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Abstract——Accurate regional wind power prediction plays an
important role in the security and reliability of power systems.
For the performance improvement of very short-term predic‐
tion intervals (PIs), a novel probabilistic prediction method
based on composite conditional nonlinear quantile regression
(CCNQR) is proposed. First, the hierarchical clustering method
based on weighted multivariate time series motifs (WMTSM) is
studied to consider the static difference, dynamic difference,
and meteorological difference of wind power time series. Then,
the correlations are used as sample weights for the conditional
linear programming (CLP) of CCNQR. To optimize the perfor‐
mance of PIs, a composite evaluation including the accuracy of
PI coverage probability (PICP), the average width (AW), and
the offsets of points outside PIs (OPOPI) is used to quantify the
appropriate upper and lower bounds. Moreover, the adaptive
boundary quantiles (ABQs) are quantified for the optimal per‐
formance of PIs. Finally, based on the real wind farm data, the
superiority of the proposed method is verified by adequate com‐
parisons with the conventional methods.

Index Terms——Regional wind power, probabilistic prediction,
nonlinear quantile regression, composite evaluation, adaptive
boundary quantiles.
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Weight of dynamic difference

Weight of static difference

Weight of meteorological difference

Difference between adjacent explanatory vari‐
ables

Wind speed in numerical weather prediction
(NWP)

Nominal proportion of prediction intervals (PIs)

Nominal proportion of upper quantile

Nominal proportion of lower quantile

Average width of PIs with α

Absolute value of proportion deviation

Correlation coefficient

Wind farm capacity

Distance of dynamic difference

Distance of static difference

Distance of weighted multivariate time series
motifs (WMTSM)

Distance of meteorological difference

Composite optimization considering offsets of
points outside PIs (OPOPI), sharpness, and reli‐
ability

Output function of extreme learning machine
(ELM)

Common indices

PI in a time point with α

Interval score with α

Spearman correlation coefficient

Weighting coefficient

Number of wind farms

Number of input variables in each sample

Upper quantile of PI with ᾱ

Lower quantile of PI with -α
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I. INTRODUCTION

WITH the increasing capacity of renewable energy, the
randomness and dynamic fluctuations of electrical

magnitudes set new requirements for power system security,
efficiency, and flexibility [1]-[3]. More specifically, as wind
power production usually suffers from lower controllability
and higher variability, compared with conventional power
generation, considerable uncertainties in power system opera‐
tion are introduced [4], [5]. The very short-term wind power
prediction within a few hours is therefore of primary impor‐
tance in order to derive a dispatching plan that maintains a
high-level reliability and reduces the operation cost of the
power system [6], [7].

Based on the result of point prediction, prediction inter‐
vals (PIs) can be utilized for quantification of uncertainties
within prescribed confidence level [8], [9]. In [10], PIs were
quantified based on point prediction and conditional probabil‐
ity considering Gaussian distribution. In [11], a bootstrap-
based extreme learning machine (BELM) was applied to
quantify PIs. As analyzed in [12], the performance of the
parametric methods was directly affected by the accuracy of
error assumption. Thereafter, the nonparametric PIs should
be considered. Linear quantile regression (LQR) was pro‐
posed for nonparametric PIs efficiently, which directly quan‐
tifies the boundary quantiles as bounds [13]. To improve the
forecasting performance, the nonlinear quantile regression
(NQR) combining extreme learning machine (ELM) and
LQR was proposed [14]. ELM makes the inputs nonlinear
for better regression analysis. In addition, due to the high ef‐
ficiency of ELM which is a feed-forward neural network,
the NQR ensures both accuracy and efficiency based on lin‐
ear programming (LP). In [15], coefficient penalty and sensi‐
tivity analysis were applied to improve the performance of
quantile regression (QR) based method. The sensitivity analy‐
sis was performed to quantify the optimized sharpness for
the improved overall performance. However, overall perfor‐
mance includes not only the reliability and sharpness, but al‐
so the offsets of points outside PIs (OPOPI) [11]. Hence, it
is necessary to incorporate OPOPI into the objective func‐
tion to optimize the boundary quantiles. Besides, to improve
the robustness and flexibility of PIs, the nominal proportions

of boundary quantiles should be optimized, rather than the
fixed nominal proportions in the conventional QR based
method, which are symmetric on both sides of the median
nominal proportion.

With the clustering algorithm of numerical weather predic‐
tion (NWP), the similarity of samples was used to improve
the accuracy of point prediction [16], [17]. In [18], a self-or‐
ganized map (SOM) was applied to cluster the inputs based
on weather stability, the uncertainty of point prediction mod‐
el and NWP. Then, radial basis function neural networks
(RBFNNs) were used for the predictions with high reliabili‐
ty. In [19], PV power forecasting accuracy based on RBFNN
was improved by clustering considering the variable impor‐
tance. In [20], data were divided into nonlinear parts of
wind power by SOM. Based on a novel fuzzy clustering
method, the periodicities of load time series were studied in
[21]. The clustering techniques described in [19] - [21] im‐
proved the accuracy of model construction. The conventional
clustering-based methods quantified the similarity or dis‐
tance to obtain the appropriate samples for training, and re‐
moved the samples with low correlation to improve the per‐
formances of the deterministic prediction and related PIs
[10], [16], [17]. To further enhance the accuracy of samples’
utilization, all samples should be weighted. That is, samples
with high correlation have a noticeable influence, while the
samples with low correlation have a small influence. By
weighting training samples, all their information is taken in‐
to account to avoid the missing of sample information for
the QR-based nonparametric PIs, which directly quantifies
the output coefficients based on optimal performance of PIs.

