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Fixed-time Distributed Voltage and Reactive Power
Compensation of Islanded Microgrids Using

Sliding-mode and Multi-agent Consensus Design
Mohamed Ghazzali, Mohamed Haloua, and Fouad Giri

Abstract——This paper investigates a fixed-time distributed
voltage and reactive power compensation of islanded microgrids
using sliding-mode and multi-agent consensus design. A distrib‐
uted sliding-mode control protocol is proposed to ensure voltage
regulation and reference tracking before the desired preset
fixed-time despite the unknown disturbances. Accurate reactive
power sharings among distributed generators are maintained.
The secondary controller is synthesized without the knowledge
of any parameter of the microgrid. It is implemented using a
sparse one-way communication network modeled as a directed
graph. A comparative simulation study is conducted to high‐
light the performance of the proposed control strategy in com‐
parison with finite-time and asymptotic control systems with
load power variations.

Index Terms——Secondary controller, microgrids, reactive pow‐
er control, voltage control.

I. INTRODUCTION

MICROGRIDS are small-scale electrical distribution
networks, consisting of distributed power sources,

loads and energy storage systems. Primary control of mi‐
crogrids maintains the stability of frequency and voltage,
which causes the magnitudes of frequency and voltage to de‐
viate from their nominal values. Emerged as a natural con‐
trol system for microgrids, distributed secondary control re‐
stores the frequency and the voltage to their nominal opera‐
tion points and achieves accurate power sharing in both grid-
connected and islanded operation modes.

Distributed secondary control has been widely discussed
in literature [1]-[11]. Several techniques including proportion‐
al-integral (PI) control [9], feedback control [3] - [6], [10] -
[12], adaptive control [6], [13] and model predictive control
(MPC) [14], [15] among others are developed to address sec‐

ondary control objectives of microgrids, which are voltage
control, frequency control and power sharing. However,
many shortcomings are to be addressed. In [9], a distributed
PI controller is proposed for secondary control of voltage
and frequency. Only small signal stability is guaranteed
which means that large external disturbances, i.e., load varia‐
tions during peak hours and the connection or disconnection
of a power source, can destabilize the power system and
cause voltage or frequency to swell or sag. In [5], [6], [10]-
[12], feedback linearization and variants of feedback control
are used to achieve secondary control of microgrids. Howev‐
er, a nonlinear model of AC microgrids is used in the design
of the distributed control protocols that require detailed pa‐
rameters of the microgrid. Practically, load parameters and
transmission line impedances among other parameters are un‐
known and time-variant, which is challenging to apply the
controllers in real applications. Adaptive control is suggested
in [6], [13] for secondary control of AC microgrids. A major
drawback of this approach is high computation complexity
of the control law. In fact, in the adaptation technique, the
control gains are updated in real time via a complicated and
time-consuming mathematical approach as linear matrix in‐
equalities (LMIs) or differential equation systems in [6] and
neural networks in [13]. Thus, a control hardware with high
computation capacity is required, which increases the imple‐
mentation cost of the control system. In the case of neural
network based adaptive control, a prior learning phase of the
neurons based on experimental data is required for the de‐
sign of the controller, which complicates the design, tuning
and implementation of the controller. In [14], [15], the mod‐
el of predictive secondary controllers is proposed for AC mi‐
crogrids. The MPC approach is based on the model, which
indicates that a model of the microgrid is required to calcu‐
late the output of the controller. Consequently, its robustness
will depend on the accuracy of the model, which makes the
controller vulnerable to modeling uncertainties. In addition,
a fully detailed model of the microgrid can not be used in
the design procedure as some parameters are practically un‐
known or difficult to obtain, which means that the unmod‐
eled dynamics of the microgrid will always hinder the perfor‐
mance of the controller.

Furthermore, the distributed secondary controllers can be
categorized into asymptotic controllers [2], [5] - [10] and fi‐
nite-time controllers [1], [3], [4]. In asymptotic control, the
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reference is only a limit of the terminal voltage or frequency
of DG when time goes to infinity. Practically, reference
tracking and disturbance rejection cannot be achieved in a fi‐
nite time as the tracking error cannot be canceled using as‐
ymptotic control protocols. In finite-time control, the refer‐
ence is reached in a finite time. The settling-time depends
on the uncertain initial conditions of the system. An explicit
relation between the parameters of the controller and the set‐
tling-time is not always available.

