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Identification of Critical Hidden Failure Line
Based on State-failure-network

Linzhi Li, Lu Liu, Hao Wu, Yonghua Song, Dunwen Song, and Yi Liu

Abstract——The hidden failures generally exist in power sys‐
tems and could give rise to cascading failures. Identification of
hidden failures is challenging due to very low occurrence proba‐
bilities. This paper proposes a state-failure-network (SF-net‐
work) method to overcome the difficulty. The SF-network is
formed by searching the failures and states guided by risk esti‐
mation indices, in which only the failures and states contribut‐
ing to the blackout risks are searched and duplicated searches
are avoided. Therefore, sufficient hidden failures can be ob‐
tained with acceptable computations. Based on the state and
failure value calculations in the SF-network, the hidden failure
critical component indices can be obtained to quantify the criti‐
calities of the lines. The proposed SF-network method is superi‐
or to common sampling based methods in risk estimation accu‐
racy. Besides, the state and failure value calculations in the SF-
network used to re-estimate the risks after deployment of mea‐
sures against hidden failures need shorter time in comparison
with other risk re-estimation methods. The IEEE 14-bus and
118-bus systems are used to validate the method.

Index Terms——Blackout risk, cascading failure, hidden failure,
state-failure-network method.

I. INTRODUCTION

THE cascading failures in power systems can lead to
large blackouts and cause severe losses to society [1],

[2]. Among the past blackout events, more than 70% of ma‐
jor disturbances on power systems are caused by the hidden
failures of protection systems [1], [3]. The hidden failure is
a permanent defect that is undetectable during normal opera‐
tion, but will cause a relay or a relay system to cut-off cir‐
cuit elements incorrectly and inappropriately when exposed
to a switching event [4]-[6]. To alleviate the impacts of hid‐
den failures, in-time detection which activates emergency
measures, and identification of critical elements, which helps

improve the maintenance strategies and power grid planning,
are the methods widely employed.

Some techniques have been proposed to detect the poten‐
tial hidden failures before they occur. With the application of
wide area measurement systems (WAMSs) and phasor mea‐
surement units (PMUs), the data analyses enable the opera‐
tors to adopt on-line detection methods [7]-[9]. But the com‐
munication networks that transfer the data could also be sub‐
ject to the hidden failures [10], [11]. In addition, measures
need to be evaluated based on the economic costs and black‐
out risks, which are hard to be quantified by the on-line
methods.

In order to minimize the potential costs and risks caused
by hidden failures, the maintenance strategies are optimized
to bolster the reliability of the protection systems [12], [13].
However, the line exposures of hidden failures [5], [14] and
complex cascading failure propagations make it impractica‐
ble to estimate the impacts of hidden failures without cascad‐
ing failure simulations.

As one of the factors that deteriorate the system during
the cascading failures, the effects of hidden failures on sys‐
tem risks and reliability are studied in [5], [15]-[17]. Mean‐
while, an increasing number of simulation models consider‐
ing hidden failures are proposed in [18]- [21]. However, the
literature does not distinguish between the critical hidden
failure lines and the non-critical ones. To this end, the stud‐
ies of hidden failures need certain numbers of samples,
which is infeasible for normal sampling methods due to the
low occurrence probabilities of hidden failures. Thus, the
techniques such as importance sampling [3], [22] are intro‐
duced to focus on the events of interest and reduce the com‐
putation burden. Nevertheless, the sampling based methods
estimate the risks by the expected losses of the samples,
where the randomness of sampling can bring about inaccura‐
cies in the estimated risks and the duplicated load flow cal‐
culations influence the efficiency. Therefore, an efficient
method that can achieve more accurate risk estimation is
needed.

In this paper, a state-failure-network (SF-network) method
is proposed to identify the critical hidden failures and criti‐
cal hidden failure lines. The SF-network method in this pa‐
per is improved based on the original proposed SF-network
in [23], in order for the applicability in the study of hidden
failures. Instead of using the simulated samples, the SF-net‐
work is formed by searching the failures and states, where
the hidden failures of higher risks are singled out and dupli‐
cated searches are avoided. Once the SF-network is formed,
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the hidden failure critical component indices (hCCIs) that
quantify the critical extents of the lines can be obtained.
Therefore, the critical hidden failure lines are identified
among the ones with high hCCI. The value calculations in
the SF-network also offer an efficient way to re-estimate the
risks and verify the identification consequences.

The rest of the paper is organized as follows. Section II il‐
lustrates the model of hidden failure and the cascading fail‐
ure simulation considering hidden failures. Then the SF-net‐
work method is introduced in Section III. Finally, two cases
are used to validate the proposed method in Section IV.