The above-mentioned methods were applied for power pre‐
diction of a single wind farm. For the dispatching function,
however, the significance of regional power prediction is
much higher than that of a single wind farm. In [22] and
[23], NWP and spatial distribution were combined to ana‐
lyze the regional wind power generation. In [24], according
to the correlation between the output of a single wind farm
and that of the cluster, and the accuracy of the point predic‐
tion, representative wind farms were selected and their
weights were quantified. To further improve the accuracy of
regional output prediction, the analysis of spatio-temporal
correlation (STC) was performed [25]. Markov chain-based
algorithm via graphical spatio-temporal learning-based mod‐
el was used in [26]. In general, the temporal correlation re‐
flects the time series characteristics of the single wind farm
generation or the regional generation, and at the same time,
the spatial correlation reflects the changes in similarity and
synchronicity of generations of wind farms. In [27], the
smoothing effect of regional wind power output was consid‐
ered. The prediction method of regional wind power based
on wind speed was proposed by weighting the STC of histor‐
ical sampling points. The wind speeds of several wind farms
were used to quantify the spatial correlation at a given mo‐
ment, and the time interval between the observations and the
outputs to be predicted was used to quantify the temporal
correlation. The wind speed at the time of prediction ob‐
tained from NWP was used to cluster the wind power or
quantify the correlation of wind farms [28]. In [29], the
changing trend of time series was used to cluster the inputs.
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In this way, the process of power time series can be repre‐
sented, although a simple trend is frequently not enough,
and the magnitude of fluctuation would be needed. Besides,
similarity analysis should be also based on the weighted vari‐
ables in subsequences. Therefore, a clustering analysis
weighting dynamic similarity, static similarity, and meteoro‐
logical similarity appears to be highly promising.

Hence, based on the aforementioned literature, a probabi‐
listic prediction method of very short-term PIs for regional
wind power based on composite conditional nonlinear quan‐
tile regression (CCNQR) is proposed in this paper, with the
following main contributions:

1) A hierarchical clustering method based on weighted
multivariate time series motifs (WMTSM) is used to analyze
the static characteristic, dynamic characteristic and meteoro‐
logical characteristic of regional wind power.

2) Based on the clustering analysis, the correlation coeffi‐
cients are formulated as the weights for the accuracy of sam‐
ples’ utilization used to optimize the cost function of condi‐
tional LP (CLP). In addition, to further improve the perfor‐
mance of PIs, the composite evaluation by considering reli‐
ability, sharpness, and OPOPI, combined with the adaptive
boundary quantiles (ABQs) is studied.

The rest of the paper is organized as follows. In Section
II, the proposed WMTSM and CLP are described. Besides,
combined with the ABQs, composite optimization consider‐
ing reliability, average width (AW), and OPOPI is presented.
The model construction process is demonstrated in Section
III. Case studies are presented in Section IV, which illustrate
the effectiveness of the proposed method. Conclusions are
drawn in Section V.

II. PROPOSED METHODOLOGIES

The flowchart of the proposed method is illustrated in
Fig. 1, which has three primary methodologies, including the
WMSTM-based clustering, CLP, and composite optimization
considering ABQs.

A. Analysis of WMTSM

To improve the accuracy of hierarchical clustering by cal‐
culating the similarity based on Euclidean distance [30], not
only the wind speed in NWP, but also the process and fluctu‐
ation of wind generation should be considered. In the hierar‐
chical clustering method based on WMTSM, the dynamic
difference is quantified based on the variation of wind pow‐
er time series, while the static distance is quantified based
on the regional wind power time series, and the meteorologi‐
cal distance is quantified based on the wind speed. The cor‐
relations between input variables and output variables are al‐
so considered.

The process of WMTSM for sample distance is listed as
follows.

1) According to the regional wind power time series, the
matrix X is defined as:

X =

é
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ê
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(1)

2) Due to the complex correlation between the input vari‐
ables and output variables, the Spearman correlation analysis
can be utilized to quantify the correlation between x* (i) and
Y [31], [32]. x* (i) is defined as:

x* (i)=[xi1 xi2 ... xiT] (2)

3) For the mth input vector [xm1xm2...xmN], the differ‐
ence between the adjacent explanatory variables represented
by [υm1υm2...υmN - 1] is utilized to quantify the fluctuation
of adjacent variables. υmi is defined as:

υmi = xmi+ 1 - xmi i = 12...N - 1 (3)

4) Based on the above analysis, the distance of WMTSM
between the mth input vector and the nth input vector is for‐
mulated as:

DT = ∑
i= 1

N

k 2
i (xmi - xni)

2 (4)

DD =∑
j = 1

N - 1

[(ki + ki+ 1)(υmj - υnj)]
2

(5)

Dω =∑
i= 1

M

Capi × |ωm -ωn | (6)

DWMTSM = λT DT + λD DD + λωDω (7)

The hierarchical clustering method based on WMTSM
aims at weighting DT, DD, and Dω to quantify the distances
between samples. Capi can be used as the weighting coeffi‐

Calculation of PIs and evaluation criteria

Given wind power observations and NWP

Quantification of WMSTM

CLP for each cluster of samples

Are the optimal regulation 
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N

Hierarchical clustering 

Deterministic prediction and its error evaluation
 

Are the optimal parameters
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PI construction based on cluster labels
 of testing samples
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and nominal proportions of upper quantiles
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End

Fig. 1. Flowchart of proposed method.
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cient of wind speed for each wind farm in the regional wind
farms [27]. λT, λD, and λω are optimized to balance different
characteristics according to the accuracy of deterministic pre‐
diction. ki is used to consider the importance of input vari‐
ables and their effect on output differently. That is, the input
variables with higher correlations play a greater role in clus‐
tering of input vectors than those with lower correlations to
enhance the effectiveness of clustering. The quantification of
the WMTSM distance leads to the hierarchical clustering
method.