Sliding-mode control (SMC) is widely used to design the
control systems and has been applied in the areas including
robotics [16]-[19], power converter control [20]-[23], motor
control [24]-[27], and power systems [28]-[32]. SMC is de‐
signed to achieve reference tracking and regulation despite
uncertainties of the parameter and external disturbance,
which makes it suitable for applications with unknown dy‐
namics and under uncertain conditions. In power systems, pa‐
rameter uncertainties and external disturbances are constant
issues [33] - [37]. In fact, most of the parameters are time-
varying, which makes exact measurement of these parame‐
ters a challenging task. The fluctuations of voltage and fre‐
quency are caused by the nonlinear nature of loads and their
unpredictable power consumption variations. As a result,
SMC is suitable for microgrid control as it is robust to the
unmodeled dynamics, variated parameters, and unknown dis‐
turbances. In addition, SMC has a straightforward design
procedure and several variants of SMC have been designed
with continuous and discontinuous outputs for several class‐
es of linear and nonlinear systems. Therefore, the sliding-
mode approach can be easily applied.

Considering the advantages of SMC and obviating the
shortcomings of the secondary microgrid controllers, a
fixed-time distributed SMC-based control approach is pro‐
posed for the secondary control of AC microgrid. Hence, the
voltage regulation and reference tracking before the desired
preset fixed-time can be ensured. And the accuracy of reac‐
tive power sharing is ensured among distributed generators
(DGs) at its nominal levels. These objectives are guaranteed
despite the uncertain microgrid parameters and the unknown
disturbances. Moreover, the design procedure is model-free
since no prior knowledge of load power demand, transmis‐
sion line impedance or the microgrid topology is required.

The rest of the paper is organized as follows. In Section
II, a large-signal dynamic model of islanded microgrids is
presented. Section III presents the design of the fixed-time
distributed secondary controller with voltage and reactive
power sharing. A comparative simulation study on finite-
time asymptotic secondary controllers and conventional pow‐
er sharing protocol with load power variations is presented
in Section IV. Finally, Section V concludes the paper.

II. LARGE-SIGNAL DYNAMICAL MODEL OF ISLANDED

MICROGRIDS

An islanded microgrid is adopted with n DGs, where ev‐
ery DG i, iÎ{12...n} contains a primary energy source con‐
nected to a voltage-source converter (VSC), an RL series fil‐
ter, a step-up transformer (Y -D) with transformation ratio

mi, and a shunt capacitor Cti attenuating the impact of high-
frequency voltage harmonics of the local load. Each DG i is
connected to a set Ni Ì{12...n} of neighboring DGs at the
corresponding point of common coupling (PCC) through
transmission lines modeled as a RL series circuits. A sche‐
matic of two connected DGs is depicted in Fig. 1, where V *

id

and V *
iq are the references of the direct and quadratic compo‐

nents of the output voltage of DG i, respectively; Vt,i, It,i, Rti,
Lti are the voltage, current, resistance, and impetance of
VSC terminal, respectively; and the subscript i + 1 denotes
DG i + 1.

DG i can be modeled in the d-q framework by the follwo‐
ing large-signal dynamical model [38]:
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Iid =mi Itid -Cti

d
dt

Vid +CtiωnViq

Iiq =mi Itiq -Cti

d
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Viq -CtiωnVid

d
dt

x i =A i x i +∑
jÎNi

A ij x j +B iui +D iw i

Vtid =V *
tid

Vtiq =V *
tiq

V *
tid =-ωn Lti Itiq +Kpci (I

*
tid - Itid)+Kici ∫(I *

tid - Itid)d

V *
tiq =ωn Lti Itid +Kpci (I

*
tiq - Itiq)+Kici ∫(I *

tiq - Itiq)d

I *
tid =Fi Iid -ωnCtiViq +Kpvi (V

*
id -Vid)+Kivi ∫(V *

id -Vid)d

I *
tiq =Fi Iiq -ωnCtiVid +Kpvi (V

*
iq -Viq)+Kivi ∫(V *

iq -Viq)d

(1)
where Iid and Iiq are the direct and quadratic components of
the output current of DG i, respectively; Vid and Viq are the
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Fig. 1. Schematic of two connected DGs.
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direct and quadratic components of the output voltage of
DG i, respectively, and the output voltage of DG i is also
the voltage of PCC i; Fi is the feed-forward coefficent; V *

