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Collaborative Distributed AC Optimal Power
Flow: A Dual Decomposition Based Algorithm
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Abstract——We propose a dual decomposition based algorithm
that solves the AC optimal power flow (ACOPF) problem in the
radial distribution systems and microgrids in a collaborative
and distributed manner. The proposed algorithm adopts the sec‐
ond-order cone program (SOCP) relaxed branch flow ACOPF
model. In the proposed algorithm, bus-level agents collabora‐
tively solve the global ACOPF problem by iteratively sharing
partial variables with its 1-hop neighbors as well as carrying
out local scalar computations that are derived using augmented
Lagrangian and primal-dual subgradient methods. We also pro‐
pose two distributed computing platforms, i. e., high-perfor‐
mance computing (HPC) based platform and hardware-in-the-
loop (HIL) testbed, to validate and evaluate the proposed algo‐
rithm. The computation and communication performances of
the proposed algorithm are quantified and analyzed on typical
IEEE test systems. Experimental results indicate that the pro‐
posed algorithm can be executed on a fully distributed comput‐
ing structure and yields accurate ACOPF solution. Besides, the
proposed algorithm has a low communication overhead.

Index Terms——Distributed convex optimization, distributed en‐
ergy management system, optimal power flow, primal-dual de‐
composition.

I. INTRODUCTION

THE AC optimal power flow (ACOPF) has been a classi‐
cal topic in the power system operation and control

since its introduction in 1962 [1]. The ACOPF tries to find a
set of optimal operation setpoints that optimize a set of ob‐
jectives, energy efficiency, power quality, security, etc., with
certain network constraints. The ACOPF is typically formu‐
lated as a non-linear quadratically-constrained quadratic pro‐
gramming problem, due to its non-linear quadratic power
flow equality constraints. Based on how the power flow
equations are formulated, the ACOPF can be further catego‐
rized into bus injection model (BIM) and alternating direc‐
tion method of multiplier (ADMM), which are mathematical‐
ly equivalent. Due to the non-linear quadratic power flow
constraints, the ACOPF is generally nonconvex and non-de‐
terministic polynomial (NP) -hard [2]. A typical approxima‐

tion is a linear program, also known as DC optimal power
folw (DCOPF), in which the non-linear constraints are linear‐
ized. Thus, the linearized DCOPF is easy to solve. However,
the DCOPF is typically used with strong assumptions, e. g.,
no reactive power, lossless line, fixed bus voltage, etc.,
which is applied to well-compensated networks, e. g., trans‐
mission networks, sub-transmission networks. The detailed
formulation differences of DCOPF and ACOPF are well doc‐
umented in [2]. An important alternative is convex relax‐
ations [3], [4], i.e., second-order cone program (SOCP) relax‐
ation and semidefinite program (SDP) relaxation. Both relax‐
ations bound the optimal results of the original ACOPF prob‐
lem. The SDP is tighter than the SOCP relaxation over ge‐
neric networks. However, SOCP and SDP relaxations are
found to have the same tightness over single-phase radial
networks. Under sufficient conditions, the exact solution to
the original ACOPF problem can be recovered [3].

ACOPF problems in the distribution systems and mi‐
crogrids have caught significant research interests in recent
decades for its wide applications in the operation and control
of distributed energy resource (DER), e. g., in energy man‐
agement system of DER [5], [6], energy market participation
[7], EV charging management [8], service restoration [9].
Conventionally, these ACOPF problems are solved in a cen‐
tralized framework. However, there have been increasing
concerns about the scalability, reliability, resilience, and pri‐
vacy of the centralized ACOPF. As DER becomes more and
more modular, controllable and connected, the distributed
ACOPF is often viewed as a proper tool as part of the opti‐
mal control algorithms of DER. Compared with the central‐
ized ACOPF, the distributed ACOPF is more scalable, i. e.,
more robust to single-point-of-failure, more resilient to faults
and attacks, and more private than centralized solution
[10], [11].

The distributed ACOPF algorithm addressed in this paper
is a distributed convex optimization. Such optimization prob‐
lem is collectively solved by agents who collaborate with
one another to minimize a global objective function that is a
sum of some local objective functions. From the perspective
of computing framework, we assume the distributed agents
to possess independent local computation capability and peer-
to-peer (P2P) communication capability. The preliminaries of
distributed convex optimization theories and its applications
in smart grids can be found in [3], [12], [13].

The mainstream distributed ACOPF algorithms can be fur‐
ther categorized into five classes [3]: ① dual decomposition
[14], [15]; ② ADMM [16]-[18]; ③ auxiliary problem princi‐
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ple (APP) [19], [20]; ④ optimality condition decomposition
(OCD) [21], [22]; ⑤ consensus + innovation [23]. Some typ‐

ical distributed ACOPF algorithms are summarized in Ta‐
ble I.

From an initial configuration perspective, all the methods
require a certain level of problem decomposition and deriva‐
tion. Among the five classes, the close-form local gradient
descent based dual decomposition algorithms, e.g., [14], typi‐
cally require the least configuration efforts. With respect to
agent modeling, depending on the applications and the adopt‐
ed algorithms, there are typically two distributed agent
types, i.e., bus-level and region-level agents. In term of local
computation type, some close-form based algorithms, e. g.,
[14], [18], [23], require simple substitutions and scalar calcu‐
lations, whereas some algorithms require local iterative mini‐
mization steps, e.g., [17], [20]- [22]. Regarding communica‐
tion type, depending on the decomposition algorithms, some
algorithms, e.g., [14], [18], [23], share symmetrical informa‐
tion among agents, whereas some algorithms, e.g., [15]-[17],
[19]-[22], share asymmetrical information among agents. Ad‐
ditionally, some region-level distributed algorithms, e. g.,
[16], [17], [19] - [22], require multi-hop communications. In
general, these five mainstream algorithms are analytically or
numerically proven to possess linear convergence rates on
the convexified ACOPF problems.

