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Abstract——As typical prosumers, commercial buildings
equipped with electric vehicle (EV) charging piles and solar
photovoltaic panels require an effective energy management
method. However, the conventional optimization-model-based
building energy management system faces significant challenges
regarding prediction and calculation in online execution. To ad‐
dress this issue, a long short-term memory (LSTM) recurrent
neural network (RNN) based machine learning algorithm is pro‐
posed in this paper to schedule the charging and discharging of
numerous EVs in commercial-building prosumers. Under the
proposed system control structure, the LSTM algorithm can be
separated into offline and online stages. At the offline stage, the
LSTM is used to map states (inputs) to decisions (outputs)
based on the network training. At the online stage, once the cur‐
rent state is input, the LSTM can quickly generate a solution
without any additional prediction. A preliminary data process‐
ing rule and an additional output filtering procedure are de‐
signed to improve the decision performance of LSTM network.
The simulation results demonstrate that the LSTM algorithm
can generate near-optimal solutions in milliseconds and signifi‐
cantly reduce the prediction and calculation pressures com‐
pared with the conventional optimization algorithm.

Index Terms——Building energy management system (BEMS),
electric vehicle (EV), long short-term memory (LSTM), recur‐
rent neural network, machine learning, prosumer.

NOMENCLATURE

A. Indices

f Mapping between input and output by LSTM

H, H Set of time steps of rolling horizon, and length
of rolling horizon

l Time-dependent hypothesis

N, i Number of charging piles installed in a park‐
ing lot, and index of each charging pile

T, t, τ Number of time steps in one day, index of
each time step, and length of each time step

^, ~ Indicators of estimated and filtered values

B. Variables

M im
g , M ex

g Complementary 0-1 binary variables to ensure
that Pg has only one state at any time step

M c
EVi, M d

EVi Complementary 0-1 binary variables to ensure
that PEVi has only one state at any time step

PEVi Charging or discharging power of EV connect‐
ed to the ith charging pile, denoted as the ith EV

P c
EVi, P d

EVi Charging (non-negative) and discharging (non-
positive) power of the ith EV

Pg Exchanged power between commercial build‐
ing and grid

P im
g , P ex

g Imported (non-negative) and exported (non-
positive) Pg

si State of charge (SOC) of the ith EV

C. Parameters

ηc
i ηd

i Efficiencies of charging and discharging pro‐
cesses

-
b, -b Upper and lower limits of Pg

Ci Battery capacity of the ith EV

cTOU, cF Time-of-use (TOU) tariff and feed-in tariff

Pd Electrical demand of commercial building
(non-negative)

PPV PV output (non-negative)

P̄ c
EVi, P̄ d

EVi Rated values of charging and discharging pow‐
er

S dep
i Desired SOC of the ith EV at departure time

S max
i , S min

i Upper and lower limits of the ith EV SOC

t arr
i , t dep

i Arrival time and departure time of the ith EV

tps, tpe Start time and end time of peak period of
TOU tariff
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I. INTRODUCTION

TO mitigate environmental pollution, energy crisis, and
climate change, the development of distributed photo‐

voltaics (PVs), electric vehicles (EVs), and other distributed
energy resources (DERs) has become the focus of societal at‐
tention in recent years [1], [2]. With the growing number of
DERs at the load side, an increasing number of power users
have changed from conventional consumers to prosumers
(consumers with power generation capacity) [3]. As pointed
out in [4], the active participation of prosumers at the end-
user energy side is important for the global movement to‐
wards a society with sustainable renewable energy. Commer‐
cial buildings equipped with EV charging piles and solar PV
panels are one of the typical prosumers in the grid. Under
the incentives of electricity price, the energy use of these
buildings can be optimized by the building energy manage‐
ment system (BEMS) [5]. Thus, the energy management of
commercial buildings has significant potential for electricity
cost saving, load leveling, and distributed generation con‐
sumption [6], [7].

The energy management undertaken by the BEMS is a se‐
quential decision-making process that depends on the charac‐
teristics of the DERs. The existing research usually obtains
optimal building energy management results by formulating
an optimization model. This kind of method is model-driven
and strictly follows the physical laws. Owing to the different
charging and discharging efficiencies of EVs, the EV-related
BEMS optimization model usually needs to introduce com‐
plementarity constraints, which guarantee that the charging
and discharging of each EV are mutually exclusive [8].
Therefore, the BEMS optimization problem is non-convex
and is hard to solve. Many methods have been proposed to
solve the problem, including mixed-integer linear program‐
ming (MILP) [9], [10], intelligent algorithms [11], [12], itera‐
tive-based smoothing methods [13], and exact penalty meth‐
ods [14]. However, to guarantee the coupling constraints of
each EV’s state of charge (SOC) over adjacent time steps,
the aforementioned BEMS optimization models [9]-[14] need
to be solved in a finite time horizon. As such, with the in‐
creasing number of dispatchable EVs and considered time
steps, the BEMS faces a considerable amount of calculation
pressure. In addition, the online solution of the optimization
model depends on accurate prediction in the horizon, which
is also difficult to obtain.

With the rapid growth of advanced computing infrastruc‐
tures in recent years, machine learning methods appear to be
suitable for overcoming the limitations of optimization mod‐
els. Instead of building a physical model with complex con‐
straints, these methods can acquire the tacit knowledge and
formulate a mapping between the input and output by per‐
forming successive transformations of historical data. Subse‐
quently, they can make decisions quickly in online execu‐
tion, which greatly reduces the calculation pressure of BE‐
MS in online execution. To achieve an efficient home-based
demand response, a deep reinforcement learning (DRL)
method based on a neural network and Q-learning algorithm
is developed in [15]. By introducing a deep neural network
to approximate the action-value function, such DRL-based

methods can avoid the drawback of dimensionality, which is
the main limitation of conventional reinforcement learning
(RL) method [16], [17]. The deep policy gradient algorithm,
as part of the DRL method, is proposed in [18] to optimize
the usage time and interruption frequency of multiple house‐
hold electric devices in milliseconds. Reference [19] intro‐
duces a value-based DRL algorithm with a dueling deep Q-
network structure to generate an interruption control signal
of the aggregated interruptible load. Different from the afore‐
mentioned studies [15], [19], several deep learning (DL) al‐
gorithms are introduced in [20] to approximate the storage
related home energy optimization strategy. The result indi‐
cates that many DL algorithms exhibit good performance in
online execution. In [21], recurrent neural network (RNN) -
based DL algorithms are applied to scheduling the energy
profiles of household battery from historical optimization re‐
sults. The performance of the algorithms has low sensitivity
to the prediction accuracy. References [15]-[21] have provid‐
ed valuable insights for our study.

