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Abstract——Consecutive charging and discharging of storage
devices (SDs) might deem beneficial from the perspective of
short-term operation. However, it highly impacts the life span
of the embedded battery and render restrictions on energy stor‐
age capacity. We investigate short-term and long-term con‐
straints of SDs through a three-stage price-elastic approach to
the optimal operation of small-scale SDs in smart houses. The
first stage deals with data and scenario characterization where
the data for determining short-term and long-term operation
constraints of SD are acquired. Proper number of scenarios are
generated to represent uncertain parameters such as long-term
demand forecasting, daily load profile, electricity price, and
photovoltaic (PV) generation. The second stage optimizes the
long-term operation of SD using the envisioned scenarios sub‐
ject to the long-term operation constraints and the installment
costs of SDs. The outputs of this stage are two indicators re‐
ferred to as price elasticity and price offset coefficients, which
are used as the inputs for the third stage. The third stage is re‐
sponsible for decision-making on short-term operation of SDs.
The outputs of the second stage along with short-term forecast‐
ing for daily electricity price, daily load and daily PV genera‐
tion are acquired. Based on the acquired data, proper price
elasticity and price offset are determined for optimal operation.
Comprehensive simulations are performed for different demand
forecasting and electricity prices. Simulation results confirm the
effectiveness of the proposed approach.

Index Terms——Storage device, depth-of-discharge, life span,
smart house.

I. INTRODUCTION

THE outstanding merits of distributed energy resources
(DERs) integrated into power systems have given rise

to their proliferation at regional levels [1], [2]. With DERs
in place, considerable enhancements from power system reli‐
ability, resilience, economics, security, and sustainability can
be achieved [3], [4]. From the customers’ point of view, eco‐
nomic factor is more interesting as they can cover consider‐
able portion of their electricity consumption through local
DERs [5], [6]. Such customers are called as prosumers, who
possess their own electricity sources such as photovoltaic
(PV), diesel generators, small-scale wind turbines, and stor‐
age devices (SDs). SDs are important as they add to the flex‐
ibility of consumers and offer considerable reductions in
electricity bills.

To attain the maximum amount of cost reduction, the
charging and discharging pattern of SDs should be scheduled
with respect to the energy consumption profile and power
grid tariff [7]. In addition, the suite of constraints pertaining
to the short-term operation of SD should be deliberated.
However, the consecutive charging and discharging cycles of
SD can negatively affect the embedded battery. The concept
of life span is introduced in the literature which defines the
relation between the depth-of-discharge (DoD) of SDs and
life span of associated batteries [8]. The chemical material
within the battery, including lead-acid and lithium-ion (LI),
is degraded as SDs and is charged and discharged over the
time, which gradually imperils energy storage capability.
Consecutive charging and discharging of SDs shortens the
life span of the embedded battery and reduces energy stor‐
age capacity. The most critical factors in battery degradation
are the number of charging and discharging cycles and the
maximum DoD. For instance, a battery bank may have
10000 cycles with 20% DoD. However, it enables only 1000
cycles with 80% DoD [9]. Hence, consecutive charging and
discharging of SDs might deem beneficial, which is the mini‐
mum cost that might be attained by fully charging SD in the
low-price time slots and discharging it in high-price time
slots. However, consecutive charging and discharging of SDs
would shorten the life span of SD in the long-term horizon.

In several existing studies, DoD of the battery is usually
set to be a predefined value of 80%, and the associated life
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span cost is assumed to be constant [10]. The dependency of
wear cost on DoD of the battery is considered in other stud‐
ies. In [11], a simple model is assumed which considers life
span decrement for discharging time slots and assumes con‐
stant life span under other conditions. However, it is impor‐
tant to consider detailed battery degradation models for deter‐
mining optimal operation strategy [12]. The concepts of ag‐
ing and wear costs are devised to describe battery degrada‐
tion phenomena [13]. Electrochemical models capturing
physical processes are accurate for computing wear cost. It
is difficult to embed electrochemical models in the optimiza‐
tion process due to high-level of nonlinearity and dependen‐
cy to several parameters [14]. Reference [15] proposes an ex‐
plicit cost function to incorporate the degradation into a mod‐
el predictive control based approach to energy storage opera‐
tion. The cost function contains quadratic terms which de‐
scribe the degradation in terms of DoD, charge rate, and
state of charge (SOC). Peukert’s Law is utilized in [16] to
model the degradation due to cycle life and DoD. In [17], a
new framework is proposed to incorporate several numerical
models into a prediction tool for single multi-factor battery
degradation. This model captures extreme temperatures, high
charging and discharging rates, and the cycle of high and
low SOCs to accelerate the degradation in LI batteries. De‐
spite the accuracy of such models, it is challenging to em‐
bed them into an optimization process due to the complexity
and nonlinearities of the associated cost function.