With WMSTM analysis, the correlation of samples C is
defined as:

C = exp(-DWMSTM) (8)

B. Conditional NQR

In NQR [14], the output weights are optimized by LP to
minimize the cost function. All training samples are equally
weighted. Herein, to weight the samples in training of each
cluster, CLP for output weights of one cluster is obtained
from

min
wα

-
ξ iα-ξ iα
∑
αÎ{ }-α ᾱ
∑
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T

Ci
é
ë
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³ 0

"α"i (12)

- -ξ iα
£ yi - g(xiwα)£ ξ̄iα "α"i (13)

In CLP, different correlations are utilized for the samples
from different clusters. Meanwhile, the samples with low
correlations are also considered, instead of being simply re‐
moved. Comprehensive use of the samples with weighting
coefficients is studied to improve the accuracy of samples’
utilization. The magnitude of influence is directly deter‐
mined by the correlations which are quantified by calculat‐
ing the distances between the cluster centers.

C. Performance Optimizations of PIs

The performance of PIs is evaluated considering both reli‐
ability and overall performance based on the deviation
|ACE | between the PI coverage probability (PICP) and PI
nominal confidence (PINC), and the interval score, respec‐
tively [11]. The PICP is defined as:
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1
Tp
∑
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Tp
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(15)

The sharpness is defined as:
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(xi) (17)

To comprehensively evaluate the performance of PIs in‐
cluding the sharpness, the interval score [10] - [15], [33] is
formulated as:
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As analyzed above, the interval score is a significant crite‐
rion for the overall performance of PIs. In (19), the interval
score is quantified by the average score of all PIs. As shown
in (18), when the actual points are outside the PIs, the larger
the actual point deviating from PIs, the lower the score.
Thus, to evaluate the overall performance, not only the reli‐
ability and sharpness, but also the OPOPI should be consid‐
ered in the cost function of model training. The cost func‐
tion of CCNQR based on CLP and composite optimization
is described as (20), whose constraints contain (10)-(13) and
(21)-(28).
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When the actual value lies in the PI, Fi denotes the width
of the ith PI. Otherwise, Fi can be quantified based on dis‐
tances between the bounds and yi, reflecting both the sharp‐
ness and OPOPI. By considering Fi, the overall performance
of PIs can be directly optimized based on the efficient LP. Fi

is defined as:

Fi =

ì

í

î

ïï
ïï

W (xi)+ 2(g(xiw-α
)- yi) yi < g(xiw-α

)
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The conventional PIs quantify the nominal proportions of
boundary quantiles based on (30) and (31).

ᾱ= 1-
1- α

2
(30)

-α=
1- α

2
(31)
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To further improve the accuracy of boundary quantiles,
ABQs are studied to optimize the bounds of PIs. The nomi‐
nal proportion of upper quantile can be optimized by meta-
heuristic algorithm adaptively, and the nominal proportion of
lower quantile is quantified by:

-α= ᾱ- α (32)

s.t.

α£ ᾱ£ 1 (33)

0£ -α£ α (34)

III. MODEL CONSTRUCTION

In the proposed method, the training samples are clustered
based on WMTSM. Then, with the clustering coefficients of
training samples for CLP and composite optimization,
CCNQR is performed. The training samples from the same
cluster have the same Ci in (20). Particle swarm optimiza‐
tion (PSO) [34] is used twice to obtain the optimal coeffi‐
cients. PSO is applied first to find the optimal λD, λT, and λω
of WMTSM. Considering both the optimization effectiveness
and computation efficiency, the deterministic prediction error
is used as the cost function. PSO is used again to optimize
K and ᾱ according to the reliability and overall performance
of PIs in CCNQR. The major steps of the proposed method
are as follows.

Step 1: initialize the coefficients of NQR and PSO, and
set the confidence of PIs. Import and normalize the dataset
for training and testing samples.

Step 2: quantify the correlations between outputs and vari‐
ables of input vectors.

Step 3: for each iteration in the search space of PSO for
optimal λD, λT, and λω, based on WMTSM, the prediction er‐
ror is utilized as the objective of the cost function.

Step 4: obtain the optimal coefficients and the clustering
labels of training samples, and quantify the correlation coeffi‐
cients of clusters as the weights of Ci in CLP.

Step 5: for each resolution in the search space of PSO to
obtain the optimal K and nominal proportions of boundary
quantiles for each cluster, based on the optimization function
of CCNQR given in (10)-(13), (20)-(28), and (32)-(34), the
quantification considering interval score and reliability is per‐
formed.

Step 6: based on the application result of CCNQR, the out‐
put weights of upper and lower quantiles in each cluster in
the training process are calculated.

Step 7: by comparing the weighted distances between the
inputs of testing samples and each cluster center, the labels
of testing samples are obtained. Then, with the result of the
training process, PIs can be quantified.

Remark 1: different from the high-fluctuating generation
of single wind farm [17], [24], [35], the regional output is
smoother [36]. Compared with the smoothing method which
weights the historical regional wind power based on NWP
[27], the proposed method uses data of NWP and historical
power output for clustering. At the same time, it only uses
the historical power observations as the input of the predic‐

tion model, less affected by NWP errors [11]. Unlike the
conventional similarity analysis [16], in the hierarchical clus‐
tering method based on WMTSM, not only the similarity of
the historical power and NWP, but also the dynamic correla‐
tion and weights of variables are considered.

Remark 2: different from LP [14], CLP considers the clus‐
tering coefficients which improve the accuracy of samples’
utilization. Regarding the testing samples, the training sam‐
ples of the same cluster have greater impact, while the sam‐
ples from different clusters have less impact. Hence, instead
of removing those low-impact samples, they are utilized
with low correlation coefficients. The weights of training
samples are adjusted based on the correlation coefficients.
The CLP in the proposed method adopts an offline model,
which can actually be used as a reference for the online
model.

