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Abstract——Electric vehicles (EVs) are widely deployed
throughout the world, and photovoltaic (PV) charging stations
have emerged for satisfying the charging demands of EV users.
This paper proposes a multi-objective optimal operation meth‐
od for the centralized battery swap charging system (CBSCS),
in order to enhance the economic efficiency while reducing its
adverse effects on power grid. The proposed method involves a
multi-objective optimization scheduling model, which minimizes
the total operation cost and smoothes load fluctuations, simulta‐
neously. Afterwards, we modify a recently proposed multi-objec‐
tive optimization algorithm of non-sorting genetic algorithm III
(NSGA-III) for solving this scheduling problem. Finally, simula‐
tion studies verify the effectiveness of the proposed multi-objec‐
tive operation method.

Index Terms——Multi-objective optimization, electric vehicle,
battery swap charging system, scheduling, photovoltaic.

I. INTRODUCTION

IN recent years, electric vehicles (EVs) and their charging
stations have been widely deployed for adapting to the

clean, efficient and sustainable energy development through‐
out the world [1]-[3]. It is predicted by the International En‐
ergy Agency that the number of EVs will exceed 12.9 mil‐
lion after 2020 [4]. Indeed, the large scale of EVs may bring
about great effects on the secure and stable operation of the
power grid, as the huge charging demands could change the
spatial and temporal distribution of loads in the power grid.

To this end, suitable charging strategies of EVs are need‐
ed to stimulate the power grid to actively provide energy ser‐
vices. Currently, there exist two primary schemes of EV

charging, i.e., the plug-in and the battery swapping schemes
[5]. Note that the latter largely improves the convenience of
charging, by which EVs can obtain the energy more effi‐
ciently compared with the former [6].

Recently, researchers have carried out related studies on
the battery swapping schemes. For instance, [6] proposes an
optimization framework for the operation model of battery
swapping stations (BSSs) based on the day-ahead schedul‐
ing. In addition, [7] introduces an optimal charging schedule
of EVs in the context of BSSs. Simulation studies verify
that it is helpful for decreasing the gap between the peak
and valley loads, and reducing the coal consumption of tradi‐
tional generators. Furthermore, a novel scheduling model for
swapping EV batteries is presented in [8], which aims to
minimize the operation cost of the BSS. What is more, [9]
proposes a bi-level optimal scheme to promote the participa‐
tion of EVs in regulating the economic operation of the pow‐
er grid.

With the popularity of battery swapping in EV services,
the centralized battery charging station (CBCS) has emerged.
It provides charging services for depleted batteries (DBs),
which then become fully-charged batteries (FCBs) and are
sent to BSSs. In this way, the CBCS and BSSs constitute the
centralized battery swap charging system (CBSCS), and es‐
tablishing CBCSs is one of the most important areas that de‐
serve extensive exploration [10].

Indeed, some researchers have conducted related works on
the operation of CBCSs. For instance, [11] proposes a decen‐
tralized coordinated control strategy for EV fast charging sta‐
tion, in order to ensure the stable operation of the microgrid.
Moreover, [12] shows a charging pricing strategy of EV fast
charging stations, which improves the voltage profiles of dis‐
tribution networks. In addition, [13] presents a two-stage sto‐
chastic optimization model to manage EV charging and re‐
duce the costs of charging and infrastructure. Furthermore,
[14] studies the optimal scheduling problem of CBCS,
which is formulated as a mixed-integer program to obtain
the optimal scheduling of charging processes so that the op‐
eration cost is minimized while satisfying the needs of
FCBs. Similarly, [15] formulates the battery charging sched‐
ule as an inventory management problem, which aims to op‐
timize the profit of CBCS and guarantee the demands of bat‐
teries. Moreover, as CBCS and BSSs are tightly coupled
with each other via batteries, [16] proposes a battery schedul‐
ing framework, in which a two-direction battery scheduling
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model is used to efficiently arrange EV batteries between the
CBCS and BSSs. In addition, [17] presents a joint optimiza‐
tion of unit commitment and the swapping charging system
of EV battery that consists of the CBCS and BSSs, in order
to improve the ambient air quality and reduce the associated
health impacts.

It is worthwhile to mention that, with rapid developments
of renewable energies, the PV-powered CBCS has emerged
in recent years [18] - [21]. In this way, considering that the
CBSCS with PV integration could utilize solar energy to pro‐
vide charging services for EV batteries, the operation of PV-
powered CBCS and BSS has been studied, respectively. As
for the PV-powered CBCS, [18] presents a PV-equipped
CBCS, which provides fast EV charging services while re‐
ducing stress to power systems. Moreover, [19] proposes an
autonomous energy management strategy, by which PV-as‐
sisted CBCS performs better in providing an ancillary ser‐
vice than the station without PV. In addition, [20] adopts a
two-stage stochastic optimization method to accommodate
uncertain output of PVs for CBCSs, and a Latin hypercube
based sample average approximation method is used to pur‐
sue the minimum operation cost. Furthermore, [21] investi‐
gates a classification method, by which EVs in a CBCS can
be divided into premium, conservative, and green ones, ac‐
cording to their distinct charging behaviors. It is found that
green vehicles could help a PV-driven CBCS reduce its cost
by using batteries as distributed storage. Similarly, to pursue
the economic operation of the PV-powered BSS, [22] propos‐
es an optimal charging scheme for BSSs with PV, which is
solved by a heuristic optimization algorithm to reduce the
cost. In addition, [23] presents a combined optimization
method for the configuration and operation of the BSS with
PV, while pursuing the economic efficiency, which also veri‐
fies the necessity of considering uncertain PV power.

Indeed, there exist some relevant works, which take the
above aspects as a whole into account. In other words, they
consider multiple objectives of the EV charging and PV. For
instance, [24] proposes a multi-objective optimization model
which aims at maximizing the revenues of the PV-based EV
station and minimizing the capacity fading of battery energy
storage system (BESS), simultaneously. In addition, [25] dis‐
cusses the optimization scheduling problem in PV microgrid
considering EV charging and demand response, which realiz‐
es the minimization of the total operation cost (TOC) and
the exchange capacity with the power grid. What is more,
[26] introduces a multi-objective operation of the grid-con‐
nected PV charging station, the objectives of which are set
as the maximization of the renewable energy utilization ratio
and the minimization of the system investment and operation
costs.

Meanwhile, an optimal strategy of power control and ener‐
gy management for EV charging stations using renewable en‐
ergy sources is proposed in [27], which aims to reduce
charging time, minimize the battery temperature during the
charging process, and minimize the influence on the utility
grid. Reference [28] introduces an energy exchange strategy
for the PV-based BSS, with the purpose of minimizing the
annual cost and maximizing the percentage of utilized PV

energy. Moreover, a multi-objective optimization model for
coordinated control of PV generation and EV charging is es‐
tablished by [29], which minimizes the fluctuation of the
power transmitted to the power grid, reduces the EV charg‐
ing cost, and ensures EV batteries to be fully charged.