II. CASCADING FAILURE SIMULATION CONSIDERING HIDDEN

FAILURES

A. Model of Hidden Failures

The undetected defects of the relays can give rise to the
hidden failures. If any adjacent line of line l (connected to
the same bus as line l) fails, the defective relay of line l will
be exposed and line l may be falsely tripped [5]. In fact, an
exposure is the state when a line becomes probable to fail
due to the failure of its adjacent lines, in which a nearby fail‐
ure can cause the mal-operation of the defective relay when
the relay reacts to the fault transient [24]. Once exposed, the
lines are subject to hidden failures. As the probability of a
single hidden failure is small (lower than 10-2), the multiple
hidden failures with much smaller probabilities are not con‐
sidered in this paper. That is, only single hidden failures are
taken into account in the model.

During a cascading event, line exposure can occur multi‐
ple times to a single line. However, the hidden failures of
the lines are more likely to occur on the first exposure than
on the subsequent exposures [5]. For simplify, we follow the
line exposure in [5] that hidden failure can occur only at the
first line exposure with hidden failure probability ph. More
specifically, let pH

l be the hidden failure probability of line l,
S AL

l denotes the set of adjacent lines of line l, and t E
l denote

the exposure count which is the times that a line is exposed
during a cascading event. Then, after line k fails, we can
have:

pH
l = {ph k ÎS AL

l and t E
l = 1

0 otherwise
(1)

B. Cascading Failure Simulation Method Considering Hid‐
den Failures

The cascading failures considering hidden failures are sim‐
ulated by a DC power flow based simulator modified from
the simulator in [24], [25]. The procedure of the simulation,
which is shown in Fig. 1, can be illustrated as follows.

Step 1: input the initial operation point of the power sys‐
tem.

Step 2: set initial contingencies to trigger the cascading
failures.

Step 3: detect islands. If new islands are detected, re-bal‐
ance the generation and loads in each island. Otherwise, re-
dispatch the islands based on the dispatch method in [26] to
eliminate line overloads.

Step 4: expose the adjacent lines of the failed lines.
Step 5: check the exposed lines according to Step 1. If no

line is exposed, go to Step 6. For the exposed lines whose
pH > 0, select a line to trip as the hidden failure based on the
Roulette-Wheel algorithm [27], [28]. Specifically, the simu‐
lated probability of the hidden failure of an exposed line l is:

pHW
l = (1- pHW

0 )
pH

l

∑
l = 1

nl

pH
l

(2)

pHW
0 =∏

l = 1

nl

(1- pH
l ) (3)

where n l is the number of lines in the system; and pHW
0 is the

simulated probability of no hidden failure.
According to Steps 2 and 3, it always holds that pHW

0 +

∑
l = 1

nl

pHW
l = 1. If any hidden failure occurs, go to Step 3. Other‐

wise, go to Step 6.
Step 6: check the overloaded lines. In fact, the lines

whose loads are close to their capacities are taken as over‐
loaded and can fail in a certain probability [5], [18]. Similar‐
ly, according to the Roulette-Wheel algorithm, the simulated
probability of an overloaded failure pFW

l is:

pFW
l = (1- pFW

0 )
pF

l

∑
l = 1

nl

pF
l

(4)

Start

Step 1: initial operation point

Step 2: initial contingency

Are lines exposed?

N

N

Y

Y

Y

N

Step 4: expose adjacent lines

Step 3: detect islands and re-dispatch

Does hidden
failure occur?

Step 5

Step 6

Does overloaded
failure occur?

Are lines overloaded?

Step 7: cascade ends

End

Y

N

Fig. 1. Flow chart of cascading failure simulation considering hidden
failures.
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pFW
0 =∏

l = 1

nl

(1- pF
l ) (5)

where pF
l is a load dependent variable whose value is be‐

tween 0 and 1 when the line is overloaded, and equals to 0
otherwise [18], [29]; and pFW

0 is the simulated probability of
no overloaded failure.

According to Steps 4 and 5, it always holds that pFW
0 +

∑
l = 1

nl

pFW
l = 1. When any line is tripped, go to Step 3. If no line

is overloaded or tripped, go to Step 7.
Step 7: the cascade ends, and the total loss of the chain z

is recorded.
The simulation offers a cascading failure sample after the

cascade ends.
It is worth noting that the events of hidden failures show

higher priority than those of overloaded failures in the simula‐
tion procedure. In other words, the overloaded failure can on‐
ly occur when no hidden failure occurs at the current stage.