In recent years, many efforts are made to improve distrib‐
uted ACOPF algorithms. Reference [24] proposes a compo‐
nent-level dual decomposition solver that can scale up to 104-
bus test systems. Reference [25] improves the dual decompo‐
sition algorithm using the augmented Lagrangian and the
block successive upper-bound minimization method. The pro‐
posed dual decomposition algorithm can handle non-convex
constraints and discrete variables. Reference [26] applies an
improved version of the ADMM called augmented Lagrang‐
ian alternating direction inexact Newton (ALADIN) to solve
the distributed ACOPF. The proposed ALADIN reduces the

number of iterations by at least one order of magnitude at
the cost of the increased per-step communication effort. Ref‐
erence [27] proposes an improved ADMM for the ACOPF
problem in a hybrid AC-DC grid, and compares the perfor‐
mance with the ALADIN. The improved ADMM is found to
be more scalable than ALADIN for large-scale distributed
systems. Reference [28] proposes a new incremental-oriented
ADMM algorithm by fusing the extended interior-point
method and ADMM so that the improved ADMM can solve
mixed-integer non-linear programming. Reference [29] pro‐
poses an OCD based three-stage distributed OPF algorithm
that can handle discrete variables. On the whole, ADMM is
popular and widely utilized. Some researchers are attempting
to apply distributed ACOPF algorithms to large-scale distrib‐
uted computing systems and to solve large-scale ACOPF
problems. Also, they are extending the distributed ACOPF al‐
gorithms to solve mixed-integer programming problems, e.g.,
unit commitment.

On the basis of prior works and recent developments [14]-
[29], we further identify three shortcomings that are yet to
be fully addressed: ① many of the current decomposition-
based distributed ACOPF algorithms require intensive prelim‐
inary clustering analysis and formulation efforts; ② many of
the ADMM-based and OCD-based algorithms require consid‐
erable computing power on the edge unit to carry out the it‐
erative optimization; ③ most ACOPF algorithms are validat‐
ed and benchmarked on a single-thread environment, e. g.,
MATLAB on a single PC. The inter-agent communication is
typically emulated via in-RAM variable assignments, and
the corresponding computation time has limited significance
on representing the actual performance on the distributed
computing system.

TABLE I
TYPICAL DISTRIBUTED ACOPF ALGORITHMS

Reference

[14]

[15]

[16], [17]

[18]

[19], [20]

[21], [22]

[23]

Algorithm

Dual decomposition

Dual decomposition

ADMM

ADMM

APP

OCD

Consensus + innovation

Initial configuration

Derive close-form local gradient
descent equations

Problem decomposed into
sub-problems

Problem decomposed into
sub-problems

Problem decomposed into
sub-problems and derive close-form

solutions to sub-problems

Problem decomposed into
sub-problems based on tie-lines

Problem decomposed into
sub-problems based on areas and
drive gradient descent equations

Derive local gradient descent and
consensus equations for shared

variables estimation

Distributed
agent type

Bus-level
agent

Bus-level
agent

Region-level
agent

Bus-level
agent

Region-level
agent

Region-level
agent

Bus-level
agent

Local computation
type

Substitutions and
scalar calculations

Local iterative
minimizations

Local iterative
minimizations

Substitutions and
scalar calculations

Local iterative
minimizations

Substitutions and
scalar calculations

Substitutions and
scalar calculations

Communication type

One-hop communication
with symmetrical

information sharing

One-hop communication
with asymmetrical
information sharing

Multi-hop communication
with asymmetrical
information sharing

One-hop communication
with symmetrical

information sharing

Multi-hop communication
with asymmetrical
information sharing

Multi-hop communication
with asymmetrical
information sharing

One-hop communication
with symmetrical

information sharing

Convergence
rate

Linear

Linear

Piecewise
linear

Linear

Linear

Linear

Linear
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To address aforementioned shortcomings, in this paper, a
novel dual decomposition based distributed subgradient
ACOPF algorithm is proposed and prototyped. The proposed
algorithm can accurately solve convexified ACOPF problems
in a distributed computing environment with modest commu‐
nication overhead. Compared with surveyed existing distrib‐
uted ACOPF algorithms in [14] - [29], the contributions of
this paper can be summarized as follows.

1) A novel agent-level dual decomposition based distribut‐
ed subgradient ACOPF algorithm is proposed, in which each
agent computes simple close-form gradient update equations.
The proposed algorithm does not require complex initial
clustering or decomposition analysis.

2) The proposed algorithm is validated on actual distribut‐
ed computing systems, i. e., high-performance computing
(HPC) based platform and hardware-in-the-loop (HIL) testbed.

3) The computation and communication performances of
the proposed algorithm are quantified and analyzed on both
HPC based platform and HIL testbed.

The rest of the paper is structured as follows. Section II
introduces the ACOPF problem formulation. Section III cov‐
ers the preliminaries, i.e., augmented Lagrangian with primal-
dual subgradient (PDS) method as well as the proposed algo‐
rithm. Section IV presents the proposed distributed comput‐
ing structures for the validation and evaluation of the pro‐
posed algorithm. Section V provides the experimental results
on various benchmark systems and the corresponding analy‐
sis. The conclusions are summarized in Section VI.

II. ACOPF PROBLEM FORMULATION

The ACOPF problem formulation is established based on
the following three assumptions: ① the physical system to‐
pology is radial; ② the slack bus voltage V0 and angle θ is
fixed and known, i.e., V0 = 1.1 p.u. and θ = 0°; ③ the SOCP
relaxation, i. e., angle and conic relaxations [30], of branch
flow model (BFM) ACOPF is convex and exact.

Typically, the optimization objective function J(x) of the
ACOPF is represented by a quadratic cost function that re‐
flects the cost of generation. In this paper, we use the com‐
monly used quadratic cost function in (1) to represent the
generation cost at the slack bus and distributed generator
(DG) buses.

J(x)=∑
iÎG

ax2
i + bxi + c (1)

where a, b, and c are the parameters of DG quadratic cost
function; G is the generator set consisting of the slack and
DG buses; and xi is the optimization variable of bus i.