From the relevant works mentioned above, the following
issues shall be taken into account, which are the main differ‐
ences of our work.

1) Considering the integration of uncertain PV power into
CBSCS and the usage of batteries, it would lead to some
revenues or related costs. Different from current works, we
concretely model the detailed composition of TOC, i.e., the
opportunity cost (OC) of PV power shortage, the opportunity
revenue (OR) of PV power surplus, the scheduling cost of
power purchasing (SCPP) regarding CBSCS, and the inven‐
tory cost of reserve batteries (RBs).

2) It is noted that the logistic model of batteries is impor‐
tant, and it has not been deeply explored, especially for the
multi-objective operation of CBSCS. We have carefully stud‐
ied this issue in our work. In detail, we adopt the closed
loop supply chain (CLSC) [30] to model the logistic charac‐
teristic of EV batteries and realize the interaction among EV
users, BSSs, and CBCS.

Therefore, the main motivation and innovation of this pa‐
per include concretely modelling the TOC of CBSCS, care‐
fully studying the logistic model of batteries, and consider‐
ing multi-objective optimal operation of CBSCS with PV in‐
tegration.

In order to solve the above issues, the following aspects
are studied as follows.

1) We propose a multi-objective optimization scheduling
model of CBSCS with PV integration. In this way, we could
study the relationship among multiple objectives, in order to
provide the references for determining a proper scheduling
scheme.

2) To deal with this multi-objective optimization problem,
we modify a recently proposed multi-objective optimization
algorithm, i. e., non-dominated sorting genetic algorithm III
(NSGA-III) [31] to solve the scheduling model.

The rest of this paper is organized as follows. Section II
presents the operation framework of CBSCS with PV inte‐
gration. In Section III, a CLSC is introduced to describe the
operation process of CBSCS. In Section IV, the formulations
of our proposed multi-objective scheduling model are
shown. Then, Section V introduces the modified NSGA-III
and its solving procedure. In Section VI, simulation studies
verify the effectiveness of the proposed scheduling model
and the modified algorithm. Finally, conclusions are drawn
in Section VII.

II. CBSCS WITH PV INTEGRATION

It is well-known that solar energy is clean and renewable,
since no carbon emission is involved in its generation. With
the development of PV technology, it is a popular trend to
integrate solar energy into the power grid. Note that the CB‐
SCS with PV integration has emerged, and the charging load
of EVs can be satisfied with PV supply and external power
grid. This system contains battery flow, energy flow, and in‐
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formation flow, as shown in Fig. 1. In the battery flow,
CBCS dispatches FCBs to BSSs, which then swap them for
EV users. BSS receives DBs from EV users, and sends them
to CBCS for charging. Meanwhile, the energy flow involves
solar energy input in CBSCS as well as electric power pur‐
chased from external power grid to battery charging servic‐
es. Also, if the solar power in some time intervals is abun‐
dant, it can be sold to the power grid.

We need to consider PV generation uncertainties in the op‐
eration of CBSCS. In order to better understand the impact
of PV power uncertainty, we establish its probability distribu‐
tion, in which we assume the forecasting error follows the
normal distribution, where the mean and standard deviations
(SDs) are set as 0 and 8% of the forecasting power value, re‐
spectively. By applying Monte Carlo simulation [32] with
the sample size of 10000, the frequency distribution of PV
power can be obtained as shown in Fig. 2, where the fore‐
casting power value is set to be 30 MW. For achieving a bet‐
ter operation of CBSCS, the scheduling plan of PV power in‐
put needs to be determined in advance. However, the actual
power is usually deviated from the pre-determined one.
Therefore, two cases will be confronted in actual dispatch‐
ing, i.e., PV power shortage and surplus. In the former case,
the actual PV power input is lower than the pre-determined
one, which may lead to power purchasing from the power
grid to CBSCS. In the latter case, the actual PV power is
higher than the pre-determined one, which may result in PV
power selling from CBSCS to the power grid.

Moreover, CBSCS receives the swapping demand and
load information from BSS and the power grid, respectively.
Besides, there also exists battery swapping information of

EV users, which is sent to BSS via the information flow. In
this way, the CBSCS also needs to determine the optimal
scheduling plans of battery charging, in order to enhance the
better operation of the CBSCS.

III. CLSC

To well describe the operation process of CBSCS, we use
the CLSC on the basis of batteries. It is noted that the
CLSC is proposed based on reverse logistics, which aims to
handle the product returned, decrease the waste and provide
users services at low costs [33], [34].

Generally speaking, the CLSC could be classified into
four categories: C-type, M-type, R-type, and 3P-type [30]. In
the C-type of CLSC, the BSS and CBCS belong to the same
system, in which the products are dispatched by BSS. Mean‐
while, in M-type, R-type, and 3P-type of CLSC, the BSS
and CBCS belong to different systems, and the products are
delivered by CBCS, BSS, and the third-party firm, respec‐
tively. It is worth mentioning that the retail price of products
in the C-type is lower than those in other types [30].

Regarding EVs with battery swapping mode, it means that
the price of replacing batteries is lower, which is beneficial
for the development of EVs. In addition, the BSS and CBCS
in the same system could share the information, in order to
enhance the operation feasibility of the system. Hence, we
adopt the C-type of CLSC in this paper, as shown in Fig. 3.
Note that the CLSC consists of the forward supply chain
(FSC), which provides products for users. It also includes
the reverse supply chain (RSC), in order to callback the
products used. In detail, BSS in CLSC is taken as the retail‐
er, which provides FCBs for EV users and recycles DBs
from them. In order to satisfy the swapping demand of BSS,
the CBCS in the CLSC serves as the manufacturer, which
provides charging services for DBs and dispatches FCBs and
RBs to BSS. What is more, the energy utilized in charging
module of CBCS stems from the electricity from external
power grid and the solar energy.

A. Operation of Electric Bus and Taxi

Considering the battery swapping demand of users, due to
the large-scale development of EVs and the diversity of ob‐
jective conditions, this paper focuses on electric buses and
taxies as users. Regarding the bus dispatching, we assume
that buses are departed at equal intervals for convenience
[35], and we divide buses into two queues and then dispatch

EV user BSS

CBCS with PV
integrationPower grid

Scheduling of battery charging
Swapping
demand

Solar energy Scheduling of PV
power integration

Load information
Selling

Purchasing

Battery swapping information

Energy flowBattery flow;
Decision variableInformation flow;

Fig. 1. Operation diagram of CBSCS with PV integration.
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Fig. 3. Operation process of CBSCS based on CLSC.
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them alternately. In other words, we dispatch one queue in
normal time and switch to the other queue when the state of
charge (SOC) of all buses in the current queue is lower than
the threshold value of SOC. Note that at peak time, we dis‐
patch two queues at the same time.