C. Major Defects of Sampling Based Methods

In general, the risk estimation needs enormous Monte-Car‐
lo (MC) samples to obtain the expected losses as:

r =
1

NM
∑

i = 1

NM

zi (6)

where NM is the number of samples; zi is the loss of the
ith simulation sample; and r is the risk of the power system.
Reference [5] argues that hidden failures can weaken the sys‐
tem and increase the blackout risk. Figure 2 shows the risk
of the IEEE 14-bus system estimated by the simulations
with and without hidden failures. The blackout risk without
hidden failures is 24.077 MW, whereas the risk rises to
24.338 MW when hidden failures (ph = 0.01) are considered.
Although the rise of risk looks mild, the influence of hidden
failures can be better reflected by the complementary cumu‐
lative distribution function (CCDF) of the blackouts as
shown in Fig. 3. It is shown that the hidden failures mainly
give rise to the risk of the severe blackouts whose losses ex‐
ceed 30% of the total loads, and cause the losses of black‐
outs over 53.93%. Therefore, the total increase of risk
caused by the hidden failures seems low, but it is of great
significance to cope with the hidden failures for reducing the
occurrences of large-scale blackouts.

However, sampling based methods such as the MC have
two major defects. One is that collecting sufficient samples
of hidden failures to identify the critical hidden failures can
be infeasible due to the very low occurrence probabilities.

Figure 4 shows the mean values of the hidden failures,
failures and exposed lines among the simulated samples. The
comparison between the hidden failures and exposed lines is
sharp, which manifests that only very few exposed hidden
failures are sampled in the MC sampling method.

Besides, it should also be noted that the difference be‐
tween the estimated risks of scenarios in Fig. 2 is not very
high. Accordingly, for a scenario where the hidden failure
probability of any line changes, the corresponding risk
change might not be accurately estimated due to the sam‐
pling randomness before the convergence.

Therefore, a method is needed to collect sufficient hidden
failures and more accurately estimate the blackout risks, and
the SF-network method proposed by the authors in their pre‐
vious work [24] can be improved to meet these requirements.

III. SF-NETWORK METHOD

A. States and Failures in SF-network

The structure of SF-network is mainly formed by the
states and failures, which can be obtained by the cascading
failure chains [24].

First, a k-length cascading failure chain comprised of the
failure sequence { f(1)f(2)f(k)} and final loss is denoted by
f(1) ® f(2) ®® f(k) ® z where the subscripts in brackets are
the occurrence order of the failures. Then the states are de‐
noted as vectors s0s1sk, and the kth state of the failure
chain is defined as sk =[ f(1)f(2)f(k)].

In addition, we denote the initial state where no failure oc‐
curs as s0, and the ending mark of a failure chain as f(0).
Then, recombine the states and corresponding failures as a
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Fig. 2. Risks estimated by cascading failure models with and without hid‐
den failures.
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tuple sequence: (s0f(1))(s1f(2))(sk - 1f(k))(skf(0)).
The subscripts of the state vectors are the stage numbers,

which are also the numbers of failed lines.
Secondly, nodes and edges are used to signify the states

and failures, respectively. The nodes and edges are joined
based on the tuple sequences as shown in Fig. 5.

We can get the structure of the SF-network from tuple se‐
quences as illustrated in Fig. 6, where sk( j) is the jth state at
the kth stage.

As in the figure, the SF-network originates at the initial
state s0, spreads along the subsequent chains of states and
failures, and terminates at the states with f(0).

The states in this paper differ from those in the original
SF-network in [24], so as to reflect the failure sequences.

B. Risk Estimation in SF-network

In the authors’ previous work [17], forming the SF-net‐
work needs numerous cascading failure chains produced by
cascading failure simulations. However, the method based on
sampled failure chains cannot well cope with the hidden fail‐
ures as discussed in Section II-C, so the way to form the SF-
network needs to be changed.

In the improved SF-network, the impact of sampling ran‐
domness on the risk estimation is eliminated. The loss of the
ith failure chain zi in (6) is the sum of the losses that occur
at the states along the failure chain and can be formulated as:

{zi = z̆(s i
1)+ z̆(s i

2)++ z̆(s i
k)

s i
k =[ f i

(1) f i
(2)  f i

(k)]
(7)

where z̆(s i
k) is the loss that occurs at state s i

k.
Substituting (7) into (6), we can get:

r =
1

NM
∑

i = 1

NM

(z̆(s i
1)+ z̆(s i

2)++ z̆(s i
k)) (8)

Since the similar states in the failure chains, which share
similar failure sequences, are merged into a single state in
the SF-network, denoting the number of the gathered state
sk( j) as Nsk( j)

. Thus, (8) can be rewritten as:

r =
1

NM

(Ns1(1)
z̆(s1(1))+Ns1(2)

z̆(s1(2))++Nskm ( j)
z̆(skm ( j)))=

∑
j = 1

N s
1 Ns1( j)

NM

z̆(s1( j))+∑
j = 1

N s
2 Ns2( j)

NM

z̆(s2( j))++∑
j = 1

N s
km Nsk( j)

NM

z̆(skm ( j)) (9)

where km is the final stage of SF-network; and N s
km

is the

number of states at the k th
m stage.

