Inspired by QR formulation, the proposed cost function
for training DNN for a preferred POE is defined as:

C(DTLRt + 1- -- ----- --DTLR
t + 1

)=∑
i = 1

2

ai (sign(ϵ i )+ 1)ϵ i (16)

ϵ1 = - -- ----- --DTLR
t + 1
-DTLRt + 1 (17)

ϵ2 =DTLRt + 1 - - -- ----- --DTLR
t + 1 (18)

a1 =POE* (19)

a2 = 1 -POE* (20)

where sign(×) is the sign function; and POE* is the preferred

POE. In (16), the term associated with ϵ1 penalizes the pre‐
diction model when the prediction model results in - -- ----- --DTLR

t + 1

values above DTLRt + 1. The more - -- ----- --DTLR
t + 1

value is higher

than DTLRt + 1, the more the cost function penalizes the mod‐
el. On the other hand, when - -- ----- --DTLR

t + 1
<DTLRt + 1, the term re‐

lated to ϵ1 in the cost function becomes zero. However, the
term corresponding to ϵ2 penalizes the prediction model if

- -- ----- --DTLR
t + 1

is deviated from the DTLRt + 1.

Equation (16) is non-differentiable at ϵ i = 0 due to sign(×).
This can cause an issue in the backpropagation process dur‐
ing the training phase. In this regard, sign(×) is approximated
by tanh(×), and (16) can be rewritten as follows:

C(DTLRt + 1- -- ----- --DTLR
t + 1

)=∑
i = 1

2

ai (tanh(λϵ i )+ 1)ϵ i (21)

where λ is a large constant number so that tanh(λϵ i )® 1 for
ϵ i > 0, tanh(λϵ i )®-1 for ϵ i < 0, and tanh(λϵ i )= 0 for ϵ i = 0.
Using tanh(×) results in a differentiable function that can use
the off-the-shelf DNN optimizers for training the model.

The proposed cost function enables to fine-tune the DTLR
model so that the DTLR prediction model provides the low‐
er bound of DTLR values with the minimum deviations
from the actual DTLR values.

IV. CASE STUDIES AND COMPARISONS

A. Descriptions of Data, Simulation Tools, and Proposed
Model Settings

We have performed the analysis based on a 5-year dataset
(from January 1, 2010 to January 1, 2015), recorded from
the M2 met tower at the National Wind Energy Center
(NWEC) located in Denver, USA [39]. Linear interpolation
is employed to fill the missing points in the dataset. It is as‐
sumed that the measurements correspond to an OHL con‐
structed from 400 mm2 Drake 26/7 ACSR conductor at the
elevation of 1861 m from the sea level.

Based on [2], the specification of this conductor is summa‐
rized in Table I, where the STLR is calculated based on the
low-speed perpendicular wind (0.6 m/s), high ambient tem‐
perature (40 °C), and full solar heating (1000 W/m2) [40].

The proposed model has been implemented in Python 3.7
on a Windows 10 PC with a 1.6 GHz Intel Core i5 CPU and
8 GB of memory. Based on the grid search, three DAE lay‐
ers are selected as the suitable architecture for SDAE, re‐

TABLE I
SPECIFICATIONS OF CONDUCTOR

Specification

STLR (A)

Outside diameter of conductor (mm)

Minimum conductor temperature (°C)

Maximum conductor temperature (°C)

Conductor resistance at the minimum temperature (Ω/km)

Conductor resistance at the maximum temperature (Ω/km)

Solar absorptivity and emissivity

Value

685

28.12

25

75

0.07284

0.08689

0.5

 

 

Form the training, validation, and test datasets

Start

End

Perform feature reduction

Form and train the SDAE

Freeze SDAE layers and train autoregressive model
(Model 1) and a many-to-one prediction model

(Model 2) using the MSE loss function, separately

Train Models 1-3 using the MSE loss function

Fine-tune Models 1-3 using the proposed cost function

Unfreeze SDAE layers and fine-tune the whole model
using the proposed cost function

Fig. 4. General training scheme of proposed probabilistic prediction of
DTLR.
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spectively. The numbers of hidden layers for Models 1 and 2
are one and three, respectively. Model 3 is a single-layer
model which provides the final prediction by using the out‐
puts from Models 1 and 2. The training is conducted using
the process described in Section III.