In this paper, buses are departed in order, as shown in
Fig. 4. Figure 4 lists the dispatching sequence of individual
time slots, where Ton is the starting time of operation; Tpeak,on

and Tpeak,off are the starting and ending time of peak time, re‐
spectively, taking the morning peak as an example; and Ta,
Tb, and Tc are the next departure time after Tpeak,off, the time
when all buses in the current queue need to be charged, and
the next departure time after Tb, respectively. It is worth not‐
ing that the first bus departed is the bus No. ( j + 1), rather
than the bus No. 1, when the other queue starts to be dis‐
patched in normal time.

Meanwhile, based on the research on taxi operation [36],
we assume that the daily mileage of taxies is 350-500 km
and there are two shifts per taxi alternating every 24 hours
and 12 hours, respectively. In the two situations, the number
of taxies and the off-the-line characteristic are different. The
battery swapping time and SOC are shown in Table I.

B. Scheduling Batteries Between BSS and CBCS

Considering the scheduling of BSS and CBCS, the re‐
placed ones should be classified and processed to control
them effectively since batteries in CBSCS are numerous.
Meanwhile, their charging characteristics provide a basis for
classification.

The charging mode for EV batteries can be selected as the
two-stage charging mode [37]. In the first stage, batteries are
charged in the constant-current mode, while they are charged
via the constant-voltage mode in the second stage. The ad‐
vantage of the method is that it can guarantee both the charg‐
ing speed and the security in the charging process for batter‐
ies. The chargers offer charging services for batteries, and
the rated power of each charger is a constant [38].

Considering that there is no interruption in the charging
process and the charging time of batteries with different
SOC values is different, we can divide batteries into N cate‐
gories, as shown in (1), based on SOCs in the battery swap‐
ping process and their charging characteristics.

N =
é

ê

ê
ê

ù

ú

ú
ú

max
iÎB

( )SOCi - min
iÎB

( )SOCi

pcηcDh
Cr (1)

where B, SOCi, and pc are the set of batteries in swapping
time, SOC of the ith battery, and the rated charging power of
the charger, respectively; ηc is the charging efficiency; Dh is

set as 1 hour; Cr is the rated energy of the battery; and é ùx is
the smallest integer number that is not smaller than x, i. e.,
the ceiling function.

The battery charging time of the kth category Tc,k could be
formulated as:

Tck = (k0 + k - 1) Dh (2)

k0 =
ê

ë

ê
ê

ú

û

ú
ú

SOCub - max
iÎB

( )SOCi

pcηcDh
Cr (3)

where k0 is the minimum battery charging time in the set B;
SOCub is the upper boundary of SOC; and ë ûx is the biggest
integer number that is not bigger than x, i.e., the floor func‐
tion.

In addition, the relationship of batteries and the corre‐
sponding category could be shown as follows.

Iik = {1 k0 - 1+ k £
SOCub - SOCi

pcηcDh
Cr < k0 + k

0 otherwise

(4)

where Ii,k is a binary variable, if it is 1, it means battery i be‐
longs to the kth category.

Moreover, we consider that batteries are merely dis‐
patched at several fixed moments to reduce the delivery
times, and adopt the equal interval dispatching mode. There‐
fore, we define the dispatching time set Sd as {11+
DTT -DT + 1}, where DT is the dispatching time inter‐
val; and T is the total dispatching time, which is 24 hours in
this paper. Meanwhile, we use Dt and Tc,k to denote the dis‐
patching step and the charging time of batteries in the class
k (k = 12N), respectively. Hence, DT satisfies (5), which
means T can be divided evenly by DT.

mod ( )TDT = 0 (5)

The number of batteries in the kth category which need to
be dispatched from the BSS to CBCS at time t, denoted as
Qt

Dbk, is equal to the total amount of batteries swapped in the
time interval [t -DTt), which is formulated as:

Qt
Dbk = ∑

j = t -DT

t

Qj
Dk = ∑

j = t -DT

t ∑
i = 1

Qj
D

I j
ik tÎ Sd (6)
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Fig. 4. Operation process of CBSCS based on CLSC.

TABLE I
BATTERY SWAPPING TIME AND SOC OF ELECTRIC TAXIES

Type

Alternate every 24 hours

Alternate every 12 hours

Battery swapping time

U(02:00,05:00) and U(11:30,14:30)

U(02:00,04:00) and U(11:30,14:00)

SOC

N(0.30,0.33)

N(0.30,0.33)

Note: U represents the uniform distribution; and N represents the normal
distribution.
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Qt
D =∑

k = 1

N

Qt
Dk (7)

where Qj
Dk and Qt

Dk are the numbers of batteries swapped by
EV users in class k at time j and t, respectively; and Qj

D and
Qt

D are the total numbers of batteries swapped by EV users
at time j and t, respectively.

As shown Fig. 5, the batteries swapped by EV users at
time t0 -DT are delivered to CBCS at time t0. Analogously,
the DBs swapped at time t0 and t0 +DT are dispatched to
CBCS at time t0 +DT and t0 + 2DT, respectively.

The number of batteries Qt
Dc that CBCS dispatches to the

BSS at time t can be derived as the sum of batteries demand‐
ed in the time interval [tt +DT), which is formulated as:

Qt
Dc =∑

k = 1

N

Qt
Dck =∑

k = 1

N ∑
j = t

t +DT

Qj
Dk=∑

k = 1

N ∑
j = t

t +DT∑
i = 1

Qj
D

I j
ik tÎ Sd (8)

where Qt
Dck is the number of batteries delivered from the

CBCS to BSS in class k at time t.