As the number of samples NM increases, the fraction
Nsk( j)

/NM will converge to the corresponding occurrence prob‐

ability of sk( j), Pr(sk( j)). Thus, we have:

lim
NM ®¥

Nsk( j)

NM

= Pr(sk( j)) (10)

Pr(sk( j)) can be derived from:

Pr(sk( j))= Pr( f(1))Pr( f(2)|f(1))Pr( f(k)|f(1)f(k - 1)) (11)

Therefore, the accurate estimated risk can be obtained by
the sum of the risks of the states in the SF-network, which
is more accurate than the estimated risk of random samples
derived from (6).

r =∑
j = 1

N s
1

Pr (s1( j))z̆(s1( j))+∑
j = 1

N s
2

Pr (s2( j))z̆(s2( j))++

∑
j = 1

N s
km

Pr (skm ( j))z̆(skm ( j)) (12)

C. Form SF-network by Searching

According to (12), the risk can be obtained by searching
the states of the SF-network and summing the risks of the
states. Instead of sampling the cascading failure chains ran‐
domly based on their probabilities, the failures of high risks
and the hidden failures leading to high losses are the interest
of this paper. Thus, we introduce the risk estimation indices
to guide the searching process.

When the search reaches a state, the risk estimation indi‐
ces indicate the risks of the failures of the operating lines at
the state. To calculate the risk estimation indices, the failure
probabilities of the lines and estimated losses are worked out
as follows.

1) Failure probability calculation: according to Section II-
B, the occurrence of hidden failures shows higher priority
than that of the overloaded failures at a new stage. However,
all the failures can be taken as mutually exclusive indepen‐
dent events, so the failure probability of line l at state sk( j)

can be obtained by:
Pr(sk( j)fl)= PrH (sk( j)fl)+ PrF (sk( j)fl) (13)

{PrH (sk( j)fl)= pHW
l

PrF (sk( j)fl)= pHW
0 pFW

l

(14)

where PrH (sk( j)fl) is the hidden failure probability of line l at
state sk( j); PrF (sk( j)fl) is the overloaded failure probability of
line l at state sk( j); and fl is the failure of line l.

Particularly, the probability of no failure can be derived
from (3) and (5) as:

Pr(sk( j)f(0))= pHW
0 pFW

0 (15)

Once line l is selected and fails, the probability of the
next state sk + 1( j′) after line l fails is obtained by:

Pr(sk + 1( j′))= Pr(sk( j))Pr(sk( j)fl) (16)

Stage 0 Stage 1 Stage kStage k�1…

…s0 s1 sk�1 sk
(s0,  f(1)) (s1,  f(2)) (sk,  f(0))(sk�1,  f(k))

Fig. 5. State-failure sequence.
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Fig. 6. Structure of SF-network.
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2) Estimated loss calculation: the failures can cause loss‐
es. In this paper, the loss of system splitting σα and loss of
overloading σβ are considered. At state sk( j), both σα and σβ

can be calculated based on the admittance matrix of the sys‐
tem Y and the Penrose-Moore pseudo-inverse of Y as intro‐
duced in [30], [31]. If the failure of the line causes the sys‐
tem splitting, it means the line is cut off, and its σα can be
obtained and its σβ = 0. Otherwise, its σβ should be calculat‐
ed and its σα = 0. Thus, for an arbitrary line l at sk( j), its esti‐
mated loss is:

σ(sk( j)fl)= ασα (sk( j)fl)+ βσβ (sk( j)fl) (17)

where α is the system splitting loss coefficient; and β is the
overloading loss coefficient. The values of α and β depend
on the loss preference of the operator, and their sum is 1. If
the loss of system splitting requires more attention, they
should be set as α> β, and vice versa. Without loss of gener‐
ality, the two kinds of estimated losses are treated equally by
setting α= β = 0.5 in this paper.

Given the failure probability and estimated loss, the risk
estimation index of line l can be obtained by:

ρ(sk( j)fl)= Pr(sk( j)fl)σ(sk( j)fl) (18)

Hence, the searching is guided to the failures with higher
risk estimation indices so that the states of high risks can be
added into (12). Specifically, the failures at a certain state
are searched based on the probabilities derived from the Rou‐
lette-Wheel algorithm and the risk estimation indices ob‐
tained by (18). Thus, the failures with higher indices are
more probable to be searched. When there are no overloads/
exposures or the probability of the searched failure chain is
below a threshold Prmin, the search on the current failure
chain terminates and the search continues on a new failure
chain. The search avoids duplicated failure chains by updat‐
ing the risk estimation indices after finishing searching a fail‐
ure chain [31], which saves the computation time. At a new
state, the state as well as the operation information is record‐
ed in the SF-network. Thus, in the following searches, the re-
dispatch and risk estimation calculations can be avoided by
retrieving the state directly from the SF-network, which fur‐
ther curtails the computation burdens. Figure 7 shows the
searching procedure forming the SF-network.

