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Data-driven Probabilistic Static Security
Assessment for Power System Operation

Using High-order Moments
Guanzhong Wang, Zhiyi Li, Feng Zhang, Ping Ju, Hao Wu, and Changsen Feng

Abstract——In this letter, a new formulation of Lebesgue inte‐
gration is used to evaluate the probabilistic static security of
power system operation with uncertain renewable energy gener‐
ation. The risk of power flow solutions violating any pre-de‐
fined operation security limits is obtained by integrating a semi-
algebraic set composed of polynomials. With the high-order mo‐
ments of historical data of renewable energy generation, the in‐
tegration is reformulated as a generalized moment problem
which is then relaxed to a semi-definite program (SDP). Finally,
the effectiveness of the proposed method is verified by numeri‐
cal examples.

Index Terms——Data-driven analysis, probabilistic static securi‐
ty assessment, power system operation, distributionally robust
approach.

I. INTRODUCTION

WITH rapid adoption of intermittent renewable energy
sources, e.g., wind power and solar generation, uncer‐

tainties in renewable energy generation have been threaten‐
ing the security of power system operation. Probabilistic stat‐
ic security assessment (PSSA) is a well-established way to
characterize the influence of those uncertainties on power
system operation [1]. The static security assessment is wide‐
ly used to check the overvoltage/undervoltage condition of
buses and the overload status of lines and transformers in
the present condition of power system or some contingency
operation points due to component outages or fluctuations of
renewable energy generation in the near future. In this letter,
we focus on the fluctuation and uncertainty of the renewable
energy generation.

In common practices of power engineering, only partial

statistical properties, e. g., the mean or first-order moment,
the variance or second-order moment and high-order mo‐
ment, are available for modeling stochastic renewable energy
generation [2]. Thus, the probability distributions (PDs) of
power system operation states are uncertain where it is of
practical significance to evaluate the worst-case probability
of overload or overvoltage/undervoltage condition among all
the admissible PDs. To this end, the moment-based distribu‐
tionally robust optimization methods are proposed in the lit‐
erature [3]. However, existing moment-based methods are on‐
ly applicable to either linear power flow equations or PDs
with the first two moments, eventually compromising the
trustworthiness of PSSA.

This letter aims to perform high-order (more than 2) mo‐
ment-based distributionally robust probabilistic static securi‐
ty assessment (DR-PSSA) based on nonlinear power flow
equations (NPFEs) with uncertain input parameters. The DR-
PSSA is formulated as a generalized moment problem [4],
which is then relaxed to a semi-definite program (SDP).

II. PROBLEM FORMULATION

This section gives a brief introduction of the DR-PSSA
problem in terms of a single continuous random parameter
qÎΔÍR, where Δ is the range or set of random parameters.

Mathematically, when uncertain parameters are incorporat‐
ed into NPFEs, PSSA is aimed at evaluating the probability
of normal power flow solutions violating any pre-defined op‐
eration security limits. K(q) and Kbad (q) are defined as the
feasible solutions of power flow equations and the insecure
solutions, i.e., at least one security limit is violated, pertinent
to random variable q whose PD is Pq, respectively. Accord‐
ingly, PSSA is equivalent to the integration (Lebesgue inte‐
gration) of q over Kbad (q):

Pr = ∫
Kbad (q)

dPq (1)

where Pr is the calculated probability that achieves a value
between 0 and 1. Assuming that NPFEs are solvable for any
qÎΔ, the integration of q over K(q) always equals 1.