J(x) is then minimized over primal variable x, while satis‐
fying all the equality constraints h(x) and inequality con‐
straints g(x) introduced by the BFM ACOPF. To formulate
the ACOPF constraints, we define real and reactive power in‐
jections of the bus j as pj = pg

j - pc
j and qj = qg

j - qc
j , respective‐

ly, where the superscripts g and c represent the generation
and consumption, respectively. Then we model the physical
system topology as a graph G = (VE), in which the buses are
denoted as vertices V while the lines are denoted as edges E.
Note that, in the convexified SOCP relaxation, squared vari‐
ables are used to eliminate the angles, and all branch power

flow equality constraints are relaxed to inequality con‐
straints, i.e., (5). Based on the BFM notations in Fig. 1, p0,
q0, pi, qi, pm, qm are the real and reactive power injections of
buses 0, i, m, respectively; v0, vi, vj, vm, vn are the squared
bus voltage magnitudes of buses 0, i, j, m, n, respectively;
Pij , Qij , Pjm , Qjm are the real and reactive power flows of the
branch from buses i to j and from buses j to m, respectively;
Rij, Xij, Rjm, Xjm are the resistances and inductances of the
branch from buses i to j and buses j to m, respectively; and
ℓ ij and ℓ jm are the squared branch current magnitudes from bus‐
es i to j and from buses j to m, respectively. The resulting
equality and inequality constraints are presented in (2)-(9).

∑
k:j® k

Pjk -∑
i:i® j

( )Pij -Rij ℓ ij - pj = 0 "jÎV (2)

∑
k:j® k

Qjk -∑
i:i® j

( )Qij -Xij ℓ ij - qj = 0 "jÎV (3)

vi - vj - 2 (Rij Pij +Xij Qij)+ (R2
ij +X 2

ij ) ℓ ij = 0 "(ij)Î E (4)

P 2
ij +Q2

ij

vi

- ℓ ij £ 0 "(ij)Î E (5)

{-p g

j
£ pg

j £ p̄g
j "jÎV

-q
g

j
£ qg

j £ q̄g
j "jÎV

(6)

{-p c

j
£ pc

j £ p̄c
j "jÎV

-q
c

j
£ qc

j £ q̄c
j "jÎV

(7)

-v j
£ |Vj |

2

£ v̄j "jÎV (8)

| Iij |
2

£ ℓ̄ ij "(ij)Î E (9)

where Iij is the branch current from buses i to j; and Vj is
the voltage of bus j; and

-
(×) and -(×) denote the upper and

lower bounds, respectively.
Note that (2) and (3) are the real and reactive power bal‐

ance constraints at each bus, respectively. Equation (4) is the
Ohm’s law constraint for each branch; (5) is the inequality
constraint of relaxed branch power flow; (6) is the operation
limit of the generator; (7) is the operation limits of demand
response resources (pc

j and qc
j are constant when representing

static loads); (8) is the operation limit of bus voltage, i. e.,
[ 0.92 1.12] per unit; and (9) is the line limit for each branch.
With the constraints above, we denote the optimization
search space S as:

S {pqvℓPQ |pqvℓ satisfy (6)-(9)} (10)

Then, the equality constraints in (2) - (4) are denoted as
h(x)= 0, and the inequality constraint in (5) is denoted as
g(x)£0. Finally, the ACOPF problem is formulated as (11).

v0 vi vj vnvmPij+iQij, lij

Rjm+iXjmRij+iXij

Pjm+iQjm, ljm

Bus 0 Bus i Bus j Bus m Bus n

p0+iq0 pi+iqi pj+iqj pm+iqm

Fig. 1. BFM notation.
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ì

í

î

ïï
ïï

min
xÎ S J (x)

s.t. h(x)= 0

g ( )x £ 0

(11)

III. DISTRIBUTED ACOPF ALGORITHM

A. Augmented Lagrangian and PDS Method

Since the SOCP relaxation in (11) is convex, we can ap‐
ply the dual decomposition method to find the optimal solu‐
tion by reaching the saddle point of the Lagrangian L. To
improve the convergence property, instead of using the La‐
grangian in the original dual decomposition method, we
adopt the augmented Lagrangian and the method of La‐
grange multiplier to formulate the optimization problem. To
find the optimal solution to problem (11), we design the fol‐
lowing two-step process. First, we augment the Lagrangian
via multipliers and penalty terms:

L= J (x)+ λT h (x)+ μT g (x)
+
+
ρ
2
 h ( )x

2

2
+
ρ
2
 g ( )x

2

2
(12)

where (×)+ signifies the positive projection; ρ is the penalty
factor of the augmented lagrangian; and λ and μ are the dual
variables. Second, we apply the PDS method in [31] to find
the saddle point of the augmented Lagrangian by separately
and iteratively moving primal variable x towards negative
gradient direction, whereas moving the dual variables λ and
μ towards positive gradient direction, as defined in (13) -
(15). Let’s denote the step size as ξ. Moving from iterations
k to k + 1, "xÎ S, we can obtain:

xk + 1 = xk - ξ
|
|
||

¶L
¶x

{xkλkμk}

(13)

λk + 1 = λk + ξ
|
|
||

¶L
¶λ

{xkλkμk}

(14)

μk + 1 = μk + ξ
|

|
||

¶L
¶μ

{xkλkμk}

(15)

B. Collaborative Distributed ACOPF Algorithm

This subsection introduces the proposed algorithm using
the aforementioned dual decomposition concept with aug‐
mented Lagrangian and PDS methods. Each bus/node is
modeled as an agent who possesses local computing power
and a P2P communication interface with the adjacent agents,
also known as 1-hop neighbors. This P2P communication
network should be identical to the physical system topology.
Additionally, we assume each agent has access to impedance
parameters of the power lines that connect to itself and to
the local generation cost function parameters. Because of the
radial topology and BFM formulation, there are no global
shared dual variables. All the dual variables are shared among
1-hop neighbors. Therefore, the ACOPF algorithm can be
solved collectively by all the agents in a fully distributed way.

