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Abstract——An ambient modal framework for inertia estima‐
tion using synchrophasor data is proposed in this letter. Specifi‐
cally, an analytical formulation is developed for the estimation
of inertia based on the frequency and damping ratio modes ex‐
tracted from ambient data. An advantage of the proposed
framework is that it can rely on synchronized ambient data un‐
der non-disturbed conditions for online estimation and tracking
of inertia. Ultimately, numerical simulation studies and physical
experiments demonstrate the feasibility of the proposed ap‐
proach.

Index Terms——Inertia, electromechanical oscillation, ambient
modal.

I. INTRODUCTION

THE increasing penetration rate of renewable power gen‐
eration units has been a key factor for the concept of

power system inertia estimation to garner significant atten‐
tion [1]. In the case of transmission system operators
(TSOs), the estimation of inertia is critical for the accurate
assessment of system security, and an appropriate controller
can be designed.

The common deployment of a phasor measurement unit
(PMU) in the power system enables the inertia to be estimat‐
ed from the measurement data. The strong correlation be‐
tween the frequency change rate at the disturbance moment
and the inertia, i.e., the swing equation without the damping
coefficient, is utilized to estimate the inertia by means of the
preset sudden power shock and measured frequency devia‐

tion [2]. To avoid the operation point deviation caused by
sudden shock power, inertia estimation methods have been
proposed to use the electromechanical signal oscillating
around the operation point as the input [3], [4]. These meth‐
ods determine the inherent relationship between the electro‐
mechanical modes and the inertia using the second-order os‐
cillator model. Based on the developed relationship, the iner‐
tia can be estimated through the identification of electrome‐
chanical oscillation parameters [3] and the extraction of
modes and mode shapes [4]. However, it is difficult to ob‐
tain an online rolling estimation of inertia using the existing
methods wherein the oscillation modes are extracted from
historical PMU data relying on a disturbance. In addition,
the oscillation modes can be extracted from synchronized
ambient data, which are always present in the power system
without disturbance. Consequently, the online estimation of
inertia using ambient modal data has become an active re‐
search topic.

The main contributions of this letter are as follows:
1) According to the power system dynamic equations un‐

der ambient excitation, a mathematical relationship between
the inertia and ambient modal is established.

2) An analytical formulation for the estimation of inertia
is developed.

3) Numerical simulations and physical experiments are
conducted to test and validate the proposed framework.

II. AMBIENT MODAL FRAMEWORK FOR INERTIA ESTIMATION

A. Ambient Modal

Natural excitation exists in a real power system. The typi‐
cal causes of this excitation are the electrical loads, which
vary randomly by nature. Under natural excitation circum‐
stances, the oscillatory behavior of a generator can be de‐
scribed by the transfer function shown in Fig. 1. The corre‐
sponding dynamic equation is as follows:

TJDδ̈(t)+DDδ̇(t)+KsDδ(t)=F(t) (1)

where Dδ(t) is the rotor angle deviation; TJ is the inertia con‐
stant; D is the damping coefficient; Ks is the synchronizing
power coefficient; and F(t) is the natural excitation of the
system. In Fig. 1, Dω is the rotor speed deviation; H is the
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inertia constant; and DPe is the power deviation.

Let fn (ωn = 2πfn) and ξ be the natural frequency and damp‐
ing ratio, respectively. We can then obtain:

Dδ̈(t)+ 2ξωnDδ̇(t)+ω2
nDδ(t)=F(t) (2)

Based on the random vibration theory [5], the time-do‐
main response of the linear system, described by (2) under
the action of the natural excitation F(t), is given by:

Dδ(t)= ∫
-¥

+¥

F(t - τ)h(τ)dτ (3)

where h(t) is the unit pulse response of the linear system de‐
scribed in (2). The power spectral density of h(t) can be de‐
scribed as:

Hu (ω)= ∫
-¥

+¥

h(τ)dτ =
1

ω2
n -ω2 + j(2ξωn)ω

(4)

Suppose that the natural excitation F(t) is approximately a
stationary Gaussian process, and that the power spectral den‐
sity of F(t) is constant, i.e., SF (ω)= C.