B. Analysis of Feature Candidates

To evaluate the dependency of DTLR on different feature
candidates, a 5-year meteorological dataset is used to gener‐

ate historical DTLRt, qct, and qrt TS, using the procedure de‐
scribed in Section II-A.

Figure 5 represents the dispersion of DTLR with respect
to some of the feature types in the upper triangle.

The Kendall τ rank coefficient is widely employed as a
non-parametric statistical test in hypothesis testing to identi‐
fy the statistical dependency between two random vari‐
ables [41].

The detailed explanations of the Kendall τ rank coefficient
can be found in [38]. The presented quantities in the sub‐
plots, forming the upper triangle, represent the Kendall τ
rank coefficient of different features vis-à-vis each other and
DTLRt. Based on the calculated Kendall τ rank coefficients,
it can be concluded that there is a strong relation between
DTLRt and latent variables as well as meteorological vari‐
ables.

Furthermore, Fig. 5 shows that qct is the most influential
factor in DTLRt compared with all other features. This
strong relation can also be found from the MI values present‐
ed in the diagonal subplots and lower triangle of Fig. 5. The
MI values testify to the high dependency of DTLRt on qct.
As shown in Fig. 5, among the meteorological variables, WS
demonstrates the strongest correlation with DTLR, while
MI(WStDTLRt ) is significantly lower than MI(qctDTLRt ).
On the other hand, qrt and ATt are fully correlated based on
Kendall τ rank coefficient as well as MI values. Therefore,
considering only one of them could be adequate in the
DTLR prediction. Moreover, from MI(DTLRtSIt ), it can be
recognized that SIt can provide the minimum information in
the DTLR prediction. To this end, this feature species are
eliminated in the feature reduction stage described in Section
II-B. It is worth noting that the data are discretized with re‐
spect to the median values of different features to calculate
the MI values. This type of discretization is widely used for
calculating MI values among continuous variables [42].

C. Description of Benchmark Models

Three benchmark models are utilized in this paper: persis‐
tence [12], QR [15], and QRF [16] prediction models. The
persistence model (PM) is a conventional prediction model

that is widely used for short-term prediction of meteorologi‐
cal-related variables including DTLR [12]. The simplicity of
PM can facilitate the comparison of the proposed model
with other prediction models. QR has recently been pro‐
posed for the non-parametric probabilistic prediction of
DTLR, which is the focus of this paper. Therefore, compar‐
ing the efficacy of the proposed model with QR provides
some insights about the superiority of the proposed model
with respect to other non-parametric probabilistic prediction
models of DTLR. As the last benchmark model, the state-of-
the-art QRF-based probabilistic prediction model of DTLR
is employed [5], [16]. Optimal hyperparameters of the QRF
are found using the Bayesian optimization. To carry out a
fair comparison, the proposed model and benchmark models
utilize similar input variables, as elaborated in Section II-A,
but a notable exception is PM, for which the mean and vari‐
ance of the latest DTLR values form a Gaussian distribution
representing the uncertainty of upcoming samples.

D. Evaluation Metrics

Three evaluation metrics are used to appraise the perfor‐
mance of the different DTLR models. The POE of the pre‐
diction model is the most imperative evaluation criterion for
a secure probabilistic DTLR prediction and is defined as:

POE =
1
N∑n = l

N

δn ´ 100% (22)

δn =
ì
í
î

1 - -- ----- --DTLR
t + 1
£DTLRt + 1

0 otherwise
(23)

where N is the number of points in the training, validation,
or test datasets. Any deviation of the POE from the preferred
POE* can lead to unprecedented issues. As a measure of
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Fig. 5. Dispersion of DTLR with respect to different feature types and Kendall τ rank coefficient and mutual information of different features and DTLR.