To demonstrate the proposed algorithm, we derive the
agent update equations based on the BFM notation in Fig. 1.
The first step is to take partial derivative of the augmented
Lagrangian in (12) with respect to all the primal variable x
and dual variables λ and μ. Then the partial derivatives are

substituted into the PDS update equations in (13)-(15). Final‐
ly, we can get the individual variable update equations. Equa‐
tions (16)-(25) present the derived PDS update questions. At
every iteration, for all xÎ S, moving from iterations k to
k + 1, each agent jÎV updates its local primal variables as
derived in (16)-(21).

pk + 1
j = pk

j - ξ1 [ ]bj - λpk
j + 2aj p

k
j + ρ ( )P k

ij -P k
jm + pk

j - ℓ k
ij Rij (16)

qk + 1
j = qk

j - ξ2 [ ]ρ ( )Qk
ij -Qk

jm + qk
j - ℓ k

ij Xij - λqk
j (17)

vk + 1
j = vk

j - ξ3

ì

í

î

ïï
ïï
λΩkj - λΩki + ρ

é

ë

ê
ê
êê2P k

ij Rij + 2Qk
ij Xij - 2P k

jm Rjm -

2Qk
jm Xjm + 2vk

j - vk
i - vk

m - ℓ k
ij (R2

ij +X 2
ij )+ ℓ k

jm (R2
jm +X 2

jm)-
1

( )vk
j

3 ((P k
jm)

2

+ (Qk
jm)

2) ((P k
jm)

2

+ (Qk
jm)

2

- ℓ k
jm vk

j )
ù

û

ú
ú
úú-

μk
j

( )vk
j

2 ((P k
jm)

2

+ (Qk
jm)

2)
ü

ý

þ

ïï
ïï

(18)

ℓ k + 1
jm = ℓ k

jm - ξ4{λpk
m Rjm + λqk

m Xjm - μk
j + λΩkj (R2

jm +X 2
jm)+

ρ
é

ë
êêℓ

k
jm -

1

vk
j
((P k

jm)
2

+ (Qk
jm)

2)-Rjm (P k
jm -P k

mn + pk
m -

ℓ k
jm Rjm)-Xjm (Qk

jm -Qk
mn + qk

m - ℓ k
jm Xjm)- (R2

jm +X 2
jm) (vk

m -

vk
j + 2P k

jm Rjm + 2Qk
jm Xjm - ℓ k

jm (R2
jm +X 2

jm))ù
û
úú} (19)

P k + 1
jm =P k

jm - ξ5

ì

í

î

ïï
ïï
λpk

j - λpk
m - 2λΩkj Rjm +

2

vk
j

P k
jm μ

k
j +

ρ
é

ë

ê
êê
ê(P k

jm -P k
mn + pk

m - ℓ k
jm Rjm)- (P n

ij -P n
jk + pn

j - ℓ n
ij Rij)+

2Rjm (vk
m - vk

j + 2P k
jm Rjm + 2Qk

jm Xjm - ℓ k
jm (R2

jm +X 2
jm))+

2

( )vk
j

2
P k

jm ((P k
jm)

2

+ (Qk
jm)

2

- ℓ k
jm vk

j )
ù

û

ú
úú
ú
ü

ý

þ

ïï
ïï

(20)

Qk + 1
jm =Qk

jm - ξ6

ì

í

î

ïï
ïï
λqk

j - λqk
m - 2λΩkj Xjm +

2

vk
j

Qk
jm μ

k
j +

ρ

é

ë

ê
ê
êê(Qk

jm -Qk
mn + qk

m - ℓ k
jm Xjm)- (Qk

ij -Qk
jm + qk

j - ℓ k
ij Xij)+

2xjm (vk
m - vk

j + 2P k
jm Rjm + 2Qk

jm Xjm - ℓ k
jm (R2

jm +X 2
jm))+

2

( )vk
j

2
Qk

jm ((P k
jm)

2

+ (Qk
jm)

2

- ℓ k
jm vk

j )
ù

û

ú
ú
úú

ü

ý

þ

ïï
ïï

(21)
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Then, each agent updates its local dual variables as de‐
rived in (22)-(25).

λpk + 1
j = λpk

j + ξ7 (P k
jm -P k

ij - pk
j + ℓ k

ij Rij) (22)

λqk + 1
j = λqk

j + ξ8 (Qk
jm -Qk

ij - qk
j + ℓ k

ij Xij) (23)

λΩk + 1
j = λΩkj + ξ9 [ ]vn

j - vk
m - 2P k

jm Rjm - 2Qk
jm Xjm + ℓ k

jm ( )R2
jm +X 2

jm

(24)

μk + 1
j = μk

j + ξ10

é

ë
êê

ù

û
úú

1

vk
j
(( )P k

jm

2

+ ( )Qk
jm

2)- ℓ k
jm (25)

where λp
j and λq

j are used for augmenting the real and reac‐
tive power balance equality constraints in (2) and (3) at
node j, respectively; λΩj is used for augmenting the Ohm’s
law constraint in (4); and μ j is used for augmenting the
branch power flow inequality constraint in (5). Note that, ac‐
cording to Fig. 1, node i is the ancestor node of node j, and
node k is the children node of node j.

To show that the above agent update equations can be car‐
ried out independently by each agent with 1-hop P2P com‐
munication, we first define the local variables of the agent.
For any agent jÎV, its local primal variables xj and dual
variables {λ jμ j} are defined in (26)-(28).

xj  {pj qj vj ℓ jm Pjm Qjm} xj Ì x (26)

λ j  {λp
j  λq

j  λΩj } λ j Ì λ (27)

μ j  {μ j} μ j Ì μ (28)

Then, based on the agent update equations derived in (16)-
(25), we find that in addition to the agent local variables
{xjλ jμ j}, additional variables from its ancestor node i, i. e.,
{viℓ ijPijQijλΩi }, and variables from its children node m ,
i. e., {pmqmvmPmnQmnλp

m λq
m}, are needed. Therefore, the

optimal solution to the ACOPF problem in (11) can be col‐
lectively computed by the distributed agents in finite number
of iterations, if every agent observes these three steps at ev‐
ery iteration "jÎV.

Step 1: send partial local primal and dual variables
A j{pjqjvjPjmQjmλp

j λq
j } to its ancestor agent.

Step 2: send partial local primal and dual variables
C j{vjℓ jmPjmQjmλΩj } to all of its children agents.

Step 3: update its local variables {xjλ jμ j} using the re‐
ceived variables from its ancestor and children nodes.

The rigorous convergence proof and analysis of the distrib‐
uted proposed ACOPF algorithm are presented in Supplemen‐
tary material.