To evaluate long-term operation of SD, scenario-based ap‐
proaches should be utilized due to the uncertainties pertain‐
ing to future operation conditions of SD. In this regard, sev‐
eral studies are conducted in literature which address opera‐
tion strategies to maximize the returned value of SD. Strate‐
gies are often dependent on future demand and utility price
forecasting [18], [19]. Stochastic dynamic programming
(SDP) based approach is proposed to optimize the operation
of SDs [20]. In [21], a heuristic approach is proposed for op‐
timal generation and storage scheduling problem subject to
renewable uncertainties. Although it provides an indication
for the optimal scheduling of SD with uncertainties, simple
but practical scheduling approach for SDs is still under dis‐
cussion. In addition, the long-term and short-term operation
constraints of SD should be coordinated well to attain opti‐
mal operation pattern from the perspective of both short-
term and long-term operations.

The performed literature review in this paper might be cat‐
egorized in three categories.

1) Category 1 contains the studies which consider a pre‐
defined value for DoD associated with chemical type batter‐
ies. Despite simplifying the calculation, considerable amount
of battery capacity remains unused.

2) Category 2 contains the studies which consider the de‐
pendency of wear cost on DoD of the battery. Despite the ac‐
curacy of such models, embedding the model into an optimi‐
zation process is a challenge due to the complexity and non‐
linearity associated cost function.

3) Category 3 contains the studies which considers uncer‐
tainties pertaining to future operation conditions of SD. The
indication is provided for optimal scheduling of SDs with un‐
certainties.

Due to the proliferation of storage systems, especially at
household level, simple but practical scheduling approach
for SDs is important. In addition, the long-term and short-
term operation constraints of SD should be coordinated well
to attain short-term and long-term optimal operation pat‐
terns. Short-term and long-term restrictions of SDs are inves‐
tigated through a three-stage price-elastic approach to opti‐
mal operation of small-scale SDs in smart houses. The con‐
ducted study considers the chemical types of battery storage
systems, where the first stage deals with data and scenario
characterization, and the required data for determining short-
term and long-term operation constraints of SD are acquired.
Proper number of scenarios are generated to represent uncer‐
tain parameters such as long-term demand forecasting, daily
load profile, electricity price, and PV generation. The second
stage optimizes long-term operation of SD by using the envi‐
sioned scenarios subject to long-term operation constraints
and the installment cost of SD. The outputs of the stage are
two indicators referred to as price elasticity and price offset
coefficients, which are used as the input for the third stage.
The third stage is responsible for decision-making on short-
term operation of SD. The outputs of the second stage along
with short-term forecasting for daily electricity price, daily
load and daily PV generation are acquired. Based on the ac‐
quired data, the proper price elasticity and price offset coeffi‐
cients are determined for optimal operation. Comprehensive
simulations are performed for different demand forecasting
and electricity prices. The results of simulation studies con‐
firm the effectiveness of the proposed approach. The salient
features of this paper are as follows.

1) A three-stage price-elastic approach is proposed for op‐
timal operation of small-scale SDs in smart houses.

2) An efficient optimization model is proposed to incorpo‐
rate short-term operation constraints of SD into long-term
scheduling of SDs.

3) Price elasticity and price offset coefficients are pro‐
posed to convert the solution of the proposed optimization
model into simple indices for decision-making on SD opera‐
tion.

4) Plausible uncertainties through an efficient scenario-
based scheduling model are characterized.

The rest of this paper is organized as follows. Section II
presents the problem formulation and the proposed methodol‐
ogy. Section III presents the simulation. Finally, the conclu‐
sions are summarized in Section IV.