Remark 3: based on the criterion of interval score and con‐
sidering |ACE | in a reasonable range, the coefficient K in
(20) is utilized to regulate different characteristics for the op‐
timization of PIs. The sharpness and OPOPI are both consid‐
ered in the composite optimization of CCNQR. This helps to
fine-tune the PIs for better performance. Different from the
conventional QR cost function that only considers the cover‐
age accuracy of PIs [14], or the performance considering the
reliability and sharpness [15], [37], the composite cost func‐
tion of the proposed method directly and effectively quanti‐
fies the output weights by LP to obtain the optimal reliabili‐
ty and overall performance of PIs. Besides, ABQs can fur‐
ther improve the flexibility and robustness of PIs. The con‐
ventional values of K and ᾱ can be set as the initial values
to minimize the possibilities of low efficiency and local min‐
imum in PSO.

IV. CASE STUDIES

A. Introduction of Dataset

To fully verify the effectiveness of the proposed methodol‐
ogies, two datasets are considered, which are given as fol‐
lows.

1) Dataset 1: the wind power data of 20 wind farms locat‐
ed in the northeast of China with 15-min resolution covering
the first half of 2019 and the corresponding wind speed data
at 100 meters are studied. The data of the last 4 days in
each month are used for testing and the data of the latest 11
days are used for training.

2) Dataset 2: the wind power data of 7 wind farms in
Global Energy Forecasting Competition 2012 (GEF‐
Com2012) with hourly resolution covering the second half
of 2010 and the corresponding wind speed data at 10 meters
are studied [38]. The data in June-August, September-Octo‐
ber, and November-December are studied, respectively. The
data of last 16 days are used for testing while the rest are
set for training.

The wind speed at the time of wind power generation out‐
age is set to be 0 in order to improve the accuracy and syn‐
chronization between the NWP data and wind farm outputs
according to the outage plans. Historical power time series
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with fewer zero output is selected to study the performance
of PIs in each month. The results of different probabilistic
prediction methods are then compared, and the datasets are
used after normalization. The regional wind power as well
as its variation is influenced by the nature of the wind farm
itself, the different seasons, and the periods of time, i.e., re‐
cent observations of wind power output are more important
than those observed earlier [27]. Besides, average offset
(AO) is utilized to reveal the degree of OPOPI. The PIs with
PINCs of 90% and 95% are obtained and evaluated, respec‐
tively.

B. Numerical Comparison of Clustering Methods

For numerical comparison of clustering-based determinis‐
tic predictions via ELM, the hourly-ahead prediction errors
of the WMTSM-based method, K-means based method [39],
and the conventional hierarchical clustering based method
[30] for monthly regional wind power covering datasets 1
and 2 are shown in Fig. 2. Mean absolute error (MAE) and
root mean squared error (RMSE) are used as the criteria of
prediction performances [11]. It can be observed from Fig. 2
that the WMTSM-based method has the best accuracy.

C. Numerical Analysis of Coefficients

In this subsection, the data in January and June from data‐
set 1 and the data in September-October and November-De‐
cember from dataset 2 are utilized to study the performance

of PIs based on the weighting coefficients and the nominal
proportions of upper quantiles.

The -|ACE| and interval scores according to the nominal
proportions of upper quantiles in ABQs and weighting coeffi‐
cients in the training process are shown in Figs. 3-6 to re‐
veal the performances of PIs. In these figures, the closer to
zero the -|ACE| or interval score, the better the reliability or
overall performance of PIs. ᾱ has resolutions of 0.25% and
0.125% with PINCs of 90% and 95%, respectively, where K
has resolution of 0.0001. For the PIs based on dataset 1, ᾱ
ranges between α and 1, and K ranges from 0 to 0.004.

Figures 3 and 4 show the performances of PIs with 1-hour
look-ahead time. The optimal values of (ᾱ, K) are (95.25%,
0.0004), (97.375%, 0.0002), (95.5%, 0.0005), and (97.625%,
0.0007), respectively. In the conventional method [14], the
proportion of upper quantile is set according to (30), and the
weighting coefficient is set to be 0. Actually, the optimal co‐
efficients are not the same as those in the conventional meth‐
od. However, the values of conventional coefficients which
are near the optimal values can be considered as the initial
values of solutions to improve the computational efficiency.

Thus, for the PIs based on dataset 2, the ranges of ᾱ with
PINC of 90% and of 95% are reduced to 93%-97% and
96.5%-98.5%, respectively, and K is reduced to 0-0.0015.
Figures 5 and 6 illustrate the performances of PIs with 2-
hour look-ahead time based on dataset 2, of which the opti‐
mal values of (ᾱ, K) are (94.75%, 0), (97%, 0.0002),
(94.75%, 0.0002), and (97.25%, 0.0001), respectively. The
numerical results of NQR and composite NQR (CNQR) are
given in Tables I to IV. It can be remarked that CNQR has
better forecasting performance.
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Fig. 2. Prediction errors of different clustering methods in each month cov‐
ering datasets 1 and 2.

01234
90 95 100

-3
-2
-1
0

-|A
CE

| (
%

)

K (10-3)α (%)
01234

90 95 100
K (10-3)α (%)

-0.065
-0.070

-0.060
-0.055
-0.050

In
te

rv
al

 sc
or

e

01234
95.097.5100.0

-3
-2
-1
0

-|A
CE

| (
%

)

K (10-3)α (%)
01234

95.0 97.5 100.0
K (10-3)α (%)

-0.036
-0.034

-0.032
-0.030

In
te

rv
al

 sc
or

e

(a) (b) (c) (d)

Fig. 3. Performances of PIs in January from dataset 1 with PINC of 90% and 95%. (a) Reliability with PINC of 90%. (b) Overall performance with PINC
of 90%. (c) Reliability with PINC of 95%. (d) Overall performance with PINC of 95%.