IV. DISTRIBUTED COMPUTING STRUCTURES

A. HPC-based Distributed Computing System

1) Computing Hardware
To emulate the distributed computing environment re‐

quired by the proposed algorithm, i. e., individual processor,
RAM, and communication interface, we leverage the vast
amount of processing cores and RAM provided by the HPC
system at North Carolina State University, USA, called Hen‐

ry2 cluster. As presented in Fig. 2, when running the pro‐
posed algorithm, we emulate the on-site edge computing
units using processors in Henry2 cluster, which is a Linux
cluster with approximately 1000 computing nodes (with inde‐
pendent Intel Xeon processors, RAM, and communication in‐
terfaces) and approximately 10000 cores.

2) Computing Software
As for the software environment, we use the MATLAB

Parallel Server toolbox in MATLAB 2019a to create and op‐
erate the distributed computing cluster. The agent updating
equations in (16) - (25) and 1-hop P2P communication are
programmed using MATLAB language. When launching the
experiment, we use“batch”commands in MATLAB to initi‐
ate the proposed algorithm on all distributed computing
nodes so that these nodes can collectively solve the ACOPF
problem.
3) Inter-processor Communication

The inter-processor communication is needed to emulate
the P2P communication among field edge computing units.
Message passing interface (MPI) is used by the inter-proces‐
sor communication over a InfiniBand network. The variable
value sharing between neighboring nodes is programmed in
MATLAB language, and it is eventually handled by the cor‐
responding MPI software package in the MATLAB Parallel
Server toolbox.
4) Emulation Capability

Since each computing node in the Henry2 cluster has lo‐
cal processors, RAM, and communication interface, one can
effectively use Henry2 cluster to emulate and validate distrib‐
uted computing tasks with up to 1000 agents/nodes.

B. Raspberry Pi (RPI) Cluster HIL Testbed

Due to the fact that the P2P communication in HPC-based
distributed computing system is handled by the MPI over a
InfiniBand network, certain communication characteristics,
e.g., delay, traffic pattern, overhead have limited significance
representing the actual field edge computing unit of P2P
communication. Therefore, to further investigate the commu‐
nication performance of the proposed algorithm, we build

Communication link;Power line; Edge computing unit; Processor

Cyber layer

HPC

Physical layer

Bus 0 Bus 1
Bus 2

Bus 3 Bus 6

Bus 5

Bus 4 Bus 7

Bus 8

Bus 9

Bus 10

Bus 7

Bus 8

Bus 9

Bus 10

Bus 0
Bus 1

Bus 2

Bus 4

Bus 5

Bus 3
Bus 6

Fig. 2. HPC-based distributed computing system for distributed ACOPF.
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the HIL testbed in Fig. 3.

1) Computing Hardware and Software
As presented in Fig. 3, we use actual edge unit RPi to per‐

form distributed computation. The agent updating equations
in (16)-(25) and 1-hop P2P communication are programmed
using C++ that runs on the RPi in real time. In addition to
the actual seven RPis used, we augment the rest of the sys‐
tem with virtual MATLAB computing agents. All of the vir‐
tual agents run concurrently on a single PC with MATLAB
2020a environment, Intel i7 processor, and 16 GB RAM.
Overall, this HIL testbed is programmed to be an event-driv‐
en system with a sampling time of 1 ms, i.e., all agents will
not perform current iteration variable updates until all the in‐
put variables from its 1-hop neighbors are received.
2) P2P Communication over WiFi

The P2P communications in the HIL testbed are classified
into three types: ① RPi to RPi communication is implement‐
ed using user datagram protocol (UDP) over 5 GHz WiFi;
② RPi to MATLAB virtual agent communication is imple‐
mented using UDP over the Ethernet; ③ the communication
among MATLAB virtual agents is implemented using the in-
RAM variable assignment.

Figure 4 presents the P2P communication logistics be‐
tween agent j and its 1-hop neighbors, where A and C are
the data packets. The data packet A or C is sent once re‐
quested, and each agent will not request data packet unless it
is ready to perform the corresponding iteration update. This
on-demand UDP P2P communication logistics can avoid un‐
necessary UDP broadcasting, excessive re-sending, and UDP
buffer of flooding receiver.
3) Emulation Capability

With actual edge unit RPi and UDP over WiFi used in the
HIL testbed, one can investigate the communication perfor‐
mance of the proposed algorithm by quantifying and analyz‐
ing the communication performance of the distributed RPi
agents.

V. EXPERIMENTAL RESULTS

In this section, we implement the proposed algorithm on
both HPC-based platform and HIL testbed to benchmark its
performance. The selected test systems are 11 kV 22-bus
[32], 12.7 kV 69-bus [33], 11 kV 85-bus [34], and 12.5 kV
141-bus [35] radial distribution systems. The generation cost
function parameters of the slack bus are a= 0.04 b=
20 and c= 0. The references of ACOPF solution are ob‐
tained via three commonly used centralized optimization
methods, i. e., interior point method (IPM), sequential qua‐
dratic programming (SQP) method, and active-set method
(ASM). These centralized benchmark algorithms are imple‐
mented using the library provided by the MATLAB Optimi‐
zation Toolbox.

A. Validation Using HPC-based Platform

The HPC-based platform presented in Section IV-A is
used to validate the proposed algorithm. The proposed algo‐
rithm is used to solve the ACOPF problem on the four se‐
lected test systems, i.e., 22-bus, 69-bus, 85-bus, and 141-bus
test systems. Figure 5 presents the results of the ACOPF
problem (22-bus test system), where P* and Q* are the opti‐
mal real power and reactive power, respectively. Figure 5(a)
depicts the convergence real and reactive power outputs of
the slack bus. The algorithm converges at iteration 3098,
whereas the total time used is summarized in Table II. Fig‐
ure 5(b) shows the bus voltage at each bus, in which we ob‐
serve that the voltage drops along the feeder. Figure 5(c)
presents the incremental cost at each bus, in which we find
that the lateral buses have higher incremental costs. This phe‐
nomenon is caused by an increase of line losses. Finally, the
maximum violation progression of the constraint is rendered in
Fig. 5(d). Note that the threshold for the maximum con‐
straint violation is set to be 10-3 per unit.