384



SAFARI et al.: SECURE PROBABILISTIC PREDICTION OF DYNAMIC THERMAL LINE RATING

sharpness of the predicted POEs, normalized mean absolute
error (NMAE) is used, which is defined as:

NMAE =
∑
t = 1

N

|| DTLRt + 1 - - -- ----- --DTLR
t + 1

N ×Range
´ 100%

(24)

where Range is the range of DTLR values. In a perfect pre‐
diction of DTLR, POE =POE* while NMAE® 0. Root-mean-
squared-error (RMSE), which is a valuable measure and sig‐
nifies large deviations of DTLR prediction from its actual
value, is also employed as another evaluation metric, and
can be calculated as:

RMSE =
1
N∑t = 1

N

(DTLRt + 1 - - -- ----- --DTLR
t + 1

)2 (25)

E. Numerical Studies

As an instance, the performance of the prediction model
on a two-year dataset (from January 1, 2010 to January 1,
2012) is used for numerical comparisons. 85% of the data
are used for training and validation, while the remainder are
employed for testing. In this section, the effectiveness of
considering latent predictors, i.e., convection cooling and ra‐
diated heat loss rate, is first investigated. Thereafter, the pro‐
posed DTLR is compared with the benchmark models for
different CL preferences using various evaluation metrics.
1) Impact of Latent Predictors

Section IV-B shows that in comparison to directly ob‐
served meteorological variables, the radiated heat loss rate
has a more pretentious relation with DTLR. To empirically
investigate the efficacy of considering a series of lags associ‐
ated with the mentioned latent variables as predictors, a case
study is conducted using the proposed DTLR prediction with
and without the latent predictor. Table II summarizes the
case study conducted for POE* = 99%. The table shows that
the experiential results are in line with the theoretically ex‐
pected outcome, and that considering latent variables can re‐
duce NMAE and RMSE while satisfying the POE criterion.
Therefore, using the proposed prediction method unlocks the
OHL ampacity further, while the POE is satisfied. As a re‐
sult, more power can be transferred through the transmission
systems. Therefore, it can be concluded that the latent vari‐
ables can provide further information about the DTLR pat‐
tern, and the prediction can be performed more precisely.

2) Numerical Comparisons of Different Prediction Models
The performance evaluations of different prediction mod‐

els for POE* = 90%, 95%, and 99% are presented in Table
III. The table shows that the PM is incompetent in providing
secure prediction of DTLR for any of the POE* values. Oth‐
er benchmark models along with the proposed model can ful‐
fill the POE* requirements. From the perspectives of NMAE

and RMSE, for POE* = 90%, the performance of QR, QRF,
and the proposed model are closely comparable. For POE* =
95%, based on NMAE and RMSE, the proposed model
slightly outperforms the benchmark models while POE* is
satisfied, i. e., POE ³POE*. For POE* = 99%, the case study
demonstrates that the proposed model can facilitate the se‐
cure employment of DTLR, while NMAE and RMSE are re‐
duced compared with the benchmark models. It is noted
from Table III that for POE* = 99%, the proposed model re‐
sults in reductions in NMAE and RMSE by at least 6.33%
((18.51 - 19.76)/19.76 ´ 100%) and 5.78% ((309.16 -
291.30)/309.16 ´ 100%), respectively.

To further investigate the performance of the proposed
model compared with the benchmark models, the histograms
of various prediction models of DTLR for POE* = 99% is
presented in Fig. 6. It is worth noting that the histograms are
driven by considering only the predicted values that are
equal to or less than the miximum actual ampacity. Thus,
the performance of the different prediction models in terms
of unlocking the OHL capacity can be compared.

As can be observed from Fig. 6, for several points in the
test dataset, the benchmark models result in ampacity predic‐
tions, which are equal to or less than 900 A, while the pro‐
posed model leads to the limited number of prediction val‐
ues of DTLR which are smaller than 900 A. On the other
hand, for more than about 10% of the times, the proposed
model results in the DTLR prediction greater than 1200 A,
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Fig. 6. Distribution of predicted DTLR for POE* = 99% with predicted val‐
ues equal or less than the maximum actual ampacity.