D. State and Failure Value Calculations in SF-network

After forming the SF-network, the state values (abbreviated
as S-value) and failure values (abbreviated as F-value) can be
worked out by the SF-network value calculations [24]. Specif‐
ically, the S-value and F-value are calculated as follows.

1) S-value calculation:

S(sk( j))= ∑
flÎΓ

f
k( j)

Pr(sk( j)fl)F(sk( j)fl) (19)

where Γ f
k( j) is the set of failures that occur at sk( j); and

F(sk( j)fl) is the F-value of the failure fl at sk( j).
2) F-value calculation: the F-value of the failure fl equals

to the S-value of its next state, which is denoted as sk + 1(×).
The F-value of f(0) equals to the total loss of the system
at sk( j).

F(sk( j)fl)= {z(sk( j)) l = 0

S(sk + 1(×)) l ¹ 0
(20)

where z(sk( j)) is the loss of state sk( j).
The calculation starts at the states where cascades termi‐

nate, and performs successively from larger stages to smaller
ones (from right to left in Fig. 6). The algorithm can be
briefly illustrated as follows:

1) Get the F-value of f(0) at the backmost state at the maxi‐
mal stage in the SF-network according to (20). Then, the S-
value of the backmost state equals to the F-value of the f(0)

according to (19).
2) Move forward to the next stage. According to (20), the

F-values of the failures all equal to the S-values of their
next states, which have been obtained at the previous stage.
Then, the S-values of the states at the current stage are
worked out based on (19).

3) Continue the calculation until the first stage. Then
S(s0), the S-value of initial state s0, is finally worked out and
equals to the system blackout risk.

After state and failure value calculations of the SF-net‐
work, every state and failure gets a value that quantifies the
expected loss after its occurrence.

E. Identify Critical Hidden Failures in SF-network

The critical failures at a state can be identified as the ones
whose F-values are higher than the S-value of the state. The
critical component index (CCI) can be calculated by sum‐
ming up the risks of the critical failures in the SF-network.

Rl =∑
k = k0

¥∑
j = 1

Nk ∑
flÎΓ

f
k( j)

I(sk( j)fl)Pr(sk( j)fl)F(sk( j)fl) (21)

I(sk( j)fl)= {1 F(sk( j)fl)> S(sk( j))

0 F(sk( j)fl)£ S(sk( j))
(22)

Pr<Prmin or no
overload or no exposure?

Is it a new state?

Does risk converge?

Calculate the indices of
the failures at the state

Update the indices
along the searched path

Select a failure
based on the indices

Retrieve the
state from the
SF-network

Detect islands 
and re-dispatch

Add the failure, state and
loss to the SF-network

Initialize operation point

Initialize contingency

Start a new search 

N

N

N

Y

Y

Y

End

Start

Fig. 7. Searching procedure of SF-network.
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where I(sk( j)fl) is the indicator function; Nk is the number of
states at the kth stage; and k0 is the first stage after the initial
outages.

Since the probabilities of hidden failures and overloaded
failures are distinguishable in the SF-network, the hCCI simi‐
lar to the CCI can be obtained by:

RH
l =∑

k = k0

¥∑
j = 1

Nk ∑
flÎΓ

f
k( j)

I(sk( j)fl)PrH (sk( j)fl)F(sk( j)fl) (23)

Thus, the lines with high RH
l are the critical hidden failure

lines.

F. Risk Re-estimation after Probability Changes in SF-net‐
work

Once the critical hidden failure lines are identified, the re‐
sult should be verified to validate the SF-network method.
To this end, the risk of the system after the critical lines are
upgraded needs to be re-estimated to quantify the effect.
Since the risk assessment can measure the robustness of the
power system to withstand the hidden failures and cascading
failures, upgrading the most critical lines should be the most
effective in increasing the robustness and decreasing the
risks [1], [24]. The measures to upgrade lines in the real sys‐
tem can include relay parameter corrections and maintenanc‐
es, which decrease the hidden failure occurrence probabili‐
ties. Therefore, the verification demands another run of the
searching procedure for the new SF-network with decreased
hidden failure probabilities.

However, the sufficiently searched SF-network has already
had the information of states and cascading failures. Thus,
the new risks can be re-calculated by the state and failure
value calculations in the SF-network with changed failure
probabilities. More specifically, the hidden failure probabili‐
ty of line l is decreased from pH

l to p′Hl , then the probabilities
of the failures in SF-network are all re-calculated according
to (2)(4), (13), (14). Afterwards, the calculation algorithm in
Section III-D obtains a new S-value of s0, which is the new
risk r′. The risk drop between the original risk r and the new
risk r′ is derived from

Dr = r - r′ (24)

where upgrading the most critical hidden failure is expected
to achieve the largest Dr.

Compared with the repetitive load flow and re-dispatch
computations during the search to form the new SF-network,
the re-calculations in the SF-network are all algebraic calcula‐
tions which only take very short time. Besides, the efficiency
of risk re-estimation also makes the SF-network method supe‐
rior to the MC sampling methods.