II. PROPOSED METHODOLOGY

Figure 1 shows the schematic of a smart house which en‐
compasses an SD, PV generation, and the connection to the
upstream network. A controller is envisioned for SD, which
acquires the data for the price through web-services and con‐
trols SD operation. From the perspective of short-term opera‐
tion, load characteristics, electricity price, and PV generation
are changing continuously so that SD controller is required
to consecutively change charging and discharging patterns of
SD to attain the minimum cost operation. On the contrary,
from the perspective of long-term operation, such a charging
and discharging pattern might shorten the life span of SD.
The proposed approach provides optimal scheduling of SD
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operation in short term, offering reasonable life span for SD
deployment in long term. The three stages of the proposed
approach are presented as follows.

A. Stage 1: Data and Scenario Characterization

In this stage, the required data for driving the proposed ap‐
proach are acquired, which are categorized into two groups:
SD-related data and operation data of smart house. SD-relat‐
ed data include permissible operation range of SD, energy
capacity of SD, permissible SOC of SD, conversion efficien‐
cy of SD, and life span cost function of SD. The required
operation data of smart house include long-term demand
forecasting, seasonal load profile (spring, summer, fall, win‐
ter), daily load profile (weekday, weekend), electricity price,
and PV generation. Once the operation data of smart house
are acquired, a set of scenarios representing plausible realiza‐
tion of uncertainties are generated. Proper probability distri‐
bution function (PDF) is dedicated to uncertain parameters,
i.e., demand forecasting, seasonal load profile, daily load pro‐
file, electricity price, and PV generation. For demand fore‐
casting, electricity price, PV generation, and normal distribu‐
tion function are used. However, for seasonal and daily load
profiles, uniform distribution function is envisioned. PDFs
are shown in Fig. 2.

The envisioned PDFs in Fig. 2 are used for scenario gen‐
eration. Note that the Beta, Weibull, and Log-normal distri‐
butions are common distribution functions used in the litera‐
ture to model solar irradiance from historical data [22]. The
main index to select the proper distribution function out of
aforementioned distributions is the fitting error [23]. We use
solar irradiance and PV generation data for Turkey [24] and
fitted Beta, Weibull, and Log-normal distributions for the his‐
torical data. The best fit is for the normal distribution. The
generation and reduction processes of the scenario are depict‐
ed in Fig. 3. To cover all possible realizations, a great num‐
ber of scenarios should be generated which negatively af‐
fects the tractability of the problem.

About 1000000 scenarios are generated by using Monte-
Carlo process. Afterwards, the number of scenarios are
trimmed down to a reasonable number of 20 representative
scenarios by using probability distance algorithm [25].

B. Stage 2: Assessment for Long-term Operation

In this stage, the long-term operation of SD is assessed,
and for each scenario, the optimal operation strategy of SD
during its life span is calculated. The objective is the mini‐
mum cost OFω, which satisfies technical constraints pertain‐
ing to nodal power balance and permissible operation range
of elements. The problem can be formulated as:

min OFω =∑
tÎ IT

λbuy
tω P buy

tω +∑
tÎ IT

DCSD(P SD-
tω ) "ωÎ IΩ (1)
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tω -P load

tω = 0 "tÎ IT"ωÎ IΩ (2)
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where t and IT are the index and set of time, respectively; IΩ
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is the set of scenario; ω is the scenario; a, b, c are the qua‐
dratic deteriorations of SD; DCSD(·) is the deterioration cost
function of SD; λ is the hourly electricity price known for
each scenario; E is the energy capacity; MOT is the maxi‐
mum operation time of SD in its life span; P is the active
power; SOC is the SOC for storage unit; T is the time re‐
quired for complete operation of the equipment; η is the con‐
version efficiency coefficient for storage unit; αSD

tω is the bina‐
ry variable; the superscript buy represents purchasing from
electricity market; the superscripts min and max represent
the lower and upper limits, respectively; the superscripts L,
PV and SD represent the chemical material within the bat‐
tery, the solar generation, and SD, respectively; and the su‐
perscripts + and - represent the charging and discharging
stages, respectively.