TABLE III
PERFORMANCE EVALUATION OF DIFFERENT PREDICTION MODELS

POE* (%)

90

95

99

Prediction model

PM

QR

QRF

Proposed model

PM

QR

QRF

Proposed model

PM

QR

QRF

Proposed model

POE (%)

83.42

92.20

92.64

91.90

89.57

96.60

95.56

95.14

95.75

99.80

99.31

99.01

NMAE (%)

13.80

11.90

12.00

11.91

16.40

15.01

14.73

14.50

22.12

19.96

19.76

18.51

RMSE

251.10

202.55

203.38

203.60

290.41

242.21

241.27

236.61

372.52

311.80

309.16

291.30

TABLE II
PERFORMANCE COMPARISON OF PROPOSED MODEL WITH OR WITHOUT

LATENT VARIABLES AS INPUT

With or without latent variables

Without

With

POE (%)

98.95

99.01

NMAE (%)

19.21

18.51

RMSE

300.20

291.30
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while the POE* criterion is met. The frequency of predicting
DTLR higher than 1200 A by using the benchmark models
is reduced.

Figure 7 depicts DTLR prediction using proposed model
and QRF for POE* = 99%, which is the best benchmark mod‐
el for POE* = 99%. The figure covers the prediction for three
successive days, i. e., 72 one-hour samples, to provide the
view of high volatility in the DTLR values and the efficacy
of the proposed model to track this volatile pattern. As can
be observed, the DTLR can vary substantially within an
hour, which mainly stems from the chaotic behaviour of its
influential factors, e.g., wind speed, wind direction, etc. It is
discerning from Fig. 7 that the proposed model can result in
prediction values of DTLR that are 100 A higher than those
obtained from QRF. Besides, comparing the STLR in Table I
with the predictions values of DTLR shown in Fig. 7, it can
be concluded that with minimal risk, a significant amount of
OHL ampacity headroom can be unlocked.

V. DISCUSSION

As the case studies elucidate, the proposed prediction
framework of DTLR results in a more accurate and reliable
prediction compared with various well-established bench‐
mark models. In Sections IV-E-1) and 2), the detailed analy‐
ses demonstrate that the superior performance of the pro‐
posed model results from both considerations of latent vari‐
ables and the deep learning architecture. The proposed mod‐
el can be used as a decision-supporting tool for system oper‐
ators for unlocking the additional ampacity of OHL consider‐
ing a pre-defined risk exposure acceptance, i.e., POE*.

The hour-ahead secure prediction of DTLR can facilitate
the accommodation of renewable generation, and alleviate
the issues of transmission congestion. Consequently, the
wind power curtailment is reduced, while the demand for
transmission expansion can be postponed or even eliminated.
Such a highly accurate hour-ahead prediction can be imple‐
mented in the energy management system for real-time secu‐
rity constraint economic dispatching [43].

In this study, the efficacy of the proposed model is validat‐
ed for a range of POE* values. In practice, the risk-based as‐
sessment of the transmission lines and the cost implications
of the OHL annealing can be used to identify the optimal
POE*[44], as a consequence of operating the OHL higher
than the conductor temperature limit.

The feature selection and extraction play crucial roles in
the prediction framework. In this paper, mRMR and SDAE,
which are well-known feature selection and extraction meth‐

ods, are adapted, respectively. Despite the extensive research
on the development of the advanced feature selection and ex‐
traction techniques in various power-system-related predic‐
tion applications [45], the development of these machine
learning building blocks in the literature of DTLR is scarce.
To this end, extensive research on feature selection and ex‐
traction in DTLR forecasting can be considered as an impor‐
tant future research direction.

The proposed prediction framework of DTLR is validated
for a direct prediction application of DTLR, in which only
meteorological variables and the DTLR formulations are em‐
ployed. However, considering the generality of the frame‐
work, other features such as OHL sag/tension as well as
NWP can be incorporated in the framework to improve the
performance of DTLR forecasting further. Furthermore, us‐
ing the NWP can also facilitate extending the prediction hori‐
zon, which is beneficial for day-ahead unit commitment and
economic dispatching.

VI. CONCLUSION

This paper has proposed a deep-learning-based probabilis‐
tic prediction model of DTLR for hour-ahead power system
operation problems. The latent variables, obtained in the pro‐
cess of calculating the DTLR values, are considered as new
predictors of the proposed model, while SDAE is employed
for feature learning and extraction. A training strategy is de‐
vised to train the DNN, and a cost function is put forward to
train the prediction model in a probabilistic manner. The pro‐
posed prediction framework considers no hypothesis about
the uncertainty of the DTLR. Simulation results confirm the
efficacy of the proposed model and its superiority compared
with the benchmark models.
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