However, it is still challenging to adapt the existing ma‐
chine learning methods to the coordinated scheduling of EVs
in commercial buildings. Firstly, considering the different
characteristics of each EV such as charging demand, schedul‐
ing time limitation, and capacity, the training efficiency and
generalization ability of the aforementioned machine learn‐
ing methods have to be improved. Secondly, most of the
aforementioned references ignore the influence of the tempo‐
ral correlation in the BEMS problem, and still rely on predic‐
tion in online implementation. However, the temporal corre‐
lation needs to be considered, as the SOC of EV is time-cou‐
pling over adjacent time steps. Thirdly, as the machine learn‐
ing model is a data-driven model, the internal logic and
physical concepts of the model are not clear and the output
results completely depend on the generalization ability of the
model. There is no guarantee that the output of these ma‐
chine learning methods is always within the physical limita‐
tions and meets the scheduling requirements.

In this study, a long short-term memory (LSTM) RNN-
based machine learning algorithm is proposed to quickly
solve the online BEMS scheduling problem. Compared with
the aforementioned studies, this study provides the following
contributions.

1) An LSTM-based system scheduling structure is con‐
structed. In this structure, the training and execution of the
LSTM network can be separated. The LSTM can be trained
offline to acquire generalization ability and quickly generate
each EV’s scheduling result online in a fully decentralized
manner.

2) An LSTM-based BEMS model is proposed. As one of
the most advanced DL architectures for time-series predic‐
tion problems, the LSTM has powerful memorization capa‐
bility. Thus, the LSTM can map the temporal correlation of
the BEMS problem well based on historical data and there is
no need for additional prediction.

3) A preliminary data processing rule and an additional
output filtering procedure are designed to enhance the deci‐
sion performance of machine learning. The optimal schedul‐
ing of the EVs can be learned better by the LSTM after the
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preliminary data processing. Filtering is performed to re‐
move unsafe, unsatisfactory, and fluctuating LSTM schedul‐
ing results.

The remainder of this paper is organized as follows. In
Section II, the structure and task of a BEMS are introduced.
Subsequently, the MILP-based optimization method, which
is used to provide the training dataset for the proposed ma‐
chine learning method, is reviewed in Section III. Section IV
presents the proposed LSTM-based machine learning algo‐
rithm. Simulation results and discussions are presented in
Section V. Finally, the conclusion is given in Section VI.

II. PROBLEM FORMULATION

This section describes the system structure and main task
of the BEMS.

As shown in Fig. 1, the commercial-building prosumer
considered in this study is equipped with PV solar panels
and a parking lot with EV charging piles, and there are no
specific requirements for the capacities of PV and EV charg‐
ing or the load level. Thus, the exchanged power between
the commercial building and the grid at the point of com‐
mon coupling (PCC) is determined by the electrical demand,
PV output, and charging/discharging power of each EV,
which can be given as (1).

Pg =Pd -PPV +∑
i = 1

N

PEVi (1)

Considering that the electricity price incentives include
the TOU tariff and feed-in tariff, the commercial-building
prosumers are known to have significant potential for elec‐
tricity cost savings, as well as load leveling. In order to max‐
imize the benefits of the commercial-building prosumers, the
BEMS is installed to schedule Pg. It is usually expected that
the PV output can be fully utilized to meet the electric pow‐
er demand. Thus, the only schedulable resources considered
here are the EVs. The main task of the BEMS is to coordi‐
nate the charging and discharging power of EVs PEV with
the PV output PPV and electrical demand Pd under the incen‐

tives of TOU tariff cTOU and feed-in tariff cF. Note that the
EVs’ parking time in commercial office buildings is relative‐
ly long enough to provide large scheduling flexibility, so we
take commercial office buildings as the research object in
this paper.

The BEMS can collect and store the information of Pd,
PPV, cTOU, cF, EV behavior such as t arr

i and t dep
i , and EV char‐

acteristics such as ηc
i  ηd

i , Ci, and S dep
i . In the conventional op‐

timization-model-based BEMS, the power control signal is
sent to each charging pile after a centralized optimization
calculation. However, in the proposed LSTM-based machine
learning method, the EV power control can be realized in a
fully decentralized manner.

III. MILP-BASED BEMS MODEL

In this section, we formulate a daily BEMS optimization
model based on conventional MILP as (2) - (16) to provide
the training dataset for the proposed machine learning meth‐
od.

min
P c

EViP
d
EVi
∑

t = 1

T

(cTOU (t)P im
g (t)+ cF (t)P ex

g (t)) (2)

s.t.

Pg (t)=P im
g (t)+P ex

g (t)=Pd (t)-PPV (t)+∑
i = 1

N

PEVi (t) "tÎ T (3)

M ex
g (t) -b£P ex

g (t)£ 0 "tÎ T (4)

0£P im
g (t)£M im

g (t)
-
b "tÎ T (5)

M ex
g (t)+M im

g (t)= 1 "tÎ T (6)

M ex
g (t)Î{01}M im

g (t)Î{01} "tÎ T (7)

PEVi (t)=P d
EVi (t)+P c

EVi (t) "iÎN"tÎ T (8)

-M d
EVi (t)P̄

d
EVi £P d

EVi (t)£ 0 "iÎN"tÎ T (9)

0£P c
EVi (t)£M c

EVi (t)P̄
c
EVi "iÎN"tÎ T (10)

M c
EVi (t)Î{01}M d

EVi (t)Î{01} "iÎN"tÎ T (11)

M c
EVi (t)+M d

EVi (t)= 1 "iÎN"tÎ T (12)