Equation (1) shows the objective function to be mini‐
mized during each optimization stage. Equation (2) deals
with nodal power balance by neutralizing the load with the
generation. The load and generation elements are represented
by (3) and (4). In (5), it is guaranteed that the smart house
is regarded as a net load from the perspective of upstream
network. The permissible operation range associated with the
solar system is modeled by (6). The deterioration cost func‐
tion used in the objective function is calculated by (7). In
(8), the life span constraint of SD is modeled which impels
that the total charging and discharging of SD should be limit‐
ed to a predefined value. αSD

tω used in (8) is calculated by (9)
and (10). In (9) and (10), αSD

tω controls the charging and dis‐
charging and avoids enabling both charging and discharging
at the same time. The SOC of storage at each time period is
calculated by (11) and (12) to model the limitations on SOC.

The main parameters of the devised optimization model
are electricity price and rated parameters of SD. For the elec‐
tricity price, the suite of plausible scenarios is generated us‐
ing the probability density function as shown in Fig. 2. For
the rated parameters of SD, common practical values are
used as described in Section III.

Once the optimization model is devised, (1) is solved sub‐
ject to (2) - (12). In the proposed approach, we convert the
outcome of the proposed optimization model into simple in‐
dices for decision-making on SD operation, which is per‐
formed by introducing price offset and price elasticity coeffi‐
cients. In this regard, the solution of long-term operation op‐
timization of SD is used to stablish a linear relationship be‐
tween daily price and SD commitment status. In the defined
linear model, the x-intercept and slop of the attained line are
entitled as price offset and price elasticity coefficients, re‐
spectively.

λ=PC (13)
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24ω
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é
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ê

ù

û
ú

βω
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where λ is the vector of hourly electricity price known for
each scenario; P is the matrix of charging and discharging of
SD which is attained by solving (1) subject to (2)-(12); C is
the vector of coefficients that links the charging and dis‐
charging status and amounts to the electricity price; and βω
and ψω are the price elasticity and price offset coefficients,
respectively. Equations (13)-(17) represent the proposed lin‐
ear model to calculate price elasticity and price offset coeffi‐
cients. For scenario ω, the vector of hourly electricity price
is known from the input data. The elements of charging and
discharging of SD are known from (1) subject to (2) - (12).
The unknown parameters are the vectors of coefficients for
which the least squares error approach is deployed to specify
the maximum likelihood approximation:

é

ë
ê

ù

û
ú

βω
ψω

= (PT P)-1 PT λ (18)

βω and ψω establish a linear link between the charging and
discharging status and the amount of the electricity price.
Practically, ψω discriminates the charging and discharging re‐
gions. For the prices which are lower than the determined
price offset, SD starts charging, and for the prices which are
higher than the price offset, SD acts as a generator and dis‐
charges. The amount of charging and discharging is deter‐
mined by βω.

Once the price elasticity and price offset coefficients for
scenario ω are calculated, a lookup table is developed with
the order represented by (19), which is used at Stage 3 for
decision-making for short-term operation. The main reason
for developing a lookup table is to ease the application of
the proposed approach in small-scale SDs at household lev‐
els.

LTω = [σω μω βω ψω ] (19)

where LTω is the vector of lookup table corresponding to
scenario ω; and σω and μω are the standard deviation and av‐
erage of electricity price in the day, respectively.

C. Stage 3: Decision-making for Short-term Operation

In this stage, decision-making for short-term operation is
realized. The price forecasting at day-ahead stage is ac‐
quired. Then, the standard deviation and average of electrici‐
ty price are calculated and the associated price elasticity and
price offset coefficients are adapted from the lookup table
presented by (19).

III. SIMULATION STUDIES

This section examines the performance of the proposed ap‐
proach. The generic daily load profile representing four sea‐
sons, days of weekday and weekend, and the generic daily
electricity prices in hourly resolution are identified as shown
in Figs. 4 and 5, respectively. The typical daily load curves
of DisCOs are publicly available in Turkey for weekdays
and weekends. The load curve and data are derived from
Turkish Electricity Market Regulatory Authorities (EMRA)
[26]. Common data are also used in the literature [27], [28].
In addition, the price profiles are assumed to represent in the
range of 40-55 $/MWh for daily average price in four steps
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and 2.5-12.5 $/MWh for daily price standard deviation in
five steps, which are the ranges for real day-ahead price in
2018 [24].