tid

and V *
tiq are the references of the direct and quadratic com‐

ponents of the terminal voltage of VSC, respectively, which
are calculated by the local voltage and current of VSC con‐
troller [39]; Vtid and Vtiq are the direct and quadratic compo‐
nents of VSC terminal voltage, respectively; I *

tid and I *
tiq are

the references of the direct and quadratic components of the
VSC terminal current, respectively; Itid and Itiq are the di‐
rect and quadratic components of the VSC terminal current,
respectively; ILid and ILiq are the direct and quadratic com‐
ponents of the current of load i; ωn = 2πfn is the nominal pul‐
sation with fn = 50 Hz nominal frequency; A i, A ij, B i, and D i

are the state-space matrices [40]; x i =[VidViqItidItiq]
T is

the state vector; u i =[VtidVtiq] is the input; Kpvi, Kivi, Kpci,
and Kici are the control gains of the PI controllers in the in‐
ternal voltage and current control loops designed for high-
frequency disturbance rejection and the filter output damping
to avoid any resonance with the external network, respective‐
ly [39], which are tuned using the symmetrical optimum tool
[41]; and w i =[ILidILiq] is the load current consumption con‐
sidered as a known disturbance and an exogenous input to
the system for iÎ{12...n}. With the relatively high switch‐
ing frequency of VSC, it is safe to neglect the switching arti‐
fact via average-value modeling. Since the dynamics of the
DC-bus can be safely neglected assuming an ideal source
from the DG side [39], we can obtain Vtid =V *

tid and Vtiq =
V *

tiq.
The state-space matrices A i, A ij, B i, and D i are defined

as [40]:
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where ω i = 2πfi is the output pulsation of DG i and fi is its

output frequency; Zij = R2
ij +ω2

i L2
ij is the transmission line

impedance; and Xij =ω i Lij is the transmission line reactance.
The output active and reactive power Pi and Qi can be cal‐

culated from the output voltage and current in the d-q frame
using:

ì
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d
dt

Pi =-fci Pi + fci (Vid Iid +Viq Iiq)

d
dt

Qi =-fciQi + fci (Viq Iid -Vid Iiq)
(5)

where fci is the cut-off frequency of the low-pass filters used
to extract the fundamental component of Pi and Qi.

The communication network of the microgrid is described
using graphs. Consider a n-order weighted directed graph (di‐
graph) G = (VE) with V = (v1v2...vn) set of nodes and
EÍV ´V set of directed edges. A weight aij ³ 0 is associated
with every edge. aij > 0 if there is an edge from node j to
node i. If agent j communicates its state information to agent
i, then aij = 0. A= (aij)n´ n is called the adjacency matrix of
the graph G. The graph Laplacian matrix of G, L(G)=L, is

defined as L=D-A, where D=diag{d1d2...dn}and di =∑
j=1

n

aij.

Unlike the existing models of microgrids, the interactions
between DGs are considered in the proposed model. It also
includes the nonlinearties introduced by the filter, the shunt
capacitance, the loads, and the step-up transformers.

III. FIXED-TIME DISTRIBUTED SECONDARY VOLTAGE AND

REACTIVE POWER CONTROL

The control system developed in this paper is a secondary
control strategy with voltage and reactive power sharing in
hierarchical control framework. The primary control is given
as:

{V *
id =Vind -DqQi

V *
iq = 0

(6)

where Vind and Dq are the secondary control output voltage
and reactive power droop coefficient, respectively. DG i gen‐
erates the desired voltage reference, thus V *

id =Vid and V *
iq =

Viq. Then, (6) can be written as:

{Vid =Vind -DqQi

Viq = 0
(7)

Since Vqi = 0, the output voltage magnitude of DG i Vimag

satisfies Vimag = V 2
id +V 2

iq . Thus, controlling the output volt‐

age magnitude is the same as controlling its direct component.
The primary voltage and reactive power control aligns the

output voltage magnitude to the d-axis of the voltage reference.
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Secondary voltage control is designed to ensure a good
trade-off between the conflicting objectives of voltage regula‐
tion and maintain the reactive power sharing accuracy in the
same pattern as in the primary control:

Dq1Q1 =Dq2Q2 = ...=DqnQn =DVmax (8)
where DVmax is the maximum allowable voltage deviations.