As NPFEs are usually formulated in rectangle coordinate
in the existing literature [1], and they can be expanded into
a set of equivalent second polynomial inequalities with a
doubled size, K(q) and Kbad (q) both can be represented as a
semi-algebraic set of polynomials [4]. Suppose that
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K(q)={qÎΔgi (vq)³ 0i = 12} (2)

where {gi (vq)³ 0i = 12} is a unified form of NPFEs;
and v =[ef ]T is the state vector consisting of real and imagi‐
nary parts of each bus voltage, i.e., e and f. The probability
of any branch flow or bus voltage exceeding any security
limit can be evaluated through representing Kbad (q) as a set
of inequalities in state variables. For example, to evaluate
the undervoltage probability of each bus by comparing with
its limit Vi0, Kbad (q) can be stated as:

Kbad (q)={g0 (v)³ 0}K(q)={qÎΔgi (vq)³ 0i = 01} (3)

where g0 (v)=V 2
i0 - e2

i - f 2
i , and ei and fi are the ith elements

of e and f, respectively.
Next, we focus on how to calculate

-
Pr, i. e., the upper

probability over all the admissible PDs with given moments
of power flow solutions in Kbad (q). The operation risk can be
evaluated by

-
Pr.
-
Pr can be regarded as the optimum in the

following semi-infinite linear optimization problem [5]:
-
Pr= sup

Pvq
∫

Kbad (q)
dPvq (4)

s.t. ∫
K(q)

dPvq = 1 (5)

∫
K(q)

qidPvq =mi i = 12 (6)

where Pvq is the joint PD of v and q; and mi is the provided
ith moment of q. The semi-infinite linear optimization prob‐
lem (4) - (6) is referred to as the generalized moment prob‐
lem [4].

Hence, DR-PSSA maximizes the integration on Kbad (q), i.e.,
(4), by finding Pvq in the worst case supported on K(q), i.e.,
(5), while respecting the moment constraint, i.e., (6). More‐
over, if multiple violations are encountered, the violations
can be directly added into the set Kbad (q), which means that
the proposed method can deal with the intersection set of
multiple violations in the set Kbad (q).

III. COMPUTATIONALLY TRACTABLE SDP RELAXATIONS

A. Reformulation of DR-PSSA

First, define x =[vTq]T =[x1x2xn]
T. DR-PSSA can be

reformulated as an equivalent generalized moment problem
through introducing an auxiliary measure P of x based on
Theorem 3.1 in [6], where PD is regarded as a special in‐
stance of measures. The proposed DR-PSSA problem, i. e.,
(4)-(6), is then reformulated as (7)-(9), where (8) is the com‐
pact form of (5) and (6) when m0 = 1.

-
Pr= sup

PPx

∫
Kbad (q)

dP (7)

s.t. ∫
K(q)

qidPx =mi i = 01 (8)

ì

í

î

ïï
ïï

P £Px

PÎΜ (Kbad (q))

PxÎΜ (K(q))
(9)

where Px is the PD of random variable q whose supporting
set is K(q); and Μ (K(q)) is the set of all possible PDs of q.

P £Px means ∫
Ks

dP £ ∫
Ks

dPx for any Ks ÍRn. PxÎM (K(q))

means ∫
Kc

dPx = 0 for any K c  K(q) = Æ, K c Í Rn. PÎ

Μ (Kbad (q)) is defined in the same way as PxÎM (K(q)).

B. SDP Relaxations

DR-PSSA can be approximated as
- ---
Prd by performing

d-order SDP relaxations of yx ={yxα} and y={yα}, respective‐
ly, of which moment sequences correspond to Px and P [7],
as shown in (10)-(14). yxα is the approximated moment with

an order up to 2d for Px, i.e., yxα = ∫
K(q)

xαdPx, and xα = xα1

1 xα2

2 ×

× xαn

n with∑
i = 1

n

α i £ d, where α i is an integer and d is also an

integer larger than the degree of polynomials in K(q) and
Kbad (q). yα is the approximated moment with an order up to

2d for P, i.e., yα = ∫
Kbad (q)

xαdP.

- ---
Prd= sup(y0) (10)

s.t.

{yx0 = 1

yxαi
=mi i = 12 (11)

Md (yx - y)³ 0 (12)

{Md (y)³ 0

Md - rj
(y; gj)³ 0 j = 01 (13)

{Md (yx)³ 0

Md - rj
(yx ; gj)³ 0 j = 12 (14)

where y0 is one of the decision variables, which denotes the
probability or the security risk; 2rj is the degree of polynomi‐
al gj in K(q) or Kbad (q); and Md and Md - rj

are the moment

matrix and localizing matrix [4], [7], respectively, whose en‐
tries are deterministic linear combinations of available mo‐
ment sequences. In addition, a larger d generally leads to a
more accurate approximation of DR-PSSA while the order
of given moments mi (i = 12) is set to be smaller than
2d [6].