IV. MULTI-OBJECTIVE OPTIMIZATION SCHEDULING MODEL

OF CBSCS

The decision variables of CBSCS consist of the schedul‐
ing plans of PV power input and battery charging, which are
based on the day-ahead scheduling. Concretely speaking,
since we classify the batteries into two categories and set the
total dispatching time as 24 hours, there exist 48 decision
variables representing the number of batteries in each catego‐
ry charged in each time interval and 24 decision variables
denoting the predetermined PV power input value in each
time interval. In addition, the PV power input plan is related
to the uncertainty of solar radiation, while the battery charg‐
ing plan is associated with the battery swapping behavior of
EV users. Note that there exists the situation that the sched‐
uling plan of PV power input cannot satisfy the battery
charging. Hence, we need to determine the day-ahead plan
of power purchasing. Meanwhile, from Section II, it can be
observed that the actual PV power usually deviates from our
day-ahead scheduling plan of PV power input. Therefore,
there exist two cases, i. e., PV power shortage and surplus.
The former situation leads to the power purchasing cost. On
the contrary, in the latter situation, we could sell the surplus
PV power, which contributes to the power selling revenue.
In this way, we define the SCPP, the OC of PV power short‐
age, and the OR of PV power surplus, respectively. Also,
RBs existing in the CBSCS should satisfy the swapping de‐
mand of EV users, which brings about the inventory cost.
Therefore, the operation cost of CBSCS consists of these
four parts.

It has been indicated that disordered or uncontrolled charg‐
ing of EVs leads to load fluctuations of the power grid, i.e.,
expanding the load peak-valley difference, which will threat‐
en the secure operation. Therefore, the orderly/coordinated
charging has been proposed to shift the peak power demands
to off-peak hours [8], [39]. The key idea of orderly/coordi‐
nated charging is based on the load shifting strategy, which
considers the effect of charging load at the power grid side.
In this way, the EV aggregator could allocate the charging
load in different time intervals, in order to realize the peak-
shaving and valley-filling [40], [41]. In this way, we also in‐
clude the smoothing of the total loads as another objective
in our work. Consequently, we consider both the operation
cost of CBSCS and smoothing the load fluctuation by order‐
ly charging as multiple objectives. The formulations of these
objectives and corresponding constraints are presented in
Section IV-A to Section IV-C. Besides, we adopt the Pareto
front to present the solutions derived from our multi-objec‐
tive optimization scheduling model. Therefore, the introduc‐
tion of Pareto front is shown in Section IV-D.

A. Minimizing TOC of CBSCS

Note that the TOC consists of four parts, i. e., the OC of
PV power shortage, the OR of PV power surplus, the SCPP
and the inventory cost of RBs. The detailed description is
presented as follows.
1) OC of PV Power Shortage

The OC of PV power shortage is defined as the cost of
purchasing electric power from external power grid when
the actual PV power input is lower than the pre-determined
one. In order to model this cost, we need to take three fac‐
tors into account: ① the probability when PV power short‐
age occurs; ② the difference between actual power output
and the pre-determined one; and ③ the purchasing price of
electric power. Then, the OC of PV power shortage CL is for‐
mulated as:

C t
L =KL Pr ( )P t

pv <P t
schedule ( )P t

schedule -E
P t

pv <P t
schedule

( )P t
pv (9)

CL =∑
t = 1

T

C t
L (10)

where P t
schedule and P t

pv are the pre-determined PV integration
plan and the actual PV power at time t, respectively;
Pr (P t

pv <P t
schedule) and E

P t
pv <P t

schedule
(P t

pv) are the probability of PV

power shortage and the expected PV power when P t
pv <

P t
schedule, respectively; C t

L is the PV power shortage at time t;
and KL is the purchasing price of electric power.
2) OR of PV Power Surplus

The OR of PV power surplus is defined as the revenue of
selling surplus PV power to external power grid, when the
actual PV power input is higher than the pre-determined
one. For modelling this revenue, we also take three factors
into account: ① the probability when PV power surplus oc‐
curs; ② the difference between actual power output and the
pre-determined one; and ③ the selling price of surplus PV
power to external power grid. Therefore, the OR of PV pow‐
er surplus RH can be formulated as:

Charging Charging Charging

BSS

CBCS

DBs DBs DBs

Dispatching

tt0+2∆Tt0+∆Tt0�∆T t0

Fig. 5. Dispatching of DBs from BSS to CBCS.
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Rt
H =KH Pr ( )P t

pv >P t
schedule ( )E

Pt
pv >P t

schedule
( )P t

pv -P t
schedule (11)

RH =∑
t = 1

T

Rt
H (12)

where Pr (P t
pv >P t

schedule) and E
P t

pv >P t
schedule

(P t
pv) are the probability

of PV power surplus and the expected PV power input when
P t

pv >P t
schedule, respectively; Rt

H is the OR of PV power surplus
at time t; and KH is the price of surplus PV power selling to
the power grid.
3) SCPP

SCPP is defined as the day-ahead cost we should pay, in
case our scheduling plan of PV power input cannot satisfy
the needs corresponding to our battery charging plan. There‐
fore, the SCPP CS can be formulated as:

C t
S = {KL ( )P t

c -P t
schedule P t

c >P t
schedule"tÎ [ ]1T

0 otherwise
(13)

CS =∑
t = 1

T

C t
S (14)

where C t
S is the SCPP at time t; and P t

c is the charging load
in CBCS at time t, which is formulated as:

P t
c =

Qt
c pc

1000
"tÎ [ ]1T (15)

where Qt
c is the quantity of batteries in charging at time t.

4) Inventory Cost of RBs
As for the operation of CBSCS, it is evident that the quan‐

tity of RBs will lead to the inventory cost. For convenience,
we consider the price coefficient of RBs KR as constant.
Hence, the inventory cost of RBs CR can be formulated as:

CR =KRQr (16)

where Qr is the number of RBs, which is shown as follows.

Qr =∑
t = 1

T

Qt
r =∑

t = 1

T

max ( )Qt
Dc -Qt

cd0 (17)

where Qt
cd is the battery that has completed the charging at

time t; and Qt
r is the number of RBs at time t.

Therefore, the TOC of CBSCS C total can be formulated as:

C total =CL -RH +CS +CR =KL Pr (P t
pv <P t

schedule)×
( )P t

schedule -E
P t

pv <Pt
schedule

( )P t
pv -KH Pr (P t

pv >P t
schedule)×

( )E
P t

pv >Pt
schedule

( )P t
pv -P t

schedule +∑
t = 1

T

C t
S +KRQr (18)

B. Smoothing Load Fluctuation

It is noted that the CBSCS is usually connected to the
power grid. Evidently, the charging process will influence
the load fluctuation, the decrease of which can effectively re‐
duce the line loss, optimize the load characteristic, and im‐
prove the facility utilization [42], etc. Therefore, we opti‐
mize the battery input schedule to decrease the load SD for
weakening the adverse effect of charging process. The load
SD is formulated as:

min Pvar =
1

T - 1 ∑t = 1

T é

ë
êê

ù

û
úúP t

local +P t
c -∑

i = 1

T

( )P i
local +P i

c T

2

(19)

where P t
local is the non-charging load in the converting station

at time t.