Furthermore, the autocorrelation power spectral density of
the response Dδ(t) can be obtained as follows:

Sδ (ω)= |Hu (ω) |2SF (ω)=
C

(ω2
n -ω2)2 + 4(ξωn)2ω2 (5)

Therefore, when ω=±ωn 1- 2ξ 2 »±ωn Ĥ (as the damp‐
ing ratio ξ is much smaller than 1), there exist two stress
peaks in the autocorrelation power spectral density of the
ambient response, as shown in Fig. 1. The presence of the
two peaks indicates that the oscillation modes are contained
in the ambient responses under natural excitation circum‐
stances. However, the ambient response is still characterized
as random Gaussian white noise. The oscillation modes (fre‐
quency fd and damping ratio ξ) can be extracted from syn‐
chronized ambient data measured by a PMU via appropriate
methods [6] such as stochastic subspace identification (SSI)
and frequency domain decomposition (FDD).

B. Inertia Estimation

The inertia is strongly coupled with the electromechanical
dynamic behavior of a power system, which affects not only
the transient response but also the electromechanical oscilla‐
tion by the oscillation frequency fd and damping ratio ξ. Ac‐
cording to the modal analysis theory [7], the oscillation fre‐
quency and damping ratio of the dynamic system in (1) can
be expressed as:

2πfd =
8ω0 HPe0 cot δ0 -D2

4H
(6)

ξ =
D

2 Pe0 cot δ0 × 2Hω0

(7)

where Pe0 is the steady-state electrical power; ω0 is the rated
rotor speed; and δ0 is the steady-state rotor angle.

Based on (6) and (7), the inertia constant expressed by the
oscillation modes is derived as:

H = k0 (1- ξ 2) f -2
d (8)

where k0 = ω0 Pe0 cot δ0 (8π2) is the steady-state coefficient.

As the steady-state variables Pe0 and δ0 can be measured
or calculated directly by a PMU, the inertia can be estimated
once the oscillation modes are extracted from the synchro‐
nized ambient data.

III. SIMULATION

In this letter, numerical simulations of a single-generator
infinite bus system are conducted to demonstrate the perfor‐
mance of the proposed method using the Power System Tool‐
box (PST) [8]. The PST can simulate the ambient response
of a power system by adding a random load following an in‐
dependent Gaussian distribution with a determined ampli‐
tude. In the simulations, the amplitude is set to be 2% of the
normal value. Moreover, a more mature SSI technology is
adopted to extract the electromechanical oscillation modes
from the ambient data. The accuracy of the proposed method
is verified through 500 Monte-Carlo simulations.

The extracted electromechanical oscillation frequency and
damping ratio are shown in Fig. 2. In addition, Table I lists
the statistical results, that is, the mean value μ and standard
deviation Std of the extracted results. A comparison of the re‐
sults shows that the mean value of the extracted modes is
close to that of the small-signal stability analysis (SSSA)
with a small Std.

In the proposed inertia estimation method, the electrical
power and rotor angle should be determined using the mea‐
sured data, while the modes are to be extracted. To avoid er‐
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Fig. 1. Dynamic behavior of a generator under natural excitation.
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Fig. 2. Electromechanical modes extracted by SSI.

TABLE I
COMPARISON OF SSI EXTRACTION MODE AND SSSA CALCULATION MODE

Method

SSSA

SSI

Frequency (Hz)

0.748

μ= 0.759, Std = 0.009

Damping ratio (%)

5.333

μ= 5.596, Std = 1.171
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rors caused by random fluctuations, the mean values of the
measured power and rotor angle are used in each simulation.
Meanwhile, two calculation approaches are considered. The
first approach, denoted by C-1, is to calculate the inertia
based on the extracted modes and steady-state variables for
each simulation so that the results contain 500 inertia estima‐
tion results. The second approach, denoted by C-2, is to cal‐
culate the inertia based on the means of the extracted modes
and steady-state variables in 500 simulations to obtain only
one inertia estimation result.