P c
EVi =P d

EVi = 0 "iÎNtÏ[t arr
i t dep

i ] (13)

si (t)= si (t - 1)+ ( )ηc
i P c

EVi (t)+
P d

EVi (t)

ηd
i

τ
Ci

"iÎN"tÎ T (14)

S max
i £ si (t)£ S min

i "iÎN"tÎ T (15)

si (t)³ S dep
i "iÎNt = t dep

i (16)

where the first term and second term of (2) are the payment
to import electricity and the revenue of export electricity to
the grid, respectively. The power balance at the PCC is en‐
sured by (3), in which Pg is divided into P im

g and P ex
g . Equa‐

tions (4)-(7) are set to ensure that P im
g and P ex

g are mutually
exclusive in one time slot. In (8), the EV power is divided
into charging and discharging power. Equations (9)-(12) en‐
sure that P c

EVi and P d
EVi are mutually exclusive in one time

slot. Equation (13) shows that the EVs do not have the
scheduling capability in non-connected periods. Equation
(14) formulates the relationship between the power and SOC

Pd

Pg Power grid

BEMS

EVs

PV cTOU 

EVsEVs

�

PCC

Power  
Data

Commercial
building

PPV

PEV1
PEVN

Time-of-use
(TOU) tariff

cF Feed-in tariff

Fig. 1. BEMS structure and illustration of power and information flows in
it.
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of the ith EV. Equations (15) and (16) represent the SOC lim‐
it and charging demand of the ith EV, respectively.

Solving this model relies on full-day complete informa‐
tion. This model can be used in offline scheduling. In this
study, we use this model to generate the training dataset (his‐
torical data) for the proposed machine learning method (see
Section IV) and reference results for the proposed machine
learning method in practical application (see Section V). For
convenience, we will call this model MILP with complete in‐
formation later in this paper.

Moreover, a rolling-horizon MILP-based model optimiza‐
tion method (see Appendix A), which we call MILP with in‐
complete information in this paper, is applied to online
scheduling problems. However, this model still faces a com‐
putational burden in execution because of the difficulty of
solving integer variables and the high prediction dependency
in each solving process. A comparison between the online
scheduling results obtained by using the MILP with incom‐
plete information model and those obtained by the proposed
machine learning method is presented in Section V.

IV. LSTM RNN-BASED BEMS MODEL

In this section, an LSTM RNN-based machine learning
method with significantly less computational burden and no
prediction dependency on the power of PV, EV, or other
electrical demand of the building is presented to address the
BEMS problem. First, preliminaries of the method are intro‐
duced in Section IV-A. Subsequently, in Section IV-B, the
control structure of LSTM-based system is constructed.
Some details of the network training and execution proce‐
dure are provided in Section IV-C and Section IV-D, respec‐
tively. In Section IV-E, a filtering procedure is designed to
enhance the decision performance of LSTM network. Final‐
ly, the overall procedure and structure of the proposed
LSTM-based algorithm are summarized in Section IV-F.

A. Preliminaries of Method

As described in Section II, the main task of the BEMS is
to schedule the charging and discharging of the numerous
EVs parked in the commercial building. If we can obtain the
SOC of all EVs at time step t + 1, the charging or discharg‐
ing power for each EV at time step t can be calculated as:

PEVi (t)=

ì

í

î

ï
ï
ï
ï

si (t + 1)- si (t)

τηc
i

Ci si (t + 1)- si (t)³ 0

si (t + 1)- si (t)

τ/ηd
i

Ci si (t + 1)- si (t)< 0
(17)

Thus, we can generate the EV power scheduling by pre‐
dicting the SOC at the next time step.

Considering that the SOC has temporal correlation and is
related to its previous state, its prediction can be regarded as
a time-series prediction problem [22]. Generally, the aim of
the time-series prediction problem is to predict the one-step-
ahead or multi-step-ahead outputs based on several previous
states and several previous inputs of the system. In this
study, to achieve control of the EVs during the entire optimi‐
zation horizon, we repeat the one-time-step-ahead predic‐
tions based on the previous prediction at each time step.

As an updated variant of the RNN, the LSTM is one of
the most advanced DL architectures for time-series predic‐
tion problems [23], [24]. The LSTM network can model the
temporal relationship of the time series using feedback con‐
nections to the internal nodes, i. e., the LSTM units in the
LSTM layer. The unique LSTM unit structure, including for‐
get gate, input gate, and output gate, greatly enhances the
memorization capability of the LSTM network in the multi-
step-ahead time-series prediction problem. In this way, the
time coupling constraints of the SOC of each EV over adja‐
cent time steps can be mapped well by LSTM, and the BE‐
MS problem can be solved in a myopic way but still with
temporal correlation. Therefore, the LSTM network can be
applied to modelling the BEMS task and reduce the predic‐
tion difficulty.

Generally, an LSTM model is built based on the training
of a dataset. The LSTM network consists of an input layer,
an LSTM layer, a fully connected layer, and an output layer.
Before the training process, the number of LSTM layers,
number of nodes in each layer, and learning stopping criteria
must be specified. The first step in training is presenting the
data of previous states and previous inputs to the input layer.
The weights of the network are then continuously adjusted
according to the error between the network output and the
output value in the training dataset until the algorithm con‐
verges.

After training, the LSTM can map inputs and outputs
well. Once we input a new set of data to the input layer, the
LSTM network can generate the corresponding output with
temporal correlation.

B. LSTM-based System Structure

Next, we will apply the LSTM network to the energy man‐
agement system.

To achieve a fast and optimal schedule for the BEMS, we
use a system structure in which the training and execution of
the LSTM network are separated.

The network training is done at the BEMS level. After
training, the LSTM in BEMS has the generalization ability
to map states (inputs) to optimal decisions (outputs), and the
trained LSTM network parameters can be obtained. But the
execution is done at the charging piles level. We assign each
charging pile with an LSTM network which has the same
network structure as the LSTM in BEMS. The LSTM in
each charging pile can copy the trained network parameters
from the BEMS so that all the EVs connected to one build‐
ing could be scheduled in a fully decentralized manner.