Differentiating the voltage droop characteristics twice will
yield:

d2

dt2
Vind =

d2

dt2
Vid +Dq

d2

dt2
Qi = uvQi (9)

where uvQi is the auxiliary control input. According to (9),
the secondary voltage and reactive power control of islanded
microgrids can be transformed to a leader-follower second-
order consensus problem for the following linear second-or‐
der multi-agent system:

d2

dt2
Vind = uvQi iÎ{12...n} (10)

Definition: the leader-follower second-order consensus in
multi-agent systems is presented as:

d2

dt2
zi (t)= vi (t) iÎ{12...n} (11)

where zi is the position of the ith agent; and vi is the ith agent
control input.

Leader-follower second-order consensus in multi-agent
system (11) is achieved under any initial conditions and
"iÎ{12...n}. We can obtain:
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lim
t → +∞

||zi ( t ) - z0 ( t )|| = 0

lim
t → +∞









d
dt

zi ( t ) -
d
dt

z0 ( t ) = 0
(12)

We propose the non-singular terminal sliding-mode auxil‐
iary control law uvQi based on the voltage magnitude and the
reactive power information from the neighbors of DG i:

uvQi = uvi
+ uQi (13)

uvi
= (∑

jÎNi

aij + bi)
-1 ( - γvi

× sign(si (e
p
vi
ev

vi
))+∑

jÎNi

aij uj -

pi - 2qi

pi (( πpi

4T cs
i qi

)
pi /(pi - 2qi)

ev
1-[2qi /(pi - 2qi)]

vi
Fpiqi

(ep
vi
)+

2 ξv

2ηvT
cr
μτ ((e

v
vi
)2qi /(pi - 2qi))(ev

vi
)-[2qi /(pi - 2qi)] ((si (e

p
vi
ev

vi
))1- (2ηv /ξv) +

n2ηv /ξv ((si (e
p
vi
ev

vi
))2)2ηv /ξv (si (e

p
vi
ev

vi
))1- 2ηv /ξv))) (14)

uQi
= (∑

jÎNi

aij + bi)
-1 ( - γQi

× sign(si (e
p
Qi
ev

Qi
))+∑

jÎNi

aij uj -

pi - 2qi

pi (( πpi

4T cs
i qi

)
pi /(pi - 2qi)

ev
1-[2qi /(pi - 2qi)]

Qi
Fpiqi

(ep
Qi

)+

2 ξq

2ηqT
cr
μτ ((e

v
Qi

)2qi /(pi - 2qi))(ev
Qi

)-(2qi /(pi - 2qi)) ((si (e
p
Qi
ev

Qi
))1- (2ηq /ξq) +

n2η/ξ ((si (e
p
Qi
ev

Qi
))2)2ηq /ξq (si (e

p
Qi
ev

Qi
))1- (2ηq /ξq)))) (15)

where ep
i =∑

jÎNi

aij (vi - vj)+ bi (vi - v0) and ev
i =∑

jÎNi

aij (v̇i - v̇j)+

bi (v̇i - v̇0) are the voltage tracking errors and the derivative, re‐
spectively; ep

Qi
=∑

jÎNi

aij (DQi
Qi -DQj

Qj) and ev
Qi
=

∑
jÎNi

aij (DQi
Q̇i -DQj

Q̇j) are the reactive power sharing errors

and the derivative, respectively, and DQi
and DQj

are the reac‐

tive power droop coefficients; T cr is a time constant; T cs
i is the

lowest upper-bound of the sliding-time; bi > 0 is the pinning
gain and it is non-zero only for the agents that have access to
the reference voltage amplitude v0; and pi, qi, ηv, ξv, ηq, ξq, γvi

,

and γQi
are the control parameters that verifies the following

conditions:
ì
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0 < qi /pi < 0.25

0 < ηv /ξv < 0.5

0 < ηq /ξq < 0.5

γvi
> 0

γQi
> 0

(16)

Denote B= diag{bi} iÎ{12...n}, and DQi
is the reactive power

droop coefficient. Fpiqi
(×) and μτ (×) with τ > 0 are defined as:

Fpiqi
(x)= (cos h((x2)qi /pi))pi /(pi - 2qi) +

2qi pi

pi (pi - 2qi)
·

(ep
i )2qi /pi sin h((x2)qi /pi)(cos h((x2)qi /pi))2qi /(pi - 2qi) (17)

μτ (x)= {sin ( )πx2

2τ2
|x|£ τ

1 otherwise

(18)

si (xy) is the sliding surface defined as:

si (xy)= ypi /(pi - 2qi) +
πpi

4T cs
i qi

x(cos h((x2)qi /pi))pi /(pi - 2qi)
(19)

Figure 2 shows the block diagram of the distributed fixed-
time voltage and reactive power controller.

T cr + 2τ (pi - 2qi)/(2qi) γ i is an upper bound of the reaching time

of the secondary SMC of DG i, iÎ{12...n}.

v0
vj

Primary control
(6)

Fixed-time
voltage and reactive

power control
(10), (13), (14) and (15)

∑
j�Nj

aij(vi�vj)+bi(vi�v0)

∑
j�Nj

aij(vi�vj)+bi(vi�v0)
v0
·
vj·

· · · ·

∑
j�Ni

aij(DQiQi�DQjQj)DQiQi
· · ·

∑
j�Ni

aij(DQiQi�DQjQj)
DQiQi

eQi

uvQivind
vi
Qi

v

eQi
p

ei

vei

p

1
s2

Vi,d*

Vi,q*
DG i

Fig. 2. Block diagram of fixed-time distributed voltage and reactive power
controller.
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The desired prefixed upper bound of the settling time is
expressed as:

T = T cr + max
i

(T cs
i )+ max

i ( )2τ (pi - 2qi)/(2qi)

γ i

(20)

Theorem: if the control protocol in (15), (16), (17), and
(18) is applied, then the fixed-time leader-follower consen‐
sus tracking is achieved before the prefixed settling time up‐
per bound (20). Thus, voltage regulation and reference track‐
ing are met in the fixed-time Tsettling without hindering reac‐
tive power sharing, i.e., Tsettling £T is verified.

Proof: the result in the Theorem is valid for uvi
and uQi

,

separately [42]. However, to prove that the result is valid for
the superposition of the two nonlinear control laws, i. e.,
uvQi = uvi

+ uQi
, we consider the Lyapunov function V =

∑
i=1

n

(s2
i (ep

vi
ev

vi
)+s2

i (ep
Qi
ev

Qi
)). Using μτ (x) + μτ (y) £ μτ ( )(x + y) 2

with μτ ( )(x + y) 2 = μ
τ/ 2

(x + y) and xa + ya £ (x + y)a,

"xyaÎR*
+, and following similar demonstration steps as in

[42], it is concluded that lim
t® tr

V = 0. Then, lim
t® tr

si (xy)= 0,

where tr is the reaching time of the sliding surface

si (xy)= 0. Then, tr <T cr + max
i ( )2τ

(pi - 2qi)/(2qi) γi is verified. On

the sliding surface, i. e., when si = 0, if we denote eiÎ
{ep

vi
ep

Qi
ev

vi
ev

Qi
}, the sliding motion dynamics can be described

by ėi =- ( )πpi 4qiT
cs
i (ep

i )1- (2q/p)cos h(((ep
i )2)q/p). Thus we can ob‐

tain 2eiėi =- ( )πpi 2qiT
cs
i (ep

i )2(1- (q/p))cos h(((ep
i )2)q/p). By denot‐

ing Ve = e2
i , the aforementioned equation can be written as

q
p

V (q/p)- 1
e dVe

cos h(V q p
e )

=-
π

2T cs
i

dt, which is equivalent to
dV q p

e

cos h(V q p
e )

=

π

2T cs
i

dt. Integrating this equation from tr to t yields

arcsin(tan h((e2
i (t))q/p))=- π(t- tr) 2T cs

i +arcsin(tan h((e2
i (tr))

q/p)).

At the settling-time ts of the sliding motion, ei = 0. Thus, ts =
(2T cs

i π) arcsin(tan h((e2
i (tr))

q/p))£T cs
i . The tracking errors ep

vi
,

ep
Qi

, ev
vi
, ev

Qi
, iÎ{12...n} converge to zero at Tsettling. Then

Tsettling £ T cr + max
i

(T cs
i ) + max

i ( )2τ (pi - 2qi)/(2qi) γ i is verified.