The inertia estimations obtained via C-1 are shown in Fig.
3. The estimation results randomly fluctuate around the real
value. However, the range of fluctuation is small. A histo‐
gram of the inertia estimation results shows that the estima‐
tion results are highly concentrated close to the true value.
In addition, as the deviation between the estimation and real‐
ity values increases, the counts gradually decrease. The dis‐
tribution fitting curve of the inertia estimation has a peak
point close to the real inertia. The data listed in Table II
show that the estimation results follow a distribution with μ
of 2.859 s and Std of 0.0388.

The inertia obtained via the C-2 approach is 2.855 s,
which is close to the real value. The inertia estimations ob‐
tained via the C-1 and C-2 approaches are both close to the
real value, which indicates the accuracy of the proposed
method.

Table II shows the estimation results considering the 2nd-
and 6th-order with the generator exciter models. The small
deviations between the estimation results based on the high-

order models and the real value show the high robustness of
the proposed inertia estimation method for different models.

IV. PHYSICAL EXPERIMENT

To verify the effectiveness of the proposed method fur‐
ther, a physical experiment is performed and the system pa‐
rameters are given in Appendix A. The system configuration
is shown in Fig. 4, wherein the load variation is controllable
by a program to excite the ambient response of the system,
and Xl is the line reactance. The PMU-measured electrical
power signal is shown in Fig. 5.

As presented in Table III, the estimation result obtained
using the mean values of the oscillation parameters is 1.768 s,
which deviates from the reality by 0.183 s. The μ and Std
values of the estimation results obtained using the time-evo‐
lution oscillation parameters are 1.717 and 0.0478, respec‐
tively. The mean value is close to the real value, and the
small standard deviation shows the effectiveness of the pro‐
posed method.

V. CONCLUSION

In this letter, an ambient modal based framework is pro‐
posed for power system inertia estimation using synchro‐
nized data. The results of a numerical test system simulation
and a physical experiment show that the proposed method
achieves high computation efficiency and exhibits robust per‐
formance under ambient excitation conditions. These advan‐
tages render the proposed method an appropriate and promis‐
ing approach for effective inertia estimation in online rolling
applications.

0 100 200 300 400 500
Simulation number

3.00

3.15 Estimation result
Real value

0

20

40

60

In
er

tia
 (s

)

Inertia (s)

2.85

2.70

2.6 2.7 2.8 2.9 3.0 3.1

2.55

(a)

(b)

Co
un

tin
g

Fig. 3. Inertia estimation results obtained via C-1. (a) Inertia estimation re‐
sults. (b) Counting results.
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Fig. 5. PMU-measured electrical power signal.

TABLE III
ESTIMATION RESULTS FROM PHYSICAL EXPERIMENT

Reality

1.585

C-1

1.768

C-2

μ

1.717

Std

0.0478

TABLE II
ESTIMATION RESULTS BASED ON DIFFERENT MODELS

Model order

2nd-order

6th-order

6th with exciter

Reality

2.85

2.85

2.85

C-1

2.855

2.787

2.916

C-2

μ

2.859

2.794

2.921

Std

0.0388

0.0382

0.0367
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APPENDIX A

The system parameters for the physical experiment are as
follows: the rated capacity Sn = 5 kVA, the rated voltage Vn =
400 V, the line reactance Xl = 0.125 p.u., the synchronous reac‐
tance Xd = 0.96 p.u., the transient reactance X ′d = 0.14 p.u., the
sub-transient reactance X ″d = 0.07 p.u., the inertia constant H =
1.585 s, and the open circuit time constants T ′d0 = 2.01 s, T″d0 =
0.15 s.
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