Based on the system structure, the LSTM in the BEMS
can be trained offline, and the LSTM in each charging pile
can carry out the scheduling online. Thus, the LSTM net‐
work solution process can be divided into offline training
and online execution. This structure-based energy manage‐
ment has no prediction dependency on the PV output, electri‐
cal demand, or other system data, and takes only millisec‐
onds to generate power scheduling outputs, as validated in
Section V. Note the offline training will be re-implemented
after a certain period at the BEMS level to retrain a new
model based on up-to-date data, and the new model will be
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updated to the charging pile accordingly.

C. Offline Training Details

This subsection introduces the details of the offline train‐
ing in practical application. First, we need to decide on the
input and output of the LSTM network. Second, the training
dataset is specified. A preliminary data processing rule is
then proposed to make the training more targeted. Finally,
details of the hyperparameter setting and the final structure
are presented.
1) Input and Output

As described in Section IV-A, we have selected the
LSTM as the tool for predicting the SOC of the EV connect‐
ed to each charging pile. The output of each LSTM network
is obviously the SOC at the next time step ŝ(t + 1).

The prediction of the SOC is a time-series prediction prob‐
lem related to the previous state. Hence, the SOC at the cur‐
rent time step s(t) is an input. As already known, the SOC at
the next time step is related to the PV output PPV (t), build‐
ing electrical demand Pd (t), and TOU tariff cTOU (t) at the cur‐
rent time step. The feed-in tariff is constant in our case.
Therefore, it is not an input to the network.

Thus, there are four nodes in the input layer correspond‐
ing to s(t), PPV (t), Pd (t), and cTOU (t), respectively, and there
is one node in the output layer corresponding to ŝ(t + 1).

Owing to the powerful memorization capability of the
LSTM (see Section IV-A), the relationship between the in‐
puts and outputs in this paper can be described as (18),
where the output state of time step t + 1 are related to the in‐
put and the state of the previous l time steps.

ŝ(t + 1)= f [s(t)s(t - 1)...s(t - l + 1)cTOU (t)cTOU (t - 1)...
cTOU (t - l + 1)PPV (t)PPV (t - 1)...PPV (t - l + 1)Pd (t)
Pd (t - 1)...Pd (t - l + 1)] (18)

2) Training Dataset
The training dataset consists of historical data of inputs

and outputs. The historical data of PPV, Pd, cTOU, EV behav‐
ior such as t arr

i and t dep
i , and EV characteristics such as ηc

i , η
d
i ,

Ci, and S dep
i collected by the BEMS are used to build this da‐

taset. Based on these historical data, the historical optimal
output si in each charging pile can be generated by solving
the MILP with complete information discussed in Section
III. Subsequently, the historical data of PPV, Pd, cTOU, and the
corresponding optimal si (i = 12N) are stored in the
training dataset in chronological order.

Considering that the ranges of the aforementioned histori‐
cal data are different and the LSTM is sensitive to the data
scale, these data are scaled to [01] by the min-max normal‐
ization method.

Since the LSTM network-based building energy manage‐
ment is a data-driven technology, to ensure the execution
performance of the LSTM network, all possible situations of
the system should be considered. It implies that a training
dataset with massive data is required to realize good general‐
ization ability in different situations.
3) Preliminary Data Processing

Generally, the data sequences in most time-series predic‐
tion problems have the characteristic of temporal correlation.

To solve the time-series prediction problems, the neural net‐
work can be simply trained by sending the data sequences to
the network without further processing.

However, in this paper, we should consider two aspects.
First, the EV connected in a specific charging pile could be
different on different days. Second, the EVs would not stay
in the same building parking lot and keep charging the
whole day. It means that the SOC data on one day can also
be time-discrete. If we train the network with the training da‐
taset directly, the LSTM would just try to fit the historical
data without learning to make feasible predictions, as there
is no temporal correlation in some data sequences. There‐
fore, it would be difficult to train the LSTM network, and
even though this network reaches a good training target, it
would only lead to an overfitting problem and have poor per‐
formance in application. The poor result of such training
mode, i.e., LSTM with unprocessed data, is discussed in Sec‐
tion V.

To prevent the LSTM networks from overfitting the tem‐
poral correlations between the SOC of different EVs connect‐
ed to the same charging pile, a preliminary data processing
is necessary. First, the training dataset is divided into several
segments according to the arrival and departure times of
each independent EV connected to the ith charging pile. Sub‐
sequently, we remove the time steps in which there is no EV
in the ith charging pile. Thus, the time steps in each segment
are time-continuous. In the training process, we can use each
segment data to train the LSTM network to realize a good
fitting performance.
4) Setting of Network Structure and Hyperparameters

To train this network, we select Adam [25] as the optimiz‐
er of the proposed network because of its computational effi‐
ciency and good performance. We set the learning rate of
Adam to be 0.01 to decrease the convergence time, and the
other parameters are set as the default values. After compar‐
ing the accuracy of the prediction and complexity of the net‐
work, we select two LSTM layers with 20 nodes, and the
overall structure of the LSTM network proposed in this pa‐
per is depicted in Fig. 2. The input layer is used to scale the
input values to the range of [01] by the min-max normaliza‐
tion method. The fully-connected layer is used as the output
layer, while the regression layer is used to calculate the
mean square error (MSE), which could reflect the conver‐
gence of network in training.

D. Online Execution Procedure

After the LSTM in each charging pile copies the trained
network parameters from the BEMS, the LSTM in each
charging pile can generate the power scheduling for each
connected EV. When there is an EV connected to a charging
pile, the charging pile detects the actual SOC of that EV and
updates it in the input vector. Meanwhile, the LSTM in the
charging pile can obtain data including PPV (t), Pd (t), and
cTOU (t) at the current time step from the BEMS. As given in
(18), all the inputs have been successfully updated so that
the network can predict the SOC at the next time step, after
which the predicted SOC will be used to generate the power
scheduling of the current time step based on (17).
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E. Filtering

After applying the LSTM, the SOC of the EVs at the next
time step can be predicted and the charging or discharging
power control can be realized. In fact, as a data-driven mod‐
el, the LSTM-based BEMS generates the outputs, which
completely depends on the generalization ability of the
LSTM network. Owing to the lack of strict physical con‐
straints and the limited generalization ability of LSTM, the
outputs generated by the LSTM may have two issues. On
the one hand, these outputs may violate some constraints of
the EVs including the maximum SOC Smax, the minimum
SOC Smin, the maximum charging and discharging rates P̄ c

EV

and P̄ d
EV, and EV charging demand S dep. On the other hand,

there may be some fluctuations among the outputs due to
the limited generalization ability of the LSTM. For example,
when the trends of the SOC curve slightly fluctuate, from
(18), we can observe that these slight fluctuations have di‐
rect impacts on power and thus result in errors. When the er‐
rors of many EVs occur simultaneously, the accumulated er‐
ror in power can be significant even if the accuracy of the
predicted SOC curve is high, which affects the electricity
cost as well as the load leveling effect.