Figure 6(a) presents the convergence of real and reactive
power outputs of the slack bus in 69-bus test system. The al‐
gorithm converges at iteration 2386, whereas the total time
used is summarized in Table II. Figure 6(b) shows the bus
voltage at each bus, in which the inconsistencies in voltage
drop at buses 28 and 66 are observed. This is because bus
28 is a branch head that connects to bus 3, and bus 66 is an‐
other branch head that connects to bus 11. Figure 6(c) pres‐
ents the incremental cost at each bus. The discontinuities of
the incremental cost increase are also caused by the branch‐
ing effect. Finally, the maximum violation progression of the
constraint is presented in Fig. 6(d).
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Fig. 4. Illustration of P2P communication logistics.
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Figure 7(a) presents the convergence of real and reactive
power outputs of the slack bus in 85-bus test system. The al‐
gorithm converges at iteration 4842, whereas the total time
used is summarized in Table II. Figure 7(b) shows the bus
voltage at each bus. The discontinuities of the voltage drop
are also caused by the branching effect. Figure 7(c) presents

the incremental cost at each bus. The discontinuities of the
incremental cost increase are caused by the branching effect.
Finally, the maximum violation progression of the constraint
is presented in Fig. 7(d).

Figure 8(a) presents the convergence of real and reactive
power outputs of the slack bus in 141-bus test system. The
algorithm converges at iteration 2690, whereas the total time
used is summarized in Table II. Figure 8(b) shows the bus
voltage at each bus. The discontinuities of the voltage drop
are also caused by the branching effect. Figure 8(c) presents
the incremental cost at each bus. The discontinuities of the
incremental cost increase are caused by the branching effect.
Finally, the maximum violation progression of the constraint
is presented in Fig. 8(d).

To validate the accuracy of the proposed algorithm, we
calculate the mean absolute error of the optimization vari‐
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TABLE II
PERFORMANCE STATISTICS OF PROPOSED ALGORITHM.

Test
system

22-bus

69-bus

85-bus

141-bus

Iteration

3098

2386

4842

2690

CPU
time

(s)

1.53

1.22

2.50

1.52

Communication
time (s)

189.30

411.94

1053.10

968.58

Total
time (s)

190.83

413.16

1055.60

970.10

Receiving
data rate
(Mbit/s)

1.41

0.50

0.40

0.24

Sending
data rate
(Mbit/s)

0.56

0.20

0.16

0.10
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Fig. 6. Distributed ACOPF results (69-bus test system). (a) Convergence
of slack bus. (b) Bus voltage. (c) Incremental cost at each bus. (d) Maxi‐
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ables {pqvℓPQ} with respect to the three benchmark al‐
gorithms, i. e., IPM, SQP, and ASM. Accurate comparisons
of the ACOPF solution between the reference algorithms and
the proposed algorithm in the test systems are summarized
in Table III. We found that the mean absolute error of the
proposed algorithm is on the 10-4 scale in average. Accord‐
ing to the results in Table III, the proposed algorithm ap‐
pears to be consistent with the reference algorithms.

The algorithm performances, in terms of iterations, CPU
time, communication time, total execution time, receiving da‐
ta rate, and sending data rate, are summarized in Table III.

CPU time is the total amount of time when the processor
is dedicated to performing algorithm updates, whereas com‐
munication time is the total amount of time when the proces‐
sor is dedicated to communicating, e.g., waiting, sending, lis‐
tening. The total execution time of the agent is a summation
of CPU time and communication time. Based on these re‐
sults, we first observe that there is no obvious correlation be‐
tween iterations and system sizes, e.g., the required iteration
grows as system size increases. This is due to the fact that
these ACOPF problems are different, e. g., different loading
conditions, constraints, topologies, etc. Thus, these ACOPF
problems have different convexity levels. The proposed algo‐
rithm is configured to use fixed gradient step sizes for four
ACOPF problems. Since the gradient step sizes are the
same, it will take more time to converge in a less convex
problem. This explains the reason why the 85-bus test sys‐
tem takes more iterations than the 141-bus test system. We
can clearly observe that the processor spends the majority of
the execution time (>99%) on communication. This is due to
the inefficient communication handling among the MATLAB
workers. Therefore, a more representative study is carried
out using the HIL testbed and is presented in Section V-B.
Besides, we find that the receiving and sending data rates
drop as the system size grows. This is because the agent exe‐

cution time per iteration increases as system size grows. As
presented in Fig. 9(a), we can see that the total computation
time, i. e., execution time, grows linearly as the system size
grows. Additionally, the average agent receiving and sending
data rates per iteration for all cases are presented in Fig. 9
(b). We find that both data rates stay the same. Since each
agent only communicates with its 1-hop neighbor, the num‐
ber of 1-hop neighbors does not grow as system size grows.
The average 1-hop neighbors that each agent has in four cas‐
es are 1.91, 1.97, 1.98, and 1.99, respectively. The reason
why this number is close to 2 is that the majority of the
agents only have one ancestor node and one children node,
and some of the“endpoint”agent does not have children
nodes, which contributes to the great scalability in Fig. 9(b).

B. Algorithm Evaluation via HIL Testbed

The HIL testbed presented in Section IV-B is used to eval‐
uate the communication performance of the proposed algo‐
rithm. The 141-bus test system is selected for the evaluation.
Seven available RPis are randomly deployed among the 141
buses, i.e., buses 14, 22, 39, 77, 96, 123, and 138. To evalu‐
ate the communication characteristics of the algorithm, we
use the Wireshark software to capture the network traffic.
Figure 10 shows the example P2P communication between
bus 39 RPi agent (192.168.1.103) and the bus 40 MATLAB
agent (192.168.1.26). P2P communication logistics are imple‐
mented according to Fig. 4. Recall the data packets A and C
defined in Section III-B, i.e., for any agent j. The P2P traffic
ⓐ in Fig. 10 is when RPi agent requests data A from its an‐
cestor MATLAB agent (2-B packet) and receives the data A
(88-B packet). The P2P traffic ⓑ is when MATLAB agent
requests data C from its children RPi agent (1-B packet) and
receives the data C (72-B packet). Note that this request is
responded at the fourth request attempt. In Fig. 10, Len is the
length in byte.
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TABLE III
MEAN ABSOLUTE ERRORS OF ACOPF SOLUTIONS