01234
90 95 100

-6
-4
-2
0

-|A
C

E|
 (%

)

K (10-3)α (%)
01234

90 95 100
K (10-3)α (%)

-0.040

-0.035

-0.030

In
te

rv
al

 sc
or

e

01234
95.097.5100.0

-4
-3
-2
-1

-|A
C

E|
 (%

)

K (10-3)α (%)
01234

95.0 97.5 100.0
K (10-3)α (%)

-0.024
-0.022
-0.020
-0.018

In
te

rv
al

 sc
or

e

(a) (b) (c) (d)

Fig. 4. Performances of PIs in June from dataset 1 with PINC of 90% and 95%. (a) Reliability with PINC of 90%. (b) Overall performance with PINC of
90%. (c) Reliability with PINC of 95%. (d) Overall performance with PINC of 95%.
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D. Numerical Comparison of Forecasting Performances

For the numerical analysis of the proposed method, the
performances of BELM [15], CPPI [10], MLLP [11],
CNQR, and hierarchical clustering based CNQR (HCNQR),
are used for comparison, based on the data of January and
June from dataset 1, and the data of September-October and
November-December from dataset 2. The numerical results
of dataset 1 with the 1-hour and 90-min look-ahead time are
listed in Table V, while the numerical results of dataset 2
with 1-hour and 2-hour look-ahead time are listed in Table
VI. CNQR and MLLP are both the nonparametric methods,
so they have better robustness compared with the parametric
methods. BELM and CPPI are the improved parametric
methods based on Gaussian distribution. Based on hierarchi‐
cal clustering, HCNQR selects the samples with high correla‐
tions for training, and removes the samples with low correla‐
tions. The numerical comparison between CNQR, HCNQR,
and CCNQR shows that weighting training samples can fur‐
ther optimize the samples’ utilization of CNQR-based non‐
parametric PIs. Consequently, the proposed method has the
best forecasting performance among all the results shown in
Tables V and VI. The cluster numbers of HCNQR and
CCNQR are both set to be 4. A PC with Intel(R) Core(TM) i7-
7700 CPU @ 2.8 GHz and 8 GB RAM is used for computa‐
tions. The values of the computation time of HCNQR and
CCNQR are less than 137 s and 175 s, respectively. As de‐
scribed in the previous analysis, since the optimal solution is
not far from the conventional one, the prior knowledge for
coefficients in the conventional QR can improve the compu‐
tational efficiency and accuracy. That is, the initial variables
of K and ā are set to be 0 and according to (30), respective‐
ly, rather than be set according to random initial values in
PSO. This can greatly reduce the number of iterations and
the possibility of being trapped in local minimum of PSO.

To further verify the effectiveness of the proposed method
in different periods, the numerical comparisons with differ‐
ent look-ahead time based on datasets 1 and 2 are presented
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Fig. 5. Performances of PIs in September-October from dataset 2 with PINC of 90% and 95%. (a) Reliability with PINC of 90%. (b) Overall performance
with PINC of 90%. (c) Reliability with PINC of 95%. (d) Overall performance with PINC of 95%.
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Fig. 6. Performances of PIs in November-December from dataset 2 with PINC of 90% and 95%. (a) Reliability with PINC of 90%. (b) Overall perfor‐
mance with PINC of 90%. (c) Reliability with PINC of 95%. (d) Overall performance with PINC of 95%.

TABLE Ⅰ
COMPARISONS OF PIS IN JANUARY FROM DATASET 1

Method

NQR

CNQR

PINC of 90%

PICP
(%)

91.93

92.19

AW

0.2011

0.1994

AO

0.0241

0.0247

Score

-0.0480

-0.0476

PINC of 95%

PICP
(%)

93.75

93.75

AW

0.2509

0.2471

AO

0.0176

0.0173

Score

-0.0295

-0.0290

TABLE Ⅱ
COMPARISONS OF PIS IN JUNE FROM DATASET 1

Method

NQR

CNQR

PINC of 90%

PICP
(%)

95.05

94.79

AW

0.2071

0.2038

AO

0.0257

0.0240

Score

-0.0465

-0.0458

PINC of 95%

PICP
(%)

96.88

96.88

AW

0.2560

0.2514

AO

0.0317

0.0320

Score

-0.0296

-0.0291

TABLE Ⅲ
COMPARISONS OF PIS IN SEPTEMBER-OCTOBER FROM DATASET 2

Method

NQR

CNQR

PINC of 90%

PICP
(%)

88.54

89.58

AW

0.2368

0.2380

AO

0.0270

0.0283

Score

-0.0597

-0.0597

PINC of 95%

PICP
(%)

92.19

92.97

AW

0.2697

0.2655

AO

0.0266

0.0307

Score

-0.0353

-0.0352

TABLE Ⅳ
COMPARISONS OF PIS IN NOVEMBER-DECEMBER FROM DATASET 2

Method

NQR

CNQR

PINC of 90%

PICP
(%)

86.72

87.76

AW

0.2201

0.2191

AO

0.0207

0.0215

Score

-0.0550

-0.0543

PINC of 95%

PICP
(%)

91.93

92.71

AW

0.2699

0.2710

AO

0.0139

0.0145

Score

-0.0315

-0.0313
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in Tables VII-X. The conventional PIs for the regional wind
power based on deterministic prediction and Gaussian error
distribution such as smoothing method [27], statistical up‐
scaling method [24], and K-means clustering-based method
[16], [37], [40] are used for comparison. In the smoothing
method, the point prediction is quantified by weighting the
STC coefficients based on the time interval and Euclidean
distance of power observations. In the statistical upscaling
method, the wind farms with both MAE and RMSE of less
than 10% and the output correlations of more than 0.8 with
regional output, are selected as representative wind farms.
The number of clusters is set to be 7 considering the predic‐
tion performance by training. Furthermore, by considering

the smoothing effect of regional wind power, the K-means
clustering-based method is established with the regional
wind power data. Among all these methods, the proposed
method has the best performance of PIs. In most cases, both
the K-means clustering-based method and the statistical up‐
scaling method have better forecasting performances than
the smoothing method. The smoothing method mainly relies
on the wind speed of NWP to calculate the correlation and
obtain similar power values of the training samples for
weighting. This method is highly affected by the accuracy of
NWP and the static relationship between the wind power
and speed. Thus, its performance is much better when the
NWP is accurate.