Considering that the interpretability of machine learning
mechanism is poor, and the internal logic and physical con‐
cepts of machine learning models are not clear enough, it is
hard to completely avoid these issues from the LSTM net‐
work. Therefore, it is necessary to design a filter outside the
LSTM network to guarantee that the output of these ma‐
chine learning methods is within the physical limitations and
meet the scheduling requirements. Here, we propose a filter‐
ing process with two parts. In the first part, we illustrate our
criteria to avoid violation of the operational constraints of
the EV. In the second part, we aim to filter out the fluctua‐
tions due to the limited generalization ability of the LSTM
networks.

Note that the filtering process is used only to avoid abnor‐
mal outputs of the LSTM networks, which do not always oc‐

cur, and the result still mainly relies on the LSTM networks.
1) The First Part of Filter

In the first part, we ensure that the outputs of the LSTM
do not violate the constraints of the EVs. Here, five criteria
are set up to determine whether these violations occur, and
they are formulated as (19)-(23).

ŝi (t + 1)£ S max
i "iÎN (19)

ŝi (t + 1)³ S min
i "iÎN (20)

ŝi (t + 1)- si (t)

τ
Ci £ P̄ c

EViη
c
i "iÎN (21)

ŝi (t + 1)- si (t)

τ
Ci ³-P̄ d

EVi /η
d
i "iÎN (22)

t +
S dep

i - si (t)

P̄ c
EViη

c
i /Ci

< t dep
i "iÎN (23)

If (19) or (20) is not satisfied, the SOC of the EV will be
set to the maximum SOC S max

i or the minimum SOC S min
i , re‐

spectively. If (21) or (22) is violated, the SOC at the next
time step will be recalculated based on charging or discharg‐
ing at the maximum rate. Formula (23) is used to assess
whether the SOC of the EV can reach S dep

i at t dep
i if the EV

is maintained charging at P̄ c
EVi from the current time step,

and if (23) is not satisfied, this EV will be maintained charg‐
ing at P̄ c

EVi until t dep
i . Note that in the scheduling process, the

uncertainties are mainly reflected in EV plug-in time and
their charging demand. These uncertainties are strongly influ‐
enced by users’ subjective initiative. The probabilistic model
of historical data-based EV travel prediction is not sufficient
to guarantee accuracy. Therefore, this paper assumes that in‐
teractions are available between aggregators and EV users to
obtain the possible travel patterns of electric vehicles includ‐
ing S dep

i and t dep
i .

The first part forms the basic aspect to ensure the feasible
power scheduling of the EV.
2) The Second Part of Filter

In the second part, we filter out the fluctuations caused by
the lack of strict physical constraints and the limited general‐
ization ability of the LSTM networks. For specificity, we
classify the fluctuations into two components, i.e., abnormal
charging and discharging behaviors. Our criteria for deter‐
mining the abnormal behavior are elucidated in the follow‐
ing paragraphs.

First, when the TOU tariff is not at the peak, the discharg‐
ing is considered abnormal, because it would reduce the
scheduling flexibility during the peak period, i. e., the dis‐
charging may cause extra charging to occur in the peak time
to satisfy the EV charging demand. Such discharging pro‐
cess leads to a higher electricity cost.

Second, during the peak time of the TOU tariff, the charg‐
ing is considered abnormal because it leads to a higher cost,
unless the current SOC needs inevitable charging to occur at
the peak time to satisfy the EV charging demand. This is be‐
cause the LSTM should evenly arrange inevitable charging
over the entire period. Otherwise, to satisfy the SOC de‐
mands, the full-speed charging of numerous EVs near the de‐
parture time leads to an additional peak of the load curve,

[s(t), Pd(t),PPV(t), cTOU(t)] Input vector

Input layer

LSTM layer

LSTM layer
Update SOC and
make next time-
step prediction

Fully-connected layer

Regression layer

LSTM unit

LSTM unit

s(t+1)ˆ
s(t+2)ˆ

s(t+n)ˆ

�

Fig. 2. Final structure of each LSTM neural network proposed in this pa‐
per.
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which affects the load leveling. The criterion of detecting ab‐
normal charging is described as follows: charging at P̄ c

EVi

from the current SOC to S dep
i starts from the peak period of

the TOU tariff. This criterion is also given in (24).

t dep
i -

S dep
i - si (t)

P̄ c
EViη

c
i /Ci

Î[tpstpe] "iÎN (24)

Moreover, during the peak time of the TOU tariff, the dis‐
charging is considered abnormal if it requires ŝi (t + 1) to
have additional inevitable charging during another peak time
of the tariff. This criterion is similar to (24). However, the
SOC in the equation should be the predicted value. It can be
given as:

t dep
i -

S dep
i - ŝi (t + 1)

P̄ c
EViη

c
i /Ci

Î[tpstpe] "iÎN (25)

After detecting the abnormal charging or discharging be‐
havior, the SOC at the next time step remains unchanged.

The filter designed is applied to ŝ(t + 1) to obtain a filtered
s͂(t + 1), which is a feasible and reliable prediction of the
SOC.

The entire filtering procedure is given in Algorithm 1. As
the filtering algorithm is composed of simple logical judg‐
ment statements and assignment statements, it can be quick‐
ly implemented.

F. Overall Implementation Procedure of LSTM-based BEMS
Model

Based on the analysis, the overall implementation proce‐
dure of our proposed LSTM-based BEMS model is illustrat‐
ed in Fig. 3.