G. Impact of Hidden Failure Probability Changes

As hidden failure probability changes only impact the
probabilities in the SF-network, (24) can be rewritten as:

Δr = r - r′ =∑
j = 1

N s
1

(Pr(s1( j))- Pr'(s1( j)))z̆(s1( j))++

∑
j = 1

N s
km

(Pr(skm ( j))- Pr'(skm ( j)))z̆(skm ( j)) (25)

where km is the final stage of SF-network. It indicates that
the system risk changes can be summed up by the risk
changes of the states. Though the Dr is expected to be posi‐
tive when the failure probabilities of critical lines are de‐
creased, some of the items in (25) can be negative, indicat‐
ing the risks increase of some states.

The reason lies in the interaction effects of the probabili‐
ties of the line failures at a state. Since it always holds at an
arbitrary state s that:

∑
flÎΓ

f

Pr(sfl)= 1 (26)

where Γ f is the set of failures that occur at state s.
Thus, the probability decreases of some failures might in‐

crease the occurrence probabilities of the other failures. Ac‐
cording to the probability relationship between the failures
and states in (16), the Pr' items can be either larger or small‐
er than the corresponding Pr items in (25). Then, (25) can
be rewritten as:
Dr = (+ (Pr+ (sk( j))- Pr' + (sk( j)))z̆(sk( j))+)+

(+ (Pr- (sn(m))- Pr' - (sn(m)))z̆(sn(m))+)=Dr+ + Dr- (27)

where sn(m) is the mth state in the nth state in SF-network;
Pr+ (sk( j)) and Pr'+ (sk( j)) are the failure probabilities of state
sk( j) with the risk Dr+ > 0 before and after SF-network updat‐
ing, respectively; Pr- (sn(m)) and Pr' - (sn(m)) are the failure prob‐
abilities of state sn(m) before and after SF-network updating,
respectively; Dr+ and Dr- are the risk values greater and less
than 0, respectively. Therefore, if |Dr-|> |Dr+|, Dr will be neg‐
ative and the system risk will increase after the hidden fail‐
ure probabilities are decreased. In general, the negative Dr is
more likely to result from decreasing the probabilities of
non-critical hidden failure lines, which increases the proba‐
bilities of critical failures at the corresponding states.

IV. CASE STUDY

The test program is developed and tested in MATLAB on
a computer with 2.4 GHz processor and 32 GB RAM. In
both the cases below, ph = 0.01 and pF

l = 0.7 for all lines, and
Prmin = 10-8. The system data are accessible in [32].

A. Case 1: IEEE 14-bus System

The initial operation point is set based on the settings in
[33], where the loads are scaled up to 150% of their original
values. The initial contingencies are random N - 1 contingen‐
cies.

It takes 3546 searches and 170.17 s to form the SF-net‐
work, and the estimated risk is 26.63 MW. The risks estimat‐
ed by four groups of random MC samples (each group takes
about 680 s) and the SF-network are given in Fig. 8. The
MC sampling risks gradually converge to the risk obtained
by the SF-network, but the estimated risks vary from 24.15
MW to 24.96 MW, where the maximal fluctuation of 0.81
MW is larger than the risk variation caused by hidden fail‐
ures shown in Fig. 2. Therefore, the risk fluctuations of MC
sampling method can cover the risk changes caused by hid‐
den failure probability adjustments, which hinders the accu‐
rate verification of the identified critical hidden failure lines.
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After the state and failure value calculations in the SF-net‐
work, the CCIs are calculated according to (21) and listed in
Table I, where the CCIs of the lines derived from the SF-net‐
work without considering hidden failures are also given for
comparison. The rankings of the lines with and without the
hidden failures considered are almost the same. However,
the hidden failures can considerably raise the complexity of
the cascading failures. The lines with zero CCIs in the right
columns do not fail when hidden failures are not considered,
whereas they all become risky when hidden failures are con‐
sidered.

The hCCIs are obtained according to (23) and listed in Ta‐
ble II. In the table, line 5 is remarkable for its top ranking
compared with the low ranking in Table I. We draw the top
ranking 5 lines of both tables with high CCIs and hCCIs in
green and red in Fig. 9, respectively. It can be seen that

some of the identified critical lines have both high CCIs and
hCCIs, which indicates that the critical overloaded failure
lines can also be critical when they are exposed. Besides,
the identified critical lines center around the generator buses.
However, for the critical hidden failure lines which are not
the critical overloaded failure lines, like line 5, they are criti‐
cal because the failures of their adjacent lines are critical
and their failures following up can notably deteriorate the
system.