Test system

22-bus

69-bus

85-bus

141-bus

Average

Mean absolute error

Versus IPM

9.96´ 10-4

9.92´ 10-4

1.01´ 10-3

9.88´ 10-4

9.97´ 10-4

Versus SQP

9.47´ 10-4

9.39´ 10-4

1.12´ 10-3

8.99´ 10-4

9.76´ 10-4

Versus ASM

9.90´ 10-4

9.72´ 10-4

1.00´ 10-3

9.91´ 10-4

9.88´ 10-4

a

b

Time (s)
5.943141
5.944326
5.944847
5.946462
5.947994
5.949356
5.950146

MATLAB agent
(192.168.1.26)

MATLAB agent
(192.168.1.103)

40003
50480
50480
50480
50480
50480
60003

53782
50003
30003
30003
30003
30003
38253

40003
50480
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Fig. 10. Example captured P2P communication traffic.
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Figure 11 presents the receiving and sending data rates of
RPi agent during the algorithm execution. Both data rates
are measured in terms of network bandwidth usage, i. e.,
Mbit/s. Note that both rates include the request and data traf‐
fic. The average receiving and sending data rates of the bus
39 RPi agent are 0.085 and 0.062 Mbit/s, respectively. More‐
over, the average per RPi agent algorithm communication
footprint is in terms of iteration (2690), CPU time (2.69 s),
total execution time (187.03 s), receiving data rate (0.0849
Mbit/s) and sending data rate (0.0599 Mbit/s). Based on the
results, we know that the ACOPF problem is solved in
187.03 s. Similar to the results obtained from the HPC-based
platform, the CPU time only accounts for 1.44% of the total
execution time. The average per agent receiving and sending
data rates are 0.0849 Mbit/s and 0.0599 Mbit/s, respectively.

VI. CONCLUSION

In summary, we focus on the SOCP relaxed ACOPF prob‐
lems of the radial distribution systems and microgrids. The
proposed ACOPF solver is developed based on the augment‐
ed Lagrangian and PDS method. In addition to the develop‐
ment of the algorithm, two distributed computing plat‐
forms, i.e., HPC based and RPi based HIL platforms, are de‐
veloped to validate and benchmark the proposed algorithm.
Upon the prototyping on two distributed computing plat‐
forms, the proposed algorithm is deployed to four typical ra‐
dial IEEE distribution systems. Experimental results and
comparative analysis indicate that: ① the solution of the pro‐
posed algorithm is accurate and consistent with mainstream
ACOPF algorithms; ② the agent computation time of the
proposed algorithm increases linearly as the system size
grows; ③ the proposed algorithm has a low communication
overhead, i.e., smaller than 0.1 Mbit/s.

REFERENCES

[1] J. Carpentier, “Contribution to the economic dispatch problem,” Bulle‐
tin de la Societe Francoise des Electriciens, vol. 3, no. 8, pp. 431-
447, Aug. 1962.

[2] M. B. Cain, R. P. Oneill, A. Castillo et al., “History of optimal power
flow and formulations,” Federal Energy Regulatory Commission, vol.
1, pp. 1-36, Jan. 2012.

[3] D. K. Molzahn, F. Dorfler, H. Sandberg et al., “A survey of distribut‐
ed optimization and control algorithms for electric power systems,”
IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2941-2962, Nov.
2017.

[4] Y. Wang, S. Wang, and L. Wu, “Distributed optimization approaches
for emerging power systems operation: a review,” Electric Power Sys‐
tem Research, vol. 144, pp. 127-135, Mar. 2017.

[5] M.-Y. Chow, Y. Zhang, and N. Rahbari-Asr, “Consensus-based distrib‐
uted scheduling for cooperative operation of distributed energy resourc‐
es & storage devices in smart grids,” IET Generation, Transmission
and Distribution, vol. 10, pp. 1268-1277, Apr. 2016.

[6] X. Hu, T. Liu, C. He et al., “A real-time power management tech‐

nique for microgrid with flexible boundaries,” IET Generation, Trans‐
mission and Distribution, vol. 14, no. 16, pp. 3161-3170, Aug. 2020.

[7] M. Batool, S. Islam, and F. Shahnia, “Market model for clustered mi‐
crogrids optimisation including distribution network operations,” IET
Generation, Transmission and Distribution, vol. 13, no. 22, pp. 5139-
5150, Nov. 2019.

[8] A. Alsabbagh and C. Ma, “Distributed charging management of elec‐
tric vehicles considering different customer behaviors,” IEEE Transac‐
tions on Industrial Informatics, vol. 16, no. 8, pp. 5119-5127, Aug.
2020.

[9] B. Chen, Z. Ye, C. Chen et al., “Toward a MILP modeling framework
for distribution system restoration,” IEEE Transactions on Power Sys‐
tems, vol. 34, no. 3, pp. 1749-1760, May 2019.

[10] Z. Cheng, J. Duan, and M.-Y. Chow, “Reliability assessment and com‐
parison between centralized and distributed energy management sys‐
tem in islanding microgrid,” in Proceedings of 2017 North American
Power Symposium (NAPS), Morgantown, USA, Sept. 2017, pp. 1-6.

[11] Z. Cheng, J. Duan, and M. -Y. Chow, “To centralize or to distribute:
that is the question: a comparison of advanced microgrid management
systems,” IEEE Industrial Electronics Magazine, vol. 12, no. 1, pp. 6-
24, Mar. 2018.

[12] A. Nedi and J. Liu, “Distributed optimization for control,” Robotics
and Autonomous System, vol. 1, no. 1, pp. 77-103, May 2018.

[13] T. Yang, X. Yi, J. Wu et al., “A survey of distributed optimization,”
Annual Reviews in Control, vol. 47, pp. 278-305, Mar. 2019.

[14] Y. Zhang, N. Rahbari-Asr, J. Duan et al., “Day-ahead smart grid coop‐
erative distributed energy scheduling with renewable and storage inte‐
gration,” IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp.
1739-1748, Oct. 2016.

[15] A. Y. S. Lam, B. Zhang, and D. N. Tse, “Distributed algorithms for
optimal power flow problem,” in Proceedings of 2012 IEEE 51st
IEEE Conference on Decision and Control (CDC), Maui, USA, Feb.
2012, pp. 430-437.

[16] E. Dall’Anese, H. Zhu, and G. B. Giannakis, “Distributed optimal
power flow for smart microgrids,” IEEE Transactions on Smart Grid,
vol. 4, no. 3, pp. 1464-1475, Sept. 2013.