To reveal the result of proposed method with 1-hour look-
ahead time, Fig. 7 demonstrates the PIs of wind power in
January and April from dataset 1, while Fig. 8 depicts the
PIs of wind power in September-October and November-De‐

cember from dataset 2, where the values of wind power
have been normalized. Those figures indicate that the PIs ob‐
tained by the proposed method have the good reliability and
sharpness.

TABLE Ⅵ
PERFORMANCES OF PIS BASED ON DATASET 2

Period

Sept.-Oct.

Nov.-Dec.

Method

BELM

CPPI

MLLP

CNQR

HCNQR

CCNQR

BELM

CPPI

MLLP

CNQR

HCNQR

CCNQR

PINC of 90%

1-hour (1-step ahead)

PICP
(%)

86.98

86.98

87.76

88.54

86.46

90.10

87.50

94.27

87.76

88.28

88.80

89.06

AW

0.1518

0.1446

0.1347

0.1209

0.1212

0.1379

0.1503

0.1522

0.1363

0.1343

0.1167

0.1135

AO

0.0288

0.0292

0.0187

0.0257

0.0218

0.0191

0.0155

0.0247

0.0214

0.0154

0.0170

0.0140

Score

-0.0454

-0.0441

-0.0375

-0.0360

-0.0361

-0.0351

-0.0378

-0.0361

-0.0351

-0.0341

-0.0310

-0.0288

2-hour (2-step ahead)

PICP
(%)

86.64

88.80

87.50

89.58

88.28

90.36

91.15

95.31

87.76

87.76

86.72

90.89

AW

0.2217

0.2217

0.2386

0.2380

0.2282

0.2251

0.2232

0.2430

0.2223

0.2191

0.2138

0.2063

AO

0.0363

0.0421

0.0273

0.0283

0.0298

0.0315

0.0348

0.0390

0.0314

0.0215

0.0198

0.0210

Score

-0.0640

-0.0632

-0.0613

-0.0597

-0.0596

-0.0572

-0.0570

-0.0559

-0.0556

-0.0543

-0.0533

-0.0489

PINC of 95%

1-hour (1-step ahead)

PICP
(%)

91.15

92.71

91.93

92.71

92.71

93.75

94.01

96.61

93.49

93.75

93.94

95.31

AW

0.1692

0.1592

0.1781

0.1653

0.1610

0.1533

0.1708

0.1791

0.1775

0.1581

0.1563

0.1543

AO

0.0313

0.0276

0.0137

0.0167

0.0177

0.0199

0.0230

0.0327

0.0202

0.0133

0.0145

0.0129

Score

-0.0280

-0.0240

-0.0229

-0.0214

-0.0213

-0.0203

-0.0244

-0.0223

0.0215

-0.0191

-0.0194

-0.0178

2-hour (2-step ahead)

PICP
(%)

91.67

93.49

94.27

92.97

93.23

95.05

92.97

97.66

91.93

92.71

93.23

95.83

AW

0.2738

0.2635

0.2912

0.2655

0.2717

0.2686

0.2507

0.2932

0.2649

0.2710

0.2687

0.2615

AO

0.0414

0.0431

0.0220

0.0307

0.0298

0.0302

0.0356

0.0458

0.0272

0.0145

0.0161

0.0292

Score

-0.0412

-0.0376

-0.0362

-0.0352

-0.0352

-0.0328

-0.0350

-0.0336

-0.0337

-0.0313

-0.0312

-0.0293

TABLE Ⅴ
PERFORMANCES OF PIS BASED ON DATASET 1

Month

Jan.

Jun.

Method

BELM

CPPI

MLLP

CNQR

HCNQR

CCNQR

BELM

CPPI

MLLP

CNQR

HCNQR

CCNQR

PINC of 90%

1-hour (4-step ahead)

PICP
(%)

92.71

94.27

91.93

92.19

91.15

90.89

85.94

87.24

94.53

94.79

93.75

92.71

AW

0.1957

0.2085

0.2026

0.1994

0.2034

0.1862

0.1634

0.1485

0.2057

0.2038

0.1874

0.1798

AO

0.0340

0.0312

0.0257

0.0247

0.0205

0.0276

0.0332

0.0390

0.0291

0.0240

0.0294

0.0293

Score

-0.0491

-0.0489

-0.0488

-0.0476

-0.0480

-0.0471

-0.0513

-0.0496

-0.0475

-0.0458

-0.0448

-0.0445

90-min (6-step ahead)

PICP
(%)

92.19

94.53

91.15

93.23

90.63

90.89

92.97

87.50

95.57

92.45

94.79

92.71

AW

0.2561

0.2757

0.2633

0.2691

0.2673

0.2530

0.2332

0.1897

0.2540

0.2210

0.2494

0.2211

AO

0.0380

0.0356

0.0278

0.0306

0.0233

0.0299

0.0417

0.0398

0.0149

0.0393

0.0320

0.0322

Score

-0.0631

-0.0629

-0.0626

-0.0621

-0.0622

-0.0615

-0.0584

-0.0578

-0.0568

-0.0561

-0.0565

-0.0536

PINC of 95%

1-hour (4-step ahead)