To verify the identified critical hidden failure lines, three
groups of lines are chosen to be upgraded in different scenar‐
ios according to their rankings in Table II, where their hid‐
den failure probabilities are decreased from 0.01 to 0.001.
Lines 4, 5, 3 are the top-ranking lines; lines 6, 15, 13 are
the middle-ranking lines; and lines 1, 20, 18 are the low-
ranking lines. Their risk drops are given in Table III, which
show that upgrading the most critical hidden failure lines
(the top-ranking lines) can reduce most of risks.

The complementary cumulative distribution functions
(CCDFs) of the blackouts in the scenarios are given in Fig.
10, where the main parts of the CCDFs of are very close.
However, the tails of the CCDFs which correspond to the
probabilities of the severe blackouts shows notable differenc‐
es. We take the blackouts with losses larger than 300 MW as
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Fig. 8. Cascading failure risks estimated by MC sampling method and SF-
network method in IEEE 14-bus system.

TABLE I
CCIS OF LINES IN IEEE 14-BUS SYSTEM

With hidden failures

Ranking

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Line

7

3

4

8

10

1

14

9

6

13

12

5

2

20

18

11

16

15

17

19

CCI

12.9913

12.9658

10.7422

5.7305

5.0721

4.0909

3.7373

2.9575

2.0169

1.6154

1.3112

0.7419

0.4933

0.0602

0.0432

0.0424

0.0168

0.0067

0.0061

0.0006

Without hidden failures

Ranking

1

2

3

4

5

6

7

8

9

10

11

12

13

14

14

14

14

14

14

14

Line

3

7

4

8

10

14

9

1

6

13

12

5

2

11

15

16

17

18

19

20

CCI

12.8719

11.7990

10.8183

5.6913

4.2686

3.6455

2.9149

2.8073

1.9545

1.5435

1.3093

0.7231

0.3599
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Fig. 9. Identified critical lines in IEEE 14-bus system.

TABLE II
hCCIS OF LINES IN IEEE 14-BUS SYSTEM

Ranking

1

2

3

4

5

6

7

8

9

10

Line

4

5

3

8

9

10

11

7

6

15

hCCI

0.355172

0.266609

0.160620

0.130359

0.113619

0.109482

0.100151

0.091987

0.075246

0.063552

Ranking

11

12

13

14

15

16

17

18

19

20

Line

13

2

14

17

19

12

16

1

20

18

hCCI

0.055659

0.054695

0.032550

0.021565

0.019921

0.019627

0.017825

0.016431

0.001338

0.000292
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the severe blackouts. Then, the occurrence numbers of the
severe blackouts are 23, 18, 12 and 4 in the original, low-
ranking, middle-ranking and top-ranking scenarios, respec‐
tively. According to [34], given that the occurrence number
of the severe blackouts in the top ranking scenario is 4, if
the occurrence numbers of the severe blackouts in the other
scenarios are larger than 10, it can be concluded that the oc‐
currence probabilities of the severe blackouts in the other
scenarios are higher than that in the top-ranking scenario
with a confidence level of 95%. Therefore, we can conclude
that the occurrence probability of the severe blackouts in the
top-ranking scenario is the lowest among the four scenarios
with a confidence level of 95%, and upgrading the identified
most critical lines can achieve the highest probability de‐
creases of blackouts.

It can be also seen that the hidden failures have greater in‐
fluence on the probabilities of blackouts with larger scale
than those of blackouts with smaller scale.

Here, each risk re-estimation by the calculations in the SF-
network takes only about 2 s, which demonstrates the effi‐
ciency of the SF-network method. The upgrading of the top-
ranking lines can achieve the highest risk drop of 0.2548
MW, whereas the upgrading of the middle-ranking lines
have very few effects. Particularly, the risk drops of the
group of lowest ranking lines are negative. As seen from the
corresponding Dr+ and Dr- of the lowest ranking lines, the
probability decreases of their hidden failures can raise the
failure probabilities of other critical lines and increase the
system risk.

In addition, the risk variations in the three groups, which
are 0.2548 MW, 0.0066 MW and 0.0310 MW respectively,
are all smaller than the fluctuations of MC sampling method
shown in Fig. 8. Therefore, the impacts of hidden failure
probability changes on risks can be more accurately quanti‐
fied by the proposed SF-network than the MC sampling

method does.
Moreover, we test the method in different situations,

where the loads are set to be as 100%, 130%, 150%, 200%
and 250% of their original values respectively to cover situa‐
tions from the best to the worst. Then, the rankings of the
lines with hCCIs in the situations obtained by the method
are listed in Table IV, where some of the identified most crit‐
ical lines are highlighted in bolded fonts. The most critical
lines can be identified in best and worst situations, despite
the changes of the rankings due to different load flow levels.

B. Case 2: IEEE 118-bus System

The operation point is set as that of the IEEE 14-bus sys‐
tem in the last case. The failures of lines 96 and 66 are se‐
lected as the initial contingencies.

It takes 50260 searches to form the SF-network. Figure 11
shows the risk estimated by the SF-network method and the
MC sampling method, where the converged risk is 206.49
MW.