C. Constraints

1) Charging Facility Constraint
In CBSCS, limited by the number of chargers NOI, Qt

c

should satisfy:

Qt
c £NOI "tÎ [1T ] (20)

2) Constraint on Batteries to be Charged
The number of batteries planned to be charged Qt

ink is no
more than the amount of DBs in the CBCS at time t Qt

dek.

0£Qt
ink £Qt

dek "tÎ [ 1T - Tck ] "k Î [1N ] (21)

3) Charging Mission Constraint
To complete the charging, the number of FCBs Qt

fck

should be equal to the amount of DBs.

∑
t = 1

T

Qt
fck =∑

t = 1

T

Qt
dek "k Î [1N ] (22)

4) Demand Constraint
In order to satisfy the battery swapping demand of users,

the quantity of available batteries in CBSCS should be not
less than the swapping demand.

Qt
fc +Qt

r ³Qt
Dc "tÎ Sd (23)

5) Peak Load Constraint
The charging load of the CBSCS will increase the total

load demand of the power grid, which should be limited due
to the peak load constraint.

P t
c +P t

local £ (1+ β)max (P t
local) "tÎ [1T ] (24)

where P t
local is the charging load of the local demand of the

power grid at time t; and β is load increase coefficient,
which is set to be 0.2 in this paper.
6) Minimum Dispatching Time Interval

From (3), we can observe that the battery swapped in the
last dispatching interval [ t -DTt) is dispatched from BSS to
CBCS, and the charging time allowed is in the time interval
[1T - Tck]. Therefore, in order to complete the charging mis‐
sion, we should make sure that the batteries with the longest
charging time can be completely charged in the final dis‐
patching time interval. Meanwhile, we assume that they are
in class N. Then, we can obtain (25), which is equivalent
to (26).

T - TcN >T -DT (25)

DT > TcN (26)

D. Pareto Front

It should be mentioned that a global optimal solution does
not usually exist, by which all objective functions are simul‐
taneously minimized in a multi-objective optimization prob‐
lem [43]. Consequently, the Pareto methodology is used to
obtain a set of solutions, and they are non-dominated by oth‐
er feasible solutions. Non-dominated solutions are also
called Pareto solutions or Pareto set, and they could mani‐
fest the trade-off among multiple objectives. The reason is
that an objective cannot be further improved without degrad‐
ing at least one of the other objectives, in terms of a Pareto
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solution. Accordingly, the concept of Pareto front is intro‐
duced as follows [43].

In a multiple minimization problem that contains objective
functions fi (i = 12n), where n is the total number of ob‐
jective functions, a solution x1 dominates x2 only if the fol‐
lowing relationships are satisfied, simultaneously.

fi (x1)£ fi (x2) "iÎ 12n (27)

fi (x1)< fi (x2) $iÎ 12n (28)

Otherwise, x1 and x2 are non-dominated, and they com‐
prise Pareto set. Afterwards, the Pareto optimal solutions can
be selected in this set by the comparisons, i.e., no other solu‐
tions correspond to better objective values. Therefore, we ob‐
tain the objective values regarding Pareto optimal solutions,
which comprise the Pareto front as shown in Fig. 6, taking
two objectives as an instance. Evidently, the trade-off be‐
tween different objectives is clearly shown, which could pro‐
vide valuable reference for decision making.

V. MODIFIED NSGA-III

The above multi-objective scheduling of the CBSCS is a
high-dimension and nonlinear optimization problem, while
the strong coupling between FSC and RSC further compli‐
cates its computation. Therefore, we adopt a recently pro‐
posed multi-objective optimization algorithm, i.e., NSGA-III,
which could well handle such a complex, multi-objective
and nonlinear optimization problem. It is noted that the rates
of crossover and mutation are the key parameters for NSGA-
III [31]. The crossover operator could help search better solu‐
tions, since it introduces new solutions into the population.
The mutation operator is used to adjust existing solutions, in
order to obtain better ones. It should be mentioned that the
solutions may be disrupted faster than the selection exploit‐
ing them, when the crossover rate is higher during the final
iterations. Besides, it may bring about the premature conver‐
gence of the algorithm to the suboptimal solutions if the mu‐
tation rate is higher in the initial iterations [44]. Hence, the
rates of crossover and mutation need to be gradually de‐
creased and increased with the progress of iterations, respec‐
tively. In this way, we adopt an adaptive parameter control
method for tuning the rates of crossover and mutation. This
is the main improvements of the modified NSGA-III.

In the following, we present the descriptions of NSGA-III
and the modified version using the adaptive parameter con‐
trol method.

A. NSGA-III

1) Non-dominated Sorting Genetic Algorithm II (NSGA-II)
Since NSGA-III is an enhancement of NSGA-II, first of

all, we briefly introduce this original algorithm [43]. Taking
the tth generation as an example, we denote the parent popu‐
lation and the offspring population as Pt and Qt, respectively,
the sizes of which are both set as N. In order to preserve
elite members, we need to select the best N members from
the combined population Rt =Pt Qt. To realize this issue,
we divide Rt into several non-domination levels, donated as
F1F2...Fl. Then, starting from F1, we accept those more
optimal non-domination levels to compose the new genera‐
tion St. Mostly, the final selected level Fl is partially accept‐
ed, via computing the crowding distance of each member.
Afterwards, we choose those solutions whose crowding dis‐
tances are larger, in order to enhance the evenness degree of
the Pareto front.
2) Determination of Reference Point on a Hyper-plane

Unlike NSGA-II, NSGA-III adopts a number of reference
points, which are placed on a normalized hyper-plane, in or‐
der to guarantee the diversity of non-dominated solutions.
The hyper-plane is equally leaned to all objective axes and
has an intercept of one on each axis [45], [46]. Suppose that
there are p divisions along each objective, the total quantity
of reference points H in an M-objective problem is formulat‐
ed as:

H =
é

ë
ê

ù

û
ú

M + p- 1

p
(29)

where M is the number of objectives. In this paper, we study
a two-objective problem, which means that M = 2.

In addition, we stress that population members are in a
sense associated with each reference point. Since these
points are widely scattered on the entire hyper-plane, we can
infer that the obtained solutions are also likely to be widely
scattered on or close to the optimal Pareto front.
3) Adaptive Normalization of Population Member

First, we need to derive a set of ideal points of the popula‐
tion St by confirming the minimum value z min

i of each objec‐
tive function. Then, we translate all objective values of each
individual in St by subtracting them from z min

i , so that the ide‐
al point of translated St will be a zero vector. Afterwards, we
confirm the extreme point in the jth objective axis via deriv‐
ing the solution (xÎ St) that minimizes the following
achievement scalarizing function with weight vector w =
[w1,w2,,wM]T.