The processes of constructing SDP relaxations (10) - (14)
for the generalized moment problem (7) - (9) are detailed as
follows. The objective function (10) and linear constraints
(11) are derived by substituting moment sequences y and yx

into (7) and (8), respectively. The semi-definite constraints
(12) - (14) are sufficient conditions for satisfying (9) accord‐
ing to Lemma 2.4 and Theorem 2.2 in [6].

The proposed SDP relaxations lead to computationally
tractable convex optimization problems. For any xÎRn, Md

is a k ´ k positive semi-definite matrix in d-order SDP relax‐
ations, where k = (2n+ d)! ((2n)!d!). Although the proposed
method would suffer the curse of dimensionality, we can fur‐
ther take advantage of the inherent sparsity of NPFE to facil‐
itate its implementation in large-scale applications [7]. Note

1234



WANG et al.: DATA-DRIVEN PROBABILISTIC STATIC SECURITY ASSESSMENT FOR POWER SYSTEM OPERATION USING...

that the sparsity-based method for optimal power flow prob‐
lem proposed in [7] cannot be directly invoked to tackle the
curse of dimensionality of the proposed method, because un‐
certain parameters in this paper bring more complexity than
those in [7]. Due to limited space, we will introduce the so‐
lution to tackle the curse of dimensionality of the proposed
method in our future work.

IV. NUMERICAL EXAMPLES

Numerical experiments are carried out based on the re‐
vised 4-bus system in [8] (corresponding to case4gs in the
MATPOWER library), where bus 1 is the slack bus, all the
loads in the original system are tripled, and the active power
output of the generator at bus 4 is doubled. An uncertain ac‐
tive power generation source is added at bus 2, which fea‐
tures a continuous uniform distribution on the interval of
[-5 p.u., 5 p.u.]. The degree of NPFEs is set to be 2 [7].

In this section, we intend to validate the effectiveness of
the proposed method through setting the Monte Carlo simula‐
tion as a benchmark. To be specific, we calculate the proba‐
bility of voltage magnitude at bus 2 (denoted as V2 in Fig.
1) being lower than a pre-defined limit V20 by the two meth‐
ods. The solid and dashed lines in Fig. 1 denote the results
pertinent to DR-PSSA with two- and four-order moments of
the aforementioned uniform distribution, respectively, which
indicate that the results will be less conservative if the order
of moments becomes higher. Moreover, the dotted line in
Fig. 1 depicts the simulation results obtained from 2000 sce‐
narios of the uniform distributions, which is always a lower
bound of DR-PSSA with various order moments. Thus, the
accuracy of the results of the DR-PSSA is also confirmed.

In addition, all of the three probabilities stay at the same
value when the voltage magnitude is lower than 0.85 p.u. or
higher than 0.94 p.u., which means the operation interval of
voltage magnitudes pertinent to the pre-defined active power
variations, i.e., [-5 p.u., 5 p.u.], is [0.85 p.u., 0.94 p.u.].

V. CONCLUSION

A DR-PSSA method for static security assessment of pow‐
er system operation based on the partial moments of uncer‐
tain parameters is proposed in this letter. The proposed meth‐
od improves the ability of moment-based distributionally ro‐
bust optimization in dealing with nonlinear models and high-
order moment, making the static security assessment of pow‐

er system operation more robust to uncertainties. Numerical
examples show that distribution uncertainties in power sys‐
tem operation are effectively incorporated in DR-PSSA. As
the follow-up study, we will explore more structural informa‐
tion, e.g., symmetry and unimodality, embedded in the PDs
of uncertain parameters to improve the computation perfor‐
mance of the proposed method.
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