Compared with the IEEE 14-bus system, forming the SF-
network in this case demands longer time and more computa‐
tions. It takes about 4642.09 s, whereas the MC sampling
method needs about 7622.80 s to gather 50260 samples. As
the sufficiency of searched hidden failures is preferred in
this paper, the cumulated searched new hidden failures of
both SF-network method and MC sampling method are
shown in Fig. 12. Although both methods uncover new hid‐

TABLE III
RISK VARIATION DUE TO HIDDEN FAILURE PROBABILITY CHANGES OF IEEE

14-BUS SYSTEM

Line group

Top-ranking

Middle-ranking

Low-ranking

Lines

4, 5, 3

6, 15, 13

1, 20, 18

Dr

0.2548

0.0066

-0.0310

Dr+

0.3860

0.1054

0.0219

Dr-

-0.1312

-0.0989

-0.0529
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Fig. 10. CCDFs of blackouts after upgrading different groups of lines in
IEEE 14-bus system.
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Fig. 11. Cascading failure risks estimated by MC sampling and SF-net‐
work methods by searching in IEEE 118-bus system.

TABLE IV
RANKINGS OF LINES WITH HCCIS IN DIFFERENT SITUATIONS

Rank‐
ing

1

2

3

4

5

6

7

8

9

10

︙

100%

Line

3

4

10

7

16

5

11

13

9

2

︙

hCCI

0.023

0.016

0.014

0.009

0.008

0.001

0.001

0.001

0

0

130%

Line

4

3

5

10

8

7

14

9

16

17

︙

hCCI

0.316

0.261

0.231

0.203

0.187

0.174

0.159

0.158

0.105

0.088

150%

Line

4

5

3

8

9

10

11

7

6

15

︙

hCCI

0.355

0.267

0.161

0.130

0.114

0.110

0.100

0.092

0.075

0.064

200%

Line

10

4

5

3

9

7

11

14

15

12

︙

hCCI

0.549

0.530

0.453

0.434

0.308

0.284

0.246

0.240

0.167

0.131

250%

Line

4

7

5

9

11

10

12

6

15

3

︙

hCCI

2.091

1.400

1.131

1.047

0.938

0.903

0.896

0.853

0.832

0.784
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den failures, the MC sampling method can only trigger very
limited hidden failures, which are about 4.7% of those
searched by the SF-network method. Therefore, the SF-net‐
work method outperforms the MC sampling method in de‐
tecting hidden failures.

The hCCIs of the lines in the IEEE 118-bus system are
obtained by the SF-network and listed in Table V. Some
lines are with zero hCCIs because they do not fail as hidden
failures or their hidden failures are not critical at the states.

To verify the identified critical hidden failure lines, three
groups of lines (the top-ranking lines 115, 117, 65, 60, the
middle-ranking lines 12, 112, 136, 113 and the low-ranking
lines 66, 75, 95, 51) are chosen based on their rankings in
the table. The hidden failure probabilities of the chosen lines
are reduced from 0.01 to 0.001 to simulation system im‐
provement measures. Re-estimating the risks by the calcula‐
tions in the SF-network takes about 17 s, which is dramati‐
cally shorter than the time consumptions of forming the SF-
network or MC sampling methods. Table VI shows that up‐
grading the most critical hidden failure lines can result in
the largest risk drop.

The CCDFs of the blackouts after upgrading different
groups of lines are given in Fig. 13. It can be observed that
the hidden failures mainly influence the occurrence probabili‐
ties of larger blackouts. We take the blackouts with losses
larger than 1200 MW as the severe blackouts. The occur‐
rence numbers of the severe blackouts are 18, 17, 13 and 5
in the original, low-ranking, middle-ranking and top-ranking
scenarios, respectively.

According to [34], the minimum number to conclude that
the probabilities of the severe blackouts in the other scenari‐
os are higher than those in the top-ranking scenario with a
confidence level of 95% is 11. Therefore, the occurrence
probability of the severe blackouts in the top-ranking scenar‐
io is the lowest among the four scenarios with a confidence
level of 95%.

V. CONCLUSION

This paper proposes a SF-network method to identify the
critical hidden failure lines. The searching to form the SF-
network insures that sufficient hidden failures are searched
and the duplicated searches of failure chains are avoided.
When the SF-network is formed, the state and failure value
calculations in the SF-network can efficiently obtain the indi‐
ces to identify the critical hidden failure lines and achieve
risk estimations for verifications of the identification. In
comparison with the commonly used sampling based meth‐
ods, the proposed method can achieve not only more accu‐
rate risk estimations, but also high efficiency in risk re-esti‐
mations. The simulations validate that the accuracy and effi‐
ciency of the proposed method.

Our future work includes forming the SF-network by less
searches and applications of the method in more complicated
analyses.
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