PICP
(%)

92.19

97.40

93.75

93.75

94.27

95.31

92.19

90.89

96.88

96.88

96.35

95.05

AW

0.2372

0.2559

0.2412

0.2471

0.2404

0.2490

0.1984

0.1827

0.2535

0.2514

0.2493

0.2049

AO

0.0236

0.0397

0.0213

0.0173

0.0213

0.0164

0.0368

0.0322

0.0084

0.0320

0.0215

0.0271

Score

-0.0311

-0.0297

-0.0294

-0.0290

-0.0285

-0.0280

-0.0313

-0.0300

-0.0295

-0.0291

-0.0281

-0.0259

90-min (6-step ahead)

PICP
(%)

94.01

97.14

93.75

94.27

93.49

95.57

92.97

91.15

96.88

96.61

96.61

95.57

AW

0.2973

0.3307

0.3146

0.3027

0.2981

0.2751

0.2652

0.2320

0.3222

0.2979

0.2997

0.2731

AO

0.0300

0.0269

0.0173

0.0208

0.0232

0.0230

0.0434

0.0355

0.0152

0.0349

0.0299

0.0278

Score

-0.0369

-0.0362

-0.0358

-0.0350

-0.0359

-0.0316

-0.0387

-0.0358

-0.0379

-0.0345

-0.0340

-0.0322
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V. CONCLUSION

In this paper, a novel probabilistic prediction method
based on CCNQR is proposed for very short-term PIs of re‐
gional wind power, which implements the following four
tasks. Firstly, WMTSM clustering the samples by consider‐

ing the static difference, dynamic difference, meteorological
difference and the importance of variables is verified by nu‐
merical comparison of deterministic predictions. Secondly,
CNQR considering reliability, sharpness, and OPOPI for the
performance improvement of PIs is studied, while the ABQs
are studied to improve the flexibility and robustness of PIs.

TABLE Ⅸ
NUMERICAL COMPARISONS WITH 1-HOUR LOOK-AHEAD TIME BASED ON DATASET 2

PINC
(%)

90

95

Period

Jul.-Aug.

Sept.-Oct.

Nov.-Dec.

Jul.-Aug.

Sept.-Oct.

Nov.-Dec.

Smoothing method

PICP
(%)

97.66

97.40

97.92

98.44

99.74

99.22

AW

0.3178

0.3334

0.3343

0.3804

0.3990

0.4285

AO

0.0707

0.0231

0.0418

0.0472

0.0055

0.0506

Score

-0.0702

-0.0691

-0.0703

-0.0410

-0.0400

-0.0444

Statistical upscaling method

PICP
(%)

85.94

88.80

92.45

90.36

92.71

95.51

AW

0.1994

0.2242

0.2264

0.2356

0.2655

0.2700

AO

0.0394

0.0444

0.0224

0.0315

0.0421

0.0204

Score

-0.0620

-0.0648

-0.0521

-0.0357

-0.0388

-0.0298

K-means clustering-based method

PICP
(%)

93.23

85.68

93.23

96.35

91.41

96.35

AW

0.1105

0.1184

0.1144

0.1311

0.1425

0.1380

AO

0.0168

0.0311

0.0246

0.0183

0.0332

0.0330

Score

-0.0267

-0.0415

-0.0296

-0.0158

-0.0247

-0.0183

Proposed method

PICP
(%)

91.41

90.10

89.06

95.05

94.01

95.31

AW

0.1139

0.1379

0.1135

0.1404

0.1563

0.1543

AO

0.0112

0.0191

0.0140

0.0074

0.0188

0.0129

Score

-0.0266

-0.0351

-0.0288

-0.0155

-0.0201

-0.0178

TABLE Ⅷ
NUMERICAL COMPARISONS WITH 90-MIN LOOK-AHEAD TIME BASED ON DATASET 1

PINC
(%)

90

95

Month

Jan.

Feb.

Mar.

Apr.

May

Jun.

Jan.

Feb.

Mar.

Apr.

May

Jun.

Smoothing method

PICP
(%)

100.00

97.40

93.23

84.64

89.32

62.76

100.00

100.00

95.83

88.54

93.49

84.38

AW

0.4636

0.4608

0.4041

0.4401

0.4390

0.0922

0.5774

0.5072

0.4242

0.5143

0.4948

0.1513

AO

None

0.0883

0.0755

0.0632

0.0731

0.0426

None

None

0.0547

0.0459

0.0251

0.0473

Score

-0.0873

-0.1014

-0.1013

-0.1269

-0.1190

-0.0819

-0.0577

-0.0507

-0.0515

-0.0724

-0.0560

-0.0447

Statistical upscaling method

PICP
(%)

94.01

96.05

93.75

81.77

86.46

86.20

96.61

98.18

95.83

89.32

91.15

91.41

AW

0.2950

0.2463

0.2368

0.2786

0.3524

0.1734

0.3526

0.2912

0.2799

0.3299

0.4211

0.2068

AO

0.0407

0.0293

0.0498

0.0476

0.0535

0.0438

0.0383

0.0349

0.0491

0.0472

0.0419

0.0505

Score

-0.0688

-0.0538

-0.0598

-0.0905

-0.0994

-0.0589

-0.0404

-0.0317

-0.0362

-0.0532

-0.0569

-0.0381

K-means clustering-based method

PICP
(%)