[17] T. Erseghe, “Distributed optimal power flow using ADMM,” IEEE
Transactions on Power Systems, vol. 29, no. 5, pp. 2370-2380, Sept.
2014.

[18] Q. Peng and S. H. Low, “Distributed optimal power flow algorithm
for radial networks, I: balanced single phase case,” IEEE Transactions
on Smart Grid, vol. 9, no. 1, pp. 111-121, Jan. 2018.

[19] R. Baldick, B. Kim, C. Chase et al., “A fast distributed implementa‐
tion of optimal power flow,” IEEE Transactions on Power Systems,
vol. 14, no. 3, pp. 858-864, Aug. 1999.

[20] D. Hur, J. -K. Park, and B. Kim, “Evaluation of convergence rate in
the auxiliary problem principle for distributed optimal power flow,”
IET Proceedings: Generation, Transmission and Distribution, vol. 149,
no. 5, p. 525, May 2002.

[21] F. J. Nogales, F. J. Prieto, and A. J. Conejo, “A decomposition method‐
ology applied to the multi-area optimal power flow problem,” Annals
of Operations Research, vol. 120, pp. 99-116, Apr. 2003.

[22] J. Guo, G. Hug, and O. K. Tonguz, “Intelligent partitioning in distrib‐
uted optimization of electric power systems,” IEEE Transactions on
Smart Grid, vol. 7, no. 3, pp. 1249-1258, May 2016.

[23] S. Kar, G. Hug, J. Mohammadi et al., “Distributed state estimation
and energy management in smart grids: a consensus + innovations ap‐
proach,” IEEE Journal of Selected Topics in Signal Processing, vol. 8,
no. 6, pp. 1022-1038, Dec. 2014.

[24] S. Mhanna, A. C. Chapman, and G. Verbi, “Component-based dual de‐
composition methods for the OPF problem,” Sustainable Energy,
Grids and Networks, vol. 16, pp. 91-110, Dec. 2018.

[25] M. Zhao, Q. Shi, Y. Cai et al., “Distributed penalty dual decomposi‐
tion algorithm for optimal power flow in radial networks,” IEEE
Transactions on Power Systems, vol. 35, no. 3, pp. 2176-2189, May
2020.

[26] A. Engelmann, Y. Jiang, T. Muhlpfordt et al., “Toward distributed
OPF using ALADIN,” IEEE Transactions on Power Systems, vol. 34,
no. 1, pp. 584-594, Jan. 2019.

[27] N. Meyer-Huebner, M. Suriyah, and T. Leibfried, “Distributed optimal
power flow in hybrid ACDC grids,” IEEE Transactions on Power Sys‐
tems, vol. 34, no. 4, pp. 2937-2946, Jul. 2019.

[28] W. Lu, M. Liu, S. Lin et al., “Incremental-oriented ADMM for distrib‐
uted optimal power flow with discrete variables in distribution net‐
works,” IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6320-
6331, Nov. 2019.

[29] J. Huang, Z. Li, and Q. Wu, “Fully decentralized multiarea reactive

Sending data rate15000
12500
10000
7500
5000
2500

1000 50 200150
t (s)

Ra
te

 (b
yt

e/
s)

Receiving data rate

Fig. 11. Receiving and sending data rates of RPi agent.

1422



CHENG et al.: COLLABORATIVE DISTRIBUTED AC OPTIMAL POWER FLOW: A DUAL DECOMPOSITION BASED ALGORITHM

power optimization considering practical regulation constraints of de‐
vices,” International Journal of Electrical Power & Energy Systems,
vol. 105, pp. 351-364, Feb. 2019.

[30] S. H. Low, “Convex relaxation of optimal power flow part I: formula‐
tions and equivalence,” IEEE Transactions on Control of Network Sys‐
tems, vol. 1, no. 1, pp. 15-27, Mar. 2014.

[31] Y. Nesterov, “Primal-dual subgradient methods for convex problems,”
Mathematical Programming, vol. 120, no. 1, pp. 221-259, Aug. 2009.

[32] M. R. Raju, K. R. Murthy, and K. Ravindra, “Direct search algorithm
for capacitive compensation in radial distribution systems,” Interna‐
tional Journal of Electrical Power & Energy Systems, vol. 42, no. 1,
pp. 24-30, Nov. 2012.

[33] D. Das, “Optimal placement of capacitors in radial distribution system
using a fuzzy-GA method,” International Journal of Electrical Power
& Energy Systems, vol. 30, no. 6, pp. 361-367, Jul. 2008.

[34] D. Das, D. Kothari, and A. Kalam, “Simple and efficient method for
load flow solution of radial distribution networks,” International Jour‐
nal of Electrical Power & Energy Systems, vol. 17, no. 5, pp. 335-
346, Oct. 1995.

[35] H. Khodr, F. Olsina, P. D. O. D. Jesus et al., “Maximum savings ap‐
proach for location and sizing of capacitors in distribution systems,”
Electric Power Systems Research, vol. 78, no. 7, pp. 1192-1203, Jul.

2008.

Zheyuan Cheng received the B. S. degree in electrical engineering from
Nanjing University of Aeronautics and Astronautics, Nanjing, China, in
2015, and the Ph. D. degree in electrical engineering from North Carolina
State University, Raleigh, USA, in 2020. He has been working as a Senior
Engineer at Quanta Technology, LLC, Raleigh, USA, since 2021. He is a re‐
cipient of the 2021 Best Paper Award from IEEE Industrial Electronics Mag‐
azine. His research interests include distributed energy resources protection
and control.

Mo-Yuen Chow is a Professor in the Department of Electrical and Comput‐
er Engineering at North Carolina State University, Raleigh, USA. He has es‐
tablished the Advanced Diagnosis, Automation, and Control Laboratory. He
is an IEEE Fellow. He has received the IEEE Region-3 Joseph M. Bieden‐
bach Outstanding Engineering Educator Award, the IEEE Industrial Electron‐
ics Society Anthony J Hornfeck Service Award. He is a Distinguished Lec‐
turer of IEEE IES. He has been working several projects related to the cy‐
ber-physical microgrids since 2008. His research interests include distribut‐
ed control and management on smart microgrids, batteries, and mechatron‐
ics systems.

1423