A household is modelled with an annual peak demand of
20 kW, a PV installment of 8 kW (the generation profile is
determined via Renewable Ninja website), and a LI battery-
based SD installment of 2.5 kW to 10 kWh is also consid‐
ered. To represent long-term constraints, the calculation hori‐
zon is defined as 10 years. The costs of SD installment are
changed as 100/200/400/600/800 $/kWh, respectively. Simu‐
lation results for long-term assessment are shown in Fig. 6
for three days.

As can be observed from Fig. 6, the optimal scheduling of
SD in each day follows a linear pattern versus price altera‐
tions, which implies the effectiveness of the proposed linear
approximation in (13)-(17). The price offset shows the limit

where the SD controller switches from the charging mode to
the discharging mode or vice versa. Therefore, the price off‐
set can be considered as the threshold value for SD control‐
ler where it decides to charge or discharge SD. Subsequent
to mode identification, the amount of charging and discharg‐
ing is determined through the price elasticity. As can be ob‐
served from Fig. 6, price elasticity is the slope of the pro‐
posed linear approximation. The sensitivity of charging and
discharging of SD for different values of price elasticity is
shown in Fig. 7.

As shown in Fig. 7, 0.4 p. u. increment in the electricity
price results in 0.2 p. u. reduction in the charging of SD if
50% price elasticity is used. However, with 100% price elas‐
ticity, 0.2 p. u. increment in the electricity price contributes
to 0.4 p.u. reduction in the charging of SD. It can be con‐
cluded that the permissible amount of charging and discharg‐
ing of SD changes as we change the price elasticity. Compre‐
hensive simulations are conducted to find out the relation be‐
tween daily electricity price, installment cost of SD, and
price elasticity.

In Fig. 8, the simulation is presented for different daily
electricity price and installment cost of SD with 5% standard
deviation for load with respect to annual peak. The figure in‐
dicates that if the load is almost constant throughout the day,
the price deviations does not affect the selection of price
elasticity. However, the installation cost CSD has a strong im‐
pact on the selection of price elasticity. As the installation
cost increases, the optimal price elasticity reduces, which re‐
duces the responsiveness of SD to price deviations.
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On the contrary, in Fig. 9, the standard load deviation is
in the range of 25%-30%. The optimal scheduling indicates
much more responsive characteristics with higher values of
price elasticity. Further, price elasticity has the tendency to
increase in quadratic manner as the installation cost of SD
reduces. It implies that as the installation costs reduce, SDs
can be utilized more aggressively to increase the benefit
from the device, whereas the costs associated with life span
will be relatively reduced.

With the proposed approach, and price offset and price
elasticity coefficients, the optimal operation of SD in short
time can be realized. Figure 10 shows the operation of SD
in three consecutive days. The charging and discharging pat‐
terns of SD differ in each day.

IV. CONCLUSION

Optimal scheduling of SD is proposed, considering short-
term and long-term constraints through a three-stage price-
elastic approach. We aim to respond the query that how an
SD could be scheduled to minimize electricity cost while
considering long-term constraints pertaining to the life span
and instalment cost of SD. Price offset and price elasticity
coefficients are introduced, which are calculated by optimiz‐
ing long-term operation of SD. A linear approach is pro‐
posed which converts the results of long-term optimization

into price offset and price elasticity coefficients. Price offset
is considered as the threshold value for SD controller where
it decides to charge or discharge SD. Based on the simula‐
tion, it can be concluded as follows.

1) The optimal scheduling of SD in each day follows a
linear pattern versus price alterations, which implies the ef‐
fectiveness of the proposed linear approximation.

2) The permissible amount of charging and discharging of
SD changes as we change the price elasticity.

3) If the load is almost constant throughout the day, the
price deviations do not affect the selection of price elasticity.

4) As the installation cost increases, the optimal price elas‐
ticity reduces, which in return, reduces the responsiveness of
SD to price deviations.

5) Price elasticity has the tendency to increase in quadrat‐
ic manner as the installation cost of SD reduces, which im‐
plies that as the installation costs reduce, SDs can be uti‐
lized more aggressively to increase the benefit from the de‐
vice.
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