ASF (xw)= max
i = 12M

f 'j ( )x

wi

xÎ Stj = 12M (30)

wi = {10-6 i ¹ j

1 i = j
(31)

where f 'j (x) is the translating objective, i.e., f 'j (x)= fj (x)- z min
j .

Finally, we construct a M-dimensional linear hyper-plane
with these M extreme vectors and normalize objective func‐
tions as follows.

Pareto front

Pareto optimal solution
Feasible solution

Objective 1

Objective 2

Fig. 6. Illustration of Pareto front.
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f n
i (x)=

fi ( )x - z min
i

ai - z min
i

i = 12M (32)

4) Association Operation
As mentioned above, we can associate each population

member with a reference point for obtaining better solutions.
In order to achieve this, a reference line corresponding to
each reference point is defined by connecting the reference
point with the origin. As a result, we associate each popula‐
tion member to the reference point, whose reference line is
closest to this member.
5) Niche-preservation Operation

We first represent the niche count, which is the quantity
of reference-point-associated population members from
Pt + 1 = St /Fl, as ρ j for the j th reference point. Then, we obtain

the
-
j

th
reference point, which is randomly selected from the

reference point set with the minimum ρ j.
If ρ-

j = 0, it means that there is no Pt + 1 member associated

with the reference point
-
j, and there will be two schemes

with
-
j in Pareto front Fl. One is to select the member whose

perpendicular distance from this reference line is the short‐
est. Afterwards, the niche count ρ-

j has to be increased by

one. Otherwise, we should remove this reference point from
the current generation, since Pareto front Fl does not have
any members associated with

-
j.

If ρ-
j ³ 1, meaning that there is at least one member associ‐

ated with
-
j, we should randomly choose a member associat‐

ed with
-
j from front Fl, and the count ρ-

j should be added by

one. Updating niche counts, we repeat the procedure for K
times until all vacant population slots of Pt + 1 is filled up.

B. Adaptive Parameter Control Method

The rates of crossover and mutation, i. e., Pc and Pm, are
fixed in traditional NSGA-III, which may find unsatisfactory
Pareto solutions, as discussed at the beginning of Section V.
Therefore, in order to further enhance the searching perfor‐
mance of NSGA-III and the quality of our solution set, we
decrease and increase the rates of crossover and mutation in
a specific way, shown as follows, respectively.

Pc =
1

α+ β sin f
(33)

Pm =
1

α+ β cos f
(34)

f =
i

Imax

1£ i £ Imax (35)

where Imax is the maximum number of iterations; and the in‐
dices α and β are set to be 1.05 and 0.15, respectively.

C. Solving Process

This subsection presents the solving process in Fig. 7.
Firstly, when the information of battery swapping demands
of electric buses, taxies, loads, and PV samples are obtained,
we conduct the parameter initialization such as the quantity
of chargers, population size, initial crossover, mutation opera‐
tor, etc. Secondly, we generate reference points to construct
the hyper-plane. Thirdly, the population is initialized through

obtaining random values between the upper and lower
bounds of decision variables.

Subsequently, we conduct the iterative optimization until
the number of iterations reaches the maximum value. Firstly,
the rates of crossover and mutation are adaptively controlled.
Secondly, we implement the crossover and mutation opera‐
tion to the parent population, for deriving the offspring popu‐
lation. Thirdly, the parent and offspring populations are
mixed together to obtain the combined ones. After that, we
normalize the combined population.

Since the optimal individuals need to be selected, we con‐
duct non-dominated sorting to the normalized population to
derive several non-domination levels. Afterwards, each popu‐
lation individual is associated with a reference point to ob‐
tain a better solution. It is noted that there still exist several
vacant slots in the new parent population, and they are filled
via updating the niche counts. In the end, the Pareto front
and the optimal Pareto solutions are gained. Hence, the oper‐
ator of CBSCS could use the fuzzy decision-making method
[47], in order to obtain the plans of battery charging and PV
power input.

VI. CASE STUDY

A. Case Description

The multi-objective optimization scheduling model of CB‐
SCS is processed by parallel computing for enhancing the
processing speed, using the Parallel Computing Toolbox of
MATLAB [48]. The optimization procedure is on a worksta‐

Start

BSS battery swapping information

Batteries to be
charged from BSS

to CBCS

Batteries charged
from CBCS to

BSS

Parameter
initialization

Reference point
generation

Population
initialization

Adaptive
parameter control

Crossover
and mutation

Population
normalization

Non-dominated
sorting

Association operation

Is it
the maximum 

iteration?

Pareto front
Y

N

End

Load
information

PV sampling
information

Niche-preservation
operation

Decision of battery
charging plan and PV

power input plan

Fig. 7. Flow chart of solving process in operation of CBSCS with PV inte‐
gration.
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tion with an Intel® Core i7 (2.60 GHz, 64 bit) processor, 16
GB of RAM, and MATLAB R2017b. In this case, CBSCS is
connected to a distribution network. In the CBCS, the num‐
ber of chargers NOI is 1000. Meanwhile, the charging effi‐
ciency is set to be 0.9. The dispatching time interval is from
08:00 to 07:00 of the next day, as shown in Fig. 8. CBCS
provides charging service to three bus lines, and their opera‐
tion time intervals are all from 05:30 to 23:00. The average
energy consumption per kilometer eav is 1.2 kWh/km. Mean‐
while, the peak periods are from 07:00 to 09:00 and 17:00
to 19:00. The mileage per circle and the dispatching interval
are 20 km and 6 min, respectively. The average speed in
peak and normal periods are 15 km/h and 30 km/h, respec‐
tively. In addition, there are 4 batteries in each vehicle, and
30 buses in each line.

Regarding the operation of taxi, we set the total quantity
as 1200. There are 1000 taxies whose drivers are shifted ev‐
ery 24 hours and 200 taxies every 12 hours. The capacity of
each battery Cr is 40 kWh. The lower and upper bounds of
SOC are set to be 0.2 and 0.9, respectively. In addition, bat‐
teries are divided into two categories and their charging time
is set as 1 hour and 2 hours, respectively. For the dispatch‐
ing time interval DT, we set it to be 4 hours.

In addition, PV power is also integrated into CBSCS to
satisfy the charging load demand. Concretely speaking, the
actual PV power can be obtained by forecasting values and
forecasting errors. Meanwhile, the latter is based on the Nor‐
mal distribution N (0σ 2

t ), where σ t is denoted as the SD and
set as 8% of the forecasting value at time t. The forecasting
values of PV power Ppre are set and shown in Fig. 9. Further‐
more, KL and KH are set to be 10 and 20 $/MWh, respective‐
ly.