At the offline stage, the BEMS collects the historical data
of all the charging piles, PV generation, building electrical
demand, and the TOU tariff. Based on those historical data,

the BEMS can obtain the historical optimal EV power sched‐
uling results by solving the MILP with complete informa‐
tion. All the historical data and optimal solutions are stored
in the LSTM training dataset. After the preliminary dataset
processing, the LSTM in the BEMS can be trained and the
trained LSTM network parameters can be obtained. Consid‐
ering that the data distribution may not be time-invariant, we
implement such an offline training stage after a certain peri‐
od to retrain a new model based on up-to-date data.

At the online stage, the LSTM in each charging pile can
copy the trained network parameters from the BEMS. Subse‐
quently, the SOC at the next time step of the connected EV
can be predicted by the LSTM in each charging pile based
on the real-time input data as shown in (18). Then, the pre‐
dicted SOC goes through a filtering process to enhance the
decision performance of LSTM network. Afterwards, the
charging and discharging control can be generated according
to (17). The decentralized online scheduling procedure re‐
peats to generate power control of the connected EV until
the EV departs. The EV-related data are also stored and
would be used at the offline training stage, as mentioned be‐
fore.

V. CASE STUDY AND SIMULATION RESULTS

In this section, we provide a series of simulations to dem‐
onstrate the application of the proposed LSTM method in de‐
cision-making of EVs on commercial-building energy man‐
agement. All simulations are run on a computer with an In‐
tel® Core i7-7500U CPU @2.70 GHz-2.90 GHz and 8 GB
of RAM. The LSTM algorithm is implemented on MATLAB
R2019a platform, and the MILP model is solved using the
YALMIP toolbox together with the intlinprog solver.

A. Data and Parameters

The case of a medium-scale office building with 500 kW
PV onsite generation and 100 EV charging piles is studied

 

BEMS

Generate EV scheduling power

Filter the LSTM output 

Train the LSTM network

Process the training dataset

1) Historical data (including EV data, PV 
    output, electrical demand and TOU tariff)
2) Optimal EV power control (solved by
    MILP with complete information)

Repeat
until
EV

departs

Predict SOC by LSTM network
Each charging pile

Network
parameters

EV data are
stored

continuously

Set network structure
and hyperparameters

Get training dataset

Offline stage (retrain our model after certain period)
Online stage (real-time control)

Collect real-time input data

Fig. 3. Overall implementation procedure of LSTM-based BEMS model.

Algorithm 1: entire filtering procedure

1: for i = 12N do
First part
2: if ŝi (t + 1)> S max

i

3: ŝi (t + 1)= S max
i

4: else if ŝi (t + 1)< S min
i

5: ŝi (t + 1)= S min
i

6: if (ŝi (t + 1)- si (t))Ci /τ >
-
P

c
EViη

c
i

7: ŝi (t + 1)= si (t)+
-
P

c
EViη

c
i τ/Ci

8: else if (ŝi (t + 1)- si (t))Ci /τ <-
-
P

d
EVi /η

d
i

9: ŝi (t + 1)= si (t)+
-
P

c
EVi τ/(Ciη

d
i )

10: if t + (S dep
t - si (t))/(

-
P

c
EViη

c
i /Ci)> t dep

i

11: ŝi (t + 1)= si (t)+
-
P

c
EViη

c
i τ/Ci

Second part
12: if tÏ[tpstpe]
13: if ŝi (t + 1)- si (t)< 0
14: ŝi (t + 1)= si (t)
15: else if tÎ[tpstpe]
16: if ŝi (t + 1)- si (t)> 0

17: if t dep
i - (S dep

t - si (t))/(
-
P

c
EViη

c
i /Ci)Ï[tpstpe]

18: ŝi (t + 1)= si (t)
19: else if ŝi (t + 1)- si (t)< 0

20: if [t dep
i - (S dep

t - ŝi (t + 1))]/(
-
P

c
EViη

c
i /Ci)Î[tpstpe]

21: ŝi (t + 1)= si (t)
22: end for
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[26]. Considering that in the office building, the regular elec‐
trical demand and EV availability are relatively higher on
weekdays, and the weekday energy management in turn has
larger regulation potential, we therefore only focus on the
BEMS problem on weekdays in our simulation. The BEMS
problem at weekends and holidays can also be solved by
training the corresponding LSTM network by the data of
those day-types. We have selected the data on 250 weekdays
in a year for our study. The electrical demand, PV output,
TOU, and feed-in tariffs are shown in Fig. 4(a)-(c), respec‐
tively. The parking activities of the EVs on weekdays are
from [7], which are displayed in Fig. 4(d). The first 220
days are selected as the training data of the LSTM network.
The data of the 221st day to the 250th day are selected as the
validation data to test the performance of our LSTM method.

Note that Fig. 4(a) and (b) is boxplots of the electrical de‐
mands and PV outputs data over 250 days. There are 96 box‐
es in the plots and each box represents the values at that
time-step over 250 days. Each box is represented by a blue
rectangle in the figure. The bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The red
central mark “‒” in that box indicates the median. The black
dashed lines extended from the boxes are called whiskers,
which extend to the most extreme data points not considered
outliers, and the outliers are plotted individually using the
red “+” symbol.

The scheduling horizon for BEMS optimization in one
day is from 00:00 to 24:00, and we take 1 time step as 15
min; thus, we can divide one day into 96 time steps. In the
rolling-horizon optimization, considering the trade-off be‐
tween the prediction accuracy and solving efficiency, one
rolling-horizon is 4 time steps.

We assume that only one EV is connected to a charging
pile in the office building during a weekday. Each EV can
be charged at any rate from 0 to 3.3 kW with different cur‐
rents. The average battery capacity of each EV is 30 kWh
and the average initial SOC is 0.6. The charging and dis‐
charging efficiencies are both 95%. Each EV should be

charged to 0.85 SOC minimum before departure.
To verify the accuracy and efficiency of the proposed

LSTM-based algorithm, we solve the case using five differ‐
ent methods: ① MILP with complete information (see Sec‐
tion III); ② MILP with incomplete information (see Appen‐
dix A); ③ the LSTM algorithm (see Section IV); ④ the
LSTM without filter 2, which is based on the complete
LSTM algorithm but adding only the first part of the filter‐
ing process; and ⑤ the LSTM with unprocessed data, which
does not have preliminary data processing. In addition, the
non-scheduling case is also simulated, which means that
once the EV is connected to the charging pile, it is quickly
charged until it is full and then disconnected.