86.72

86.72

84.90

83.33

83.85

86.98

91.93

92.45

89.06

89.58

90.10

92.45

AW

0.2283

0.1823

0.1790

0.2213

0.2247

0.1917

0.2737

0.2173

0.2095

0.2612

0.2687

0.2324

AO

0.0653

0.0330

0.0530

0.0522

0.0524

0.0344

0.0539

0.0284

0.0567

0.0589

0.0537

0.0342

Score

-0.0803

-0.0522

-0.0678

-0.0791

-0.0788

-0.0574

-0.0448

-0.0303

-0.0457

-0.0506

-0.0481

-0.0336

Proposed method

PICP
(%)

90.89

89.84

90.63

90.10

90.36

92.71

95.57

94.27

95.05

93.49

95.83

95.57

AW

0.2530

0.1998

0.1941

0.2287

0.2361

0.2211

0.2751

0.2665

0.2175

0.2637

0.3205

0.2731

AO

0.0299

0.0207

0.0204

0.0338

0.0280

0.0322

0.0230

0.0140

0.0207

0.0331

0.0317

0.0278

Score

-0.0615

-0.0484

-0.0453

-0.0591

-0.0580

-0.0536

-0.0316

-0.0298

-0.0258

-0.0350

-0.0373

-0.0322

TABLE Ⅶ
NUMERICAL COMPARISONS WITH 1-HOUR LOOK-AHEAD TIME BASED ON DATASET 1

PINC
(%)

90

95

Month

Jan.

Feb.

Mar.

Apr.

May

Jun.

Jan.

Feb.

Mar.

Apr.

May

Jun.

Smoothing method

PICP
(%)

100.00

98.96

92.71

84.64

96.09

67.19

100.00

100.00

99.48

96.61

96.88

82.03

AW

0.4498

0.4590

0.4084

0.4140

0.4430

0.0896

0.5936

0.4832

0.4943

0.5196

0.4943

0.1241

AO

None

0.2410

0.0965

0.0449

0.0633

0.0449

None

None

0.0390

0.0805

0.0433

0.0375

Score

-0.0900

-0.1018

-0.1098

-0.1104

-0.0985

-0.0769

-0.0505

-0.0483

-0.0502

-0.0629

-0.0548

-0.0393

Statistical upscaling method

PICP
(%)

94.27

94.27

93.75

83.85

86.72

83.07

97.14

97.40

95.57

90.36

94.45

89.06

AW

0.2366

0.1807

0.1767

0.2106

0.3138

0.1342

0.2821

0.2172

0.2093

0.2528

0.3743

0.1601

AO

0.0320

0.0245

0.0404

0.0400

0.0466

0.0344

0.0369

0.0258

0.0364

0.0382

0.0405

0.0347

Score

-0.0546

-0.0418

-0.0454

-0.0679

-0.0875

-0.0501

-0.0324

-0.0244

-0.0274

-0.0400

-0.0497

-0.0312

K-means clustering-based method

PICP

87.50

86.46

85.68

85.42

86.20

85.94

91.93

91.41

89.58

91.41

90.10

92.19

AW

0.1765

0.1205

0.1301

0.1649

0.1737

0.1436

0.2145

0.1444

0.1535

0.1982

0.2035

0.1772

AO

0.0473

0.0231

0.0348

0.0449

0.0399

0.0321

0.0434

0.0272

0.0369

0.0434

0.0363

0.0299

Score

-0.0590

-0.0366

-0.0459

-0.0592

-0.0568

-0.0468

-0.0355

-0.0238

-0.0307

-0.0347

-0.0347

-0.0270

Proposed method

PICP
(%)

90.89

89.06

89.84

90.36

89.84

92.71

95.31

93.23

94.53

94.79

95.31

95.05

AW

0.1862

0.1389

0.1569

0.2082

0.1915

0.1798

0.2490

0.1802

0.2050

0.2407

0.2520

0.2049

AO

0.0276

0.0170

0.0247

0.0301

0.0247

0.0293

0.0164

0.0147

0.0196

0.0365

0.0172

0.0271

Score

-0.0471

-0.0352

-0.0414

-0.0529

-0.0483

-0.0445

-0.0280

-0.0220

-0.0248

-0.0317

-0.0284

-0.0259
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As verified by the analysis of coefficients and numerical
comparisons with different PINCs and look-ahead time, the
composite optimization and ABQs improve the forecasting
performance. Thirdly, with the result of clustering, the CLP
for each cluster is quantified, which can improve the accura‐
cy of samples’ utilization, and further enhance the perfor‐
mance of CNQR. Finally, the numerical comparisons with
existing methods for different PINCs and look-ahead time
demonstrate the effectiveness of the proposed method.

The future work may focus on the advanced method of dy‐
namic analysis, which can accurately describe the character‐
istics of wind power time series. Besides, the analysis of
STC can also be utilized to improve the performance of PIs
for regional output.
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Fig. 8. PIs of wind power in September-October and November-December
from dataset 2. (a) September-October. (b) November-December.
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Fig. 7. PIs of wind power in January and April from dataset 1. (a) Janu‐
ary. (b) April.

TABLE Ⅹ
NUMERICAL COMPARISONS WITH 2-HOUR LOOK-AHEAD TIME BASED ON DATASET 2

PINC
(%)

90

95

Period

Jul.-Aug.

Sept.-Oct.

Nov.-Dec.

Jul.-Aug.

Sept.-Oct.

Nov.-Dec.
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95.31
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AO
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PICP
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92.97

96.35

91.15

96.88

AW

0.1907

0.2134
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0.2608

AO

0.0342

0.0524

0.0303

0.0405

0.0440

0.0312

Score

-0.0478

-0.0678

-0.0499

-0.0286

-0.0410

-0.0300

Proposed method

PICP
(%)

91.67

90.36

90.89

95.05

95.05

95.83

AW
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0.2251
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0.1495
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AO
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0.0070
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