Since vi - v0 = (L+B)ep
vi
, the reference voltage magnitude is

reached at Tsettling.
Remark 1: the term 2τ (pi -2qi)/(2qi) γ i can be neglected for suffi‐

cient high values of γ i and low values of τ, and T =T cr +
max

i
(T cs

i ) is verified by the upper bound of the prefixed set‐

tling time. However, for very small values of T cr + max
i

(T cs
i ),

the effect of the term 2τ (pi - 2qi)/(2qi) γ i can be reduced but can

not be negligible without hindering the controller perfor‐
mance as high values of γ i increase the chattering effect.

Remark 2: an important feature of the proposed control ap‐
proach is that the design procedure is straightforward. No
knowledge of the microgrid parameter is required. The de‐
sired settling-time upper bounds are specified directly in the
control law, which makes the tuning process simple. And the

only step left is to choose γ i and τ as explained in Remark 2.
In addition, the convergence at the desired settling-time is
mathematically guaranteed despite the unknown disturbanc‐
es.

IV. COMPARATIVE SIMULATION STUDY

The performance of the proposed fixed-time secondary
voltage control is verified with load power variations in com‐
parison with finite-time and asymptotic secondary voltage
control. The performance of the proposed protocol of fixed-
time reactive power sharing in maintaining power sharing ac‐
curacy is compared with the conventional one in [3], [4] and
others representing the benchmark for power sharing accura‐
cy, i. e, the nominal level to be maintained within the mi‐
crogrid. The test system used in the simulations is a low-
voltage islanded AC microgrid (nominal frequency f0 =
ω0 (2π) = 50 Hz and nominal voltage magnitude V0 = 380 V)

containing four DGs and four loads connected via the com‐
munication network. And the network is modeled by the di‐
rected graph depicted in Fig. 3. The arrows in the graph indi‐
cates the voltage and reactive power data flow direction.
DG1 is the leader node, thus the only DG gets access to the
reference voltage magnitude with the pinning gain b1 = 1.
For the other DGs, bi = 0, iÎ{234}.

Except for the internal voltage and current loop parame‐
ters, the DG specifications are adopted from [40]. The filter
parameters and the droop coefficients are summarized in Ta‐
ble I. The droop coefficients are assumed so that the voltage
deviations are less than the maximum allowable voltage devi‐
ation below 10% [43]. Therefore, to achieve high control
performance, the maximum allowable voltage deviation is
DVmax = 2%. The shunt capacitance Ct = 62.86 μH and the
transformer ratio k = 0.6 13.8 are used for the four DGs. Ac‐
tive and reactive power variations of the loads are presented
in Figs. 4 and 5. The control gains of the internal voltage
and current loops are tuned as follows: Kpv =Kpvi = 150, Kiv =
Kivi = 250, Kpc =Kpci = 100, and Kic =Kici = 10, "iÎ{1234}.

DG2

DG3

DG1

DG4

Vref

Fig. 3. Topology of microgrid.

TABLE I
MICROGRID PARAMETERS

DG

1

2

3

4

Filter parameter

Rt (mΩ)

1.2

1.6

1.5

1.5

Lt (μH)

93.7

94.8

107.7

90.6

Droop coefficient

Dp

2.08´10-5

2.10´10-5

2.11´10-5

2.12´10-5

Dq

1.210´10-3

1.214´10-3

1.217´10-3

1.218´10-3

236



GHAZZALI et al.: FIXED-TIME DISTRIBUTED VOLTAGE AND REACTIVE POWER COMPENSATION OF ISLANDED MICROGRIDS USING...

The parameters of voltage and reactive power controllers
are set as: qi /pi = 3/37, ηv /ξv = ηq /ξq = 0.1, T cr = 5 ms and T cs

i =
5 ms, iÎ{1234}. As T cr + T cs

i is very small, several values

of τ and γ i are tested to reduce the term 2τ (pi - 2qi)/(2qi) without
increasing the chattering effect. τ = 1´ 10-3, γvi

= 2.4´ 106, and

γQi
= 10 achieve the desired effect and will be used in this pa‐

per.
To highlight the efficiency of the proposed fixed-time con‐

trol, the finite-time and the asymptotic secondary controllers
in [4] and [10] have the same settling-time as those of the
proposed controller.