B. Learning Performance of LSTM Network

Firstly, the learning performance of the LSTM network is
evaluated. The loss function of the LSTM network during it‐
erative training is shown in Fig. 5. In this study, the loss
function is the mean square error (MSE) between the net‐
work output and the output value in the training dataset. Af‐
ter 100 episodic iterations, the loss function has reached a
very small value. After 500 episodic iterations, the loss func‐
tion has been reduced to less than 10-4. Even though there
are some slight fluctuations, the overall trend of the loss
function proves the convergence of the algorithm. After con‐
vergence, the network has acquired the generalization ability
and can be applied to online scheduling.

C. Scheduling Performance of LSTM Algorithm in One Day

1) SOC Scheduling Results
In this subsection, we present the energy management re‐

sults of a day, e.g., the 250th day. First, the SOC scheduling
results of a single EV are analyzed. Subsequently, the corre‐
sponding power scheduling results of the whole building are
demonstrated and the solution time of the different methods
is compared.

Since the optimal SOC obtained by the MILP with com‐
plete information is the learning target of the LSTM net‐
work, the SOC scheduling result is an important aspect of
the BEMS performance. Figure 6 presents the SOC schedul‐
ing results of 8 randomly selected EVs obtained by using dif‐
ferent methods.

The SOC of the LSTM is the closest to that of the MILP
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Fig. 4. Simulation data. (a) Electrical demand on weekdays of one year.
(b) PV output on weekdays of one year. (c) TOU tariff and feed-in tariff.
(d) EV availability on weekdays of one year.
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with complete information. The second-closest one is that of
the LSTM without filter 2, whereas that of the LSTM with
unprocessed data is the most divergent.

In fact, we can observe that the SOC of the LSTM with‐
out filter 2 is almost coincident with that of the LSTM in
Fig. 6(a), (e), and (f). This phenomenon indicates that the ab‐
normal outputs, which we want to avoid by adding the filter
2, do not always occur, and the final SOC result still mainly
relies on the LSTM networks. However, as can be seen in
Fig. 6(b)-(d), (g), and (h), the SOC result of the LSTM with‐
out filter 2 is more fluctuant than that of the LSTM, particu‐
larly in Fig. 6(h). Such SOC fluctuation is not good for sav‐
ing electricity cost and load leveling of the commercial
building, as indicated in (17). Thus, this fluctuation must be
removed, and this can be accomplished by the second part
of the filter.

As for the solution of the LSTM with unprocessed data,
the large errors mainly result from the lack of preliminary
data processing before training. The unprocessed training da‐
taset contains many time steps when the SOC is 0, i.e., there
is no EV plugged in the charging pile. The SOC in those re‐
dundant time steps are learned by the LSTM network. The
preliminary data processing allows the LSTM to focus more
on the SOC information when an EV is available (connected
to the charging pile), resulting in a better solution.

Given that the optimal solution obtained by the MILP
with complete information cannot be applied to the BEMS
online scheduling, we can use the near-optimal solution ob‐
tained by the LSTM network in online scheduling, because
it is close to that of the MILP with complete information.
2) Power Scheduling Results

To illustrate the effect of BEMS load leveling, the corre‐
sponding power scheduling results of the commercial build‐

ing using different methods in comparison with the base
electrical demand are plotted in Fig. 7. The peak shaving ef‐
fect of scheduling can be clearly observed in Fig. 7 regard‐
less of the methods. However, the degree is different.

Similar to Fig. 6, the LSTM achieves the closest power
scheduling performance to that of the MILP with complete
information. Owing to the lack of preliminary data process‐
ing, the power scheduling result using the LSTM with unpro‐
cessed data deviates more from the optimal solution ob‐
tained by the MILP with complete information than that of
the LSTM. Moreover, because of the limited generalization
ability of the LSTM network, the power scheduling result of
the LSTM without filter 2 shows strong volatility, especially
during the peak tariff period between 08:00 and 16:00. This
is because the power depends on the difference between the
adjacent SOC, and thus, the fluctuation of the SOC of differ‐
ent EVs leads to a disordered power scheduling result in a
time step. Therefore, from the perspective of power leveling,
the addition of filter 2 is very necessary.

The power scheduling result of the MILP with incomplete
information also deviates slightly from the optimal solution
of the MILP with complete information. This deviation is
mainly because of the prediction inaccuracy in the rolling-ho‐
rizon optimization. From the results of the power schedul‐
ing, both the LSTM and MILP with incomplete information
methods can obtain near-optimal solutions.

As the MILP with incomplete information is a commonly
used online scheduling method at present, a more detailed
comparison between the MILP with incomplete information
and LSTM is presented in the following subsection in terms
of solution time and electricity cost.
3) Solution Time

Based on several simulations, we collect statistics on the
online solution time of both the MILP with incomplete infor‐
mation and LSTM. For simplicity, the time of prediction in
the MILP with incomplete information is not considered,
and only the calculation time of optimization is counted.

Our simulation results show that the solution time of one
LSTM network can reach a millisecond level, i. e., 0.002 s
on average, including the LSTM output time and the filter‐
ing process. Considering the LSTM-based system structure,
the LSTM in each charging pile will output results simulta‐
neously; thus, the number of EVs has very limited impact
on the output time.
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The average solution time of the MILP with incomplete
information is 1.81 s for one calculation. However, the solu‐
tion time of the MILP increases exponentially with the in‐
crease of the EV numbers [8].

The difference in solution time between the two methods
is mainly because the MILP problem involves numerous ma‐
trix inversions, which are time-consuming. By comparison,
the LSTM does not require this procedure. Furthermore, the
MILP with incomplete information must be combined with a
prediction to obtain optimal scheduling results in practical
application. Therefore, considering the additional prediction
time, the solution time of the MILP is longer. The proposed
LSTM does not bring huge computation or prediction bur‐
den to the BEMS, which makes the LSTM method more
suitable for online scheduling.