B. Pareto Front Comparison

In order to better show the effectiveness of modified NS‐
GA-III, we compare it with conventional NSGA-III, NSGA-

II and some frequently used heuristic algorithms, i.e., multi-
objective particle swarm optimization (MOPSO) [49], multi-
objective differential evolution algorithm (MODE) [50], and
multi-objective evolutionary algorithm based on decomposi‐
tion (MOEA/D) [51]. For these six algorithms, their popula‐
tion sizes are all set as 100. Meanwhile, the iteration num‐
bers of these six algorithms are all set to be 6000. For NS‐
GA-II, the distribution indices for crossover and mutation op‐
erators are both set to be 20, respectively. In conventional
NSGA-III, the rates of crossover and mutation are set as 0.9
and 0.1, respectively, while in the modified NSGA-III, we
set the initial rates of crossover and mutation to be 0.95 and
0.83, respectively. In addition, for MOPSO, the personal and
global learning coefficients are both set to be 1. Moreover,
in the MODE, the amplification and crossover factors F and
CR are set to be 0.8 and 0.1, respectively. Meanwhile, in the
MOEA/D, the size of neighborhood is set to be 20. What is
more, the computation time of our modified NSGA-III is
about 1.4 hours. Note that the studied multi-objective opti‐
mization scheduling model is based on day-ahead schedul‐
ing, i. e., 24 hours, which means that the computation time
of our proposed algorithm would be acceptable.

The Pareto fronts obtained from these algorithms are
shown in Fig. 10(a). Note that the obtained Pareto fronts are
derived from the best ones in 20 independent experiments
with respect to each optimization algorithm. It is evident
that the modified NSGA-III finds more convergent optimal
Pareto solutions, as its Pareto front is under the ones gained
by the conventional NSGA-III, NSGA-II, and other heuristic
algorithms. For instance, the modified algorithm obtains the
least values of TOC and the SD of load, which are ¥39881
and 0.19 MW, respectively. However, such values found by
NSGA-II are ¥40926 and 1.52 MW, respectively, which
means that it performs much worse than the modified NS‐
GA-III. Also, the points in the Pareto front with respect to
NSGA-II are not evenly distributed.
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Fig. 8. Number of DBs in CBCS in different time intervals.
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Fig. 9. Forecasting values of 24-hour PV power set.
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Fig. 10. Comparison of Pareto fronts and hypervolume (HV) with different
algorithms. (a) Pareto fronts of TOC and load SD. (b) Values of HV.
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In addition, we use detailed metric comparison to show
the superiority of the modified NSGA-III, i.e., HV [52], the
spacing index, and the mean Euclidian distance (MED) [53].
The index of HV can well evaluate the quality of the Pareto
fronts obtained by multi-objective optimization algorithms. It
is calculated by the volume covered by the non-dominated
solutions, with respect to a reference point in the objective
function space. When all objectives are minimized and the
values of reference point are chosen as larger ones, the high‐
er value of the HV means the better quality of the obtained
Pareto front [52]. The spacing index measures how evenly
the points are distributed in the Pareto front, and MED is
the averaged Euclidian distance between each point and the
selected reference one [53].

In this paper, we set the reference point as (¥60000, 4
MW). The convergence analysis and the metric comparison
results are obtained and shown in Fig. 10(b) and Table II, re‐
spectively.

It could be found that with the iterative process, the val‐
ues of HV become larger and keeps relatively stable after Pa‐
reto solutions are converged. In addition, from Table II, the
index of HV with respect to the modified NSGA-III is the
largest, i.e., ¥73442, which further verifies that it obtains the
best Pareto front, compared with those of other optimization
algorithms. Also, it corresponds to the largest MED, which
means the Pareto solutions regarding this algorithm are the
most convergent. Indeed, it is worth mentioning that the val‐
ue of spacing index derived by the modified NSGA-III, i.e.,
1.5874×103, is larger than those of conventional NSGA-III,
MOPSO, and MOEA/D. However, we could obviously see
that the Pareto front of the modified NSGA-III is obviously
more convergent.

The reason why the modified NSGA-III performs better
than the conventional one is that we adaptively tune the
rates of crossover and mutation. The fast non-dominated sort‐
ing dominates the time complexity of NSGA-II, i.e., O(MN2)
[47]. In terms of NSGA-III, the non-dominated sorting and
associate operation dominate the time complexity of NSGA-
III [31]. The non-dominated sorting in NSGA-III requires
O(N 2lgM - 2 N) for each generation, and the associate opera‐
tion needs O(MN2). Therefore, the time complexity of NS‐
GA-III is max{O(N 2lgM - 2 N), O(MN2)}. For the modified NS‐
GA-III, we adopt the adaptive parameter control method for
tuning the rates of crossover and mutation. In this way, the
time complexity of this modification is O(N), which is negli‐

gible compared with max{O(N 2lgM - 2 N), O(MN2)}. Conse‐
quently, the time complexity of the modified NSGA-III is
the same as that of the conventional NSGA-III. In this way,
it can be seen that the modified algorithm obtains a better
Pareto front due to the adaptive tuning of the rates of cross‐
over and mutation, without increasing time complexity com‐
pared with NSGA-III.

Therefore, according to the above discussion, it is conclud‐
ed that the modified NSGA-III can well solve the multi-ob‐
jective scheduling problem in the proposed CBSCS, and the
optimal Pareto solutions could be provided for the decision
making of operators.

C. Solution Analysis

The final scheduling solution, i. e., the decision solution
could be selected by the fuzzy decision method with equal
weights corresponding to the two objectives. In this subsec‐
tion, we compare the performance of the decision solution
with two extreme solutions. Note that the extreme solutions
are the optimal solutions for the two individual objectives of
TOC and load SD, respectively. Therefore, we denote the de‐
cision solution, the extreme solutions of optimal TOC, and
optimal load SD as the solutions A, B, and C, respectively.

As shown in Table III, we present the objective values re‐
garding the decision solution and extreme solutions. In addi‐
tion, the four components of TOC and the electricity load in‐
formation regarding these solutions in each time interval are
shown in Figs. 11-15. Note that the electricity load is the
sum of non-charging and charging loads in (18), i.e., P t

load =
P t

local +P t
c. Besides, Table IV presents load values in each

time interval, and the load SDs of solutions A, B, and C can
be obtained and presented.

In Figs. 11-14, we can observe that the operation costs of
solution A in the 2nd-5th time intervals and those of solution
B in the 1st-6th, 8th and 24th time intervals are obviously less
than those of solution C. Moreover, we find that the OC of
power shortage and the SCPP usually occur at night, since
the PV power is 0 during this time. On the contrary, the OR
of PV power surplus mostly occurs in the daytime. Mean‐
while, it could be noticed that the OCs of power shortage of
solution A in the 1st, 2nd, 20th, and 22nd time intervals and
those of solution B in the 1st, 2nd, 6th, 21st, and 22nd time inter‐
vals are obviously less than those of C. Furthermore, the
ORs of power surplus of Solution B in the 8th time interval
are much more than those of solution C. Regarding the
SCPPs of solutions A and B, we could observe that they are
less in the 3rd-5th, 23rd, and 24th time intervals, compared with
the SCPP of solution C.