The simulations are conducted considering the following
scenario.

1) At t = 0: the simulation is initialized and the primary
control is activated.

2) At t = 0.8 s: the proposed secondary control system is
applied.

3) At t = 1 s: active power and reactive power of load 4
are increased.

4) At t = 1.2 s: active power and reactive power of load 2
are decreased.

5) At t = 1.4 s: load 1 is disconnected from the microgrid.
The results of the simulations are shown in Figs. 6-8. As

shown in Fig. 6, the droop-based primary control maintains
the microgrid voltage stability. Accurate power sharing can
be shown in Fig. 8, which does not cancel the reference
tracking error and maintain the microgrid back to the nomi‐
nal operation conditions. Thus, the primary control results in
a deviation in the voltage amplitude of DGs. As a result, the
secondary control is required for voltage restoration.
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At t = 0.8 s, the secondary control is activated. Figure 6
shows that the fixed-time secondary control restores the volt‐
age magnitude to its reference before the upper bound of pre‐
fixed settling-time of 10 ms with less than 2 V overshoot
while maintaining smooth output voltage. However, the fi‐
nite-time controller provides a fluctuating output voltage
with over 12 consecutive overshoots before reaching the ref‐
erence, which means that the proposed approach enhances
the tracking dynamics by 90% compared with that of finite-
time control. Unlike the designed fixed-time approach, the
asymptotic control also leads to voltage fluctuation during
its convergence to the reference. And the reference tracking
can not be achieved in a finite time. In the asymptotic con‐
trol, the reference is only a limit of DG terminal voltage
when time goes to infinity. In practical, this means that the
reference tracking error can not be canceled using asymptot‐
ic control protocols, while the proposed fixed-time control
ensures voltage reference tracking before a prefixed maxi‐
mum settling time despite the external disturbances. For ex‐
ample, the reaching time of the reference is guaranteed to be
finite and fixed in advance. In this paper, the fixed-time ap‐
proach provides 100% better performance than asymptotic
approaches on both transient dynamics and steady-state basis.

The primary reactive power control represents the bench‐
mark for power sharing accuracy, i. e., the nominal level to
be maintained within the microgrid. The proposed fixed-time
secondary control achieves efficient voltage reference track‐
ing while maintaining 100% of power sharing accuracy.

Load power variations begin at t = 1 s as shown in Figs. 4
and 5. Figure 6 shows that by using fixed-time, finite-time
and asymptotic controllers, similar voltage fluctuations oc‐
cur. Unlike other approaches, the proposed controller rejects
the voltage fluctuations before the upper bound of prefixed
settling-time of 10 ms, which achieves accurate reactive
power sharing.

The control signals displayed in Fig. 7 show that the pro‐
posed control system provides better performance with small‐
er control signal than finite-time and asymptotic approaches.
The proposed system has faster dynamics and a smaller
steady-state value, which justifies the voltage regulation and
reference tracking speed of the proposed approach.

Figure 8 shows that the proposed reactive power control‐
ler maintains power sharing accuracy at its benchmark level
in presence of load power variations. The voltage control
has not been conducted at the expense of reactive power con‐
trol. Therefore, the proposed power controller have success‐
fully provided better voltage regulation and reference track‐
ing performance while maintaining reactive power sharing
accuracy at its nominal level.

V. CONCLUSION

In this paper, a fixed-time distributed voltage and reactive
power secondary control approach for islanded AC mi‐
crogrids has been designed. The proposed distributed sliding-
mode controller ensures voltage regulation and reference
tracking before the upper bound of prefixed settling-time de‐
spite the unknown disturbances. And accurate reactive power
sharing among DGs is maintained. The comparative simula‐
tion conducted with load power variations confirms the per‐
formance of the controller in voltage regulation and refer‐
ence tracking before the desired fixed-time, and the accuracy
of reactive power sharing is maintained. Simulation results
show that the proposed fixed-time control provides better
performance in term of voltage regulation and reference
tracking than finite-time and asymptotic approaches, which
can achieve fast regulation reference tracking at the expense
of the system stability with severe voltage fluctuations.
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