TABLE II
METRIC COMPARISON AMONG PARETO FRONTS IN FIG. 10

Algorithm

Modified NSGA-III

NSGA-III

NSGA-II

MOPSO

MODE

MOEA/D

HV (￥)

73442

60790

43351

39600

43723

43456

Spacing index

1.5874×103

1.1166×103

3.5308×103

7.8240×102

2.9735×103

7.8800×101

MED

1.8108×104

1.7568×104

1.5322×104

1.5957×104

1.5597×104

1.5521×104

TABLE III
OBJECTIVE VALUES REGARDING DECISION AND EXTREME SOLUTIONS

Solution

Solution A

Solution B

Solution C

CL

0.4571

0.5064

0.4251

RH

0.2708

0.2715

0.2756

CR

3.1952

3.1810

3.4608

CS

0.7361

0.5723

0.8156

TOC
(￥)

41176

39881

44260

Load SD
(MW)

1.09

2.36

0.19
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Fig. 14. Number of RBs with different solutions. (a) Solution A. (b) Solution B. (c) Solution C.
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Fig. 12. ORs of surplus with different solutions. (a) Solution A. (b) Solution B. (c) Solution C.
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In addition, it is worth mentioning that the inventory cost
of RBs is fixed in the day, since the scheduling of battery
charging is for the day-ahead time window. Therefore, we
merely need to consider the maximum value of RBs in each
time interval. As shown in Fig. 14, we also show the num‐
ber of RBs with respect to different solutions. It can be no‐
ticed that the numbers for solutions A and B are smaller
than those of solution C. Accordingly, if the decision makers
prefer to minimize the cost, they should choose the solution
B, as this solution could obtain the least TOC, i.e., ¥39881.
However, the corresponding load SD is as high as 2.36 MW,
which is the largest among the mentioned solutions, which
means the load fluctuation is not well mitigated for solu‐
tion B.

D. Uncertainty Analysis

Subsequently, in order to better present the significance of
considering the uncertainty of PV power, we conduct com‐
parisons of the optimal Pareto fronts in two cases. Concrete‐
ly speaking, one is that we obtain the uncertain solution set
when σ = 8%. The other is that we use σ = 0.01% to obtain
the quasi-deterministic solution set. It should be mentioned
that we could not set σ = 0, which would lead to the issue
that the OC of PV power shortage and the OR of PV power

surplus in (18) are meaningless.
It is also noted that we test the performance of quasi-deter‐

ministic solution set, i. e., deriving the values of TOC and
load SD with the PV power samples when σ = 8%, in order
to demonstrate it is necessary to consider the uncertainties in
our work. In other words, if the performance of quasi-deter‐
ministic solution set is worse in the uncertain environment,
we could verify this issue.

Figure 16 shows the two Pareto fronts regarding the uncer‐
tain and the quasi-deterministic solution sets, respectively. It
is evident that the Pareto front of the uncertain solution set is
better. The range of Pareto front regarding quasi-deterministic
solution set is [¥40578, ¥46918] and [1.733 MW, 3.04 MW],
larger than [¥39881, ¥4.4260] and [0.19 MW, 2.36 MW] for
the uncertain solution set. Concretely speaking, the quasi-de‐
terministic solution set could only obtain the optimal TOC
as ¥40578, the performance of which is obviously worse
than that of the uncertain solution set, i. e., ¥39881. Analo‐
gously, the optimal load SD of the uncertain solution set, i.e.,
0.19 MW, is also outperformed, compared with that of the
quasi-deterministic solution set. Hence, we verify that it is
necessary for the dispatchers to consider the uncertainty of
PV power, which could help the system adapt the uncertain
situation.

VII. CONCLUSION

In this paper, we have proposed a multi-objective optimi‐
zation scheduling model for CBSCS with PV integration.
The proposed model has realized the interaction among the
battery swapping of users, the battery charging, and the CB‐
SCS. Meanwhile, it simultaneously optimizes the TOC and
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TABLE IV
LOAD VALUES WITH DIFFERENT SOLUTIONS IN EACH TIME INTERVAL

Time

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

10:00

Pt
local (MW)

Solution
A

51.4

52.6

53.4

51.8

52.8

52.3

53.3

53.1

53.1

52.9

52.4

52.4

Solution
B

45.6

51.5

53.6

51.7

53.2

53.1

53.8

53.6

53.8

53.6

52.1

52.1

Solution
C

52.1

52.2

52.2

51.9

52.3

52.1

52.2

52.2

52.2

52.1

52.1

52.1

Time

20:00

21:00

22:00

23:00

24:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

Pt
local (MW)

Solution
A

52.4

52.4

52.2

52.7

51.2

50.7

50.5

49.2

50.2

50.8

51.1

51.9

Solution
B

51.9

52.0

51.4

52.3

50.5

48.6

50.5

49.0

47.6

47.1

47.8

52.1

Solution
C

52.0

52.1

51.9

52.3

52.0

52.0

52.5

51.5

52.1

51.8

51.9

52.0
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the load SD. Then we use a modified NSGA-III to solve the
proposed scheduling model. Simulation studies have verified
the effectiveness of the proposed model and the modified al‐
gorithm. The key conclusions we have found are as follows.

1) It is necessary to consider multi-objective operations of
CBSCS by comparing the final decision solution with ex‐
treme solutions regarding individual objectives. That is, the
balanced consideration of multiple objectives should be tak‐
en into account.

2) The multi-objective optimization algorithm of the modi‐
fied NSGA-III outperforms conventional NSGA-III and NS‐
GA-II, as it can obtain a better Pareto front measured by
metric comparisons.

3) We have also found the uncertainty of PV power
should be considered in the operation of CBSCS, compared
with the quasi-deterministic solution set.

However, there still exist some limitations of our research.
1) The probability distribution we select to model the fore‐

casting error of the PV power is the Normal distribution,
and more advanced distribution may be needed for fitting
the forecasting error.

2) Our work is based on day-ahead scheduling, and can‐
not well consider the emergent situation.

In our future work, we will consider degradations of bat‐
teries, and investigate their impacts on the operation of the
CBSCS with PV integration. Meanwhile, we will adopt
more advanced methods to model the forecasting error of
PV power. What is more, a real-time scheduling model will
be taken into account in future work.
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