D. Scheduling Performance of LSTM Algorithm in 30 Con‐
secutive Weekdays

To further demonstrate the long-term performance and sta‐
bility of the LSTM method, we present the BEMS results of
the 221st day to the 250th day. First, an electricity cost com‐
parison in a month is illustrated, and the power scheduling
results on 30 consecutive weekdays are then compared.
1) Electricity Cost

We compare the electricity cost of the commercial build‐
ing on 30 consecutive weekdays with different methods and
a non-scheduling case, as depicted in Fig. 8.

When there is no scheduling, the electricity cost is the
highest, reaching $71247.87 in total. The scheduled cost giv‐
en by the MILP with complete information is the lowest,
which is $66875.47 in total, because the scheduling is a com‐
plete information-based full-horizon optimization. We can ob‐
serve that the LSTM is the second-lowest cost with
$67095.45 in total, which is 0.33% higher than the lowest
one.

According to the analysis of the power scheduling results
in Fig. 7, although the fluctuation of the LSTM network has
a negative impact on the power leveling, its effect on elec‐
tricity costs is not evident. This is mainly because the majori‐
ty of random power fluctuations during the peak tariff peri‐
od can cancel out each other over the course of a day. As
shown in Fig. 7, the power consumption of the LSTM with

unprocessed data is high in most time steps, resulting in a
higher electricity cost as shown in Fig. 8. Therefore, the pre‐
liminary data preprocessing before LSTM training is impor‐
tant to reduce the electricity cost when using the LSTM
method.

We can also observe from Fig. 8 that the popular rolling-
horizon optimization method, namely the MILP with incom‐
plete information, achieves a higher electricity cost than the
LSTM method. In fact, the solution using the MILP with in‐
complete information depends largely on the prediction of
the future state of the system such as the PV output predic‐
tion. The accuracy of the prediction can barely reach 100%
(90% in this study), leading to a higher electricity cost. In
contrast, the LSTM solution does not depend on the predic‐
tion of any system states. The training process enables the
LSTM model to learn the mapping relationship between the
inputs and the optimal output from the historical data ob‐
tained by the MILP with complete information. It can be
concluded that in this case, the proposed LSTM method ex‐
hibits a better performance in terms of cost savings than the
conventional MILP.
2) EV Power Scheduling Results

Based on Fig. 9, we can infer that the summed power
scheduling results of all the EVs (100 in total) have good
stability by using the LSTM.
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The power scheduling results of 30 consecutive days us‐
ing the LSTM are slightly different from those of the MILP
with complete information, particularly at around 08: 00
(start time of the peak period of TOU tariff) and 16:00 (end
time of the peak period of TOU tariff). Such differences are
acceptable at the online execution stage, as what we have an‐
alyzed from the perspective of electricity cost and load level‐
ing. Therefore, once the LSTM model is trained, it can run
stably in the BEMS over a certain period of time.

VI. CONCLUSION

In this study, to achieve effective cost saving and load lev‐
eling of the commercial-building prosumer, an LSTM-based
machine learning method is proposed to schedule the EV
charging and discharging considering the PV output and oth‐
er electrical demands of the building. A preliminary data pro‐
cessing rule and an output filter have also been designed to
improve the LSTM mapping performance. The proposed
method can be separated into offline and online stages. At
the offline stage, the LSTM network is trained to acquire the
generalization ability to map from the states (inputs) to deci‐
sions (outputs) based on historical data. At the online stage,
each EV’s scheduling result can be quickly generated in a
fully decentralized manner. The performance of the proposed
LSTM method is compared with a commonly used MILP al‐
gorithm through a case study. The simulation results demon‐
strate that the electricity cost of the proposed LSTM method
is close to the theoretical optimal solution, and better than
that of the conventional MILP method, even without any pre‐
diction of the system data. Meanwhile, the solution time of
the proposed LSTM method is of the order of milliseconds,
which also means that it can help reduce the computational
burden to a large extent.

Furthermore, the added preliminary data processing step
can significantly help improve the accuracy of the network
output, and the additional filtering has enhanced the load lev‐
eling effect. In general, the proposed LSTM-based algorithm
can not only release the prediction and calculation pressures,
but also achieve better results than the commonly used meth‐
od in commercial building prosumer energy management.

Although the EV in the commercial building is used as an
example to illustrate the effectiveness of the proposed meth‐
od, one should note that the method can also be extended to
optimize the power of other flexible loads in the commercial
building such as heating ventilation and air conditioning
(HVAC). The HVAC may be a more suitable dispatching re‐
source in a shopping mall. At present, some related research
works have been done on modeling of EV-HVAC using the
virtual battery model. On this basis, it is easy to apply the
method proposed in this paper to the energy management of
a shopping mall by optimizing the power of HVAC.

APPENDIX A

In this appendix, the formulation of MILP with incom‐
plete information will be presented. In order to apply the
MILP model to real-time scheduling, the rolling-horizon-opti‐
mization-based MILP model, which we call MILP with in‐

complete information, is formulated in this paper. Solving
this model relies on real-time information and some ultra-
short-term prediction information of the rolling-horizon, i.e.,
incomplete information.

At the beginning of each time step, the BEMS carries out
the optimization for the first coming time step t and the ul‐
tra-short-term prediction-based time horizon H={t + 1t +
2...t +H}. For each optimization horizon [t, t + H], the ob‐
jective function (2) and constraints (3)-(16) will remain val‐
id. The power scheduling of time step t and the time horizon
H are included in the optimization solutions. However, only
the scheduling of time step t from the optimization solutions
will be implemented. When the next time step t + 1 comes,
the BEMS carries out the optimization again based on updat‐
ed available information and new ultra-short-term prediction,
and then only implements the scheduling of the time step t + 1.
The BEMS obtains the online scheduling by continuously
implementing this process.

REFERENCES

[1] A. Samimi and M. Nikzad, “Complete active-reactive power resource
scheduling of smart distribution system with high penetration of dis‐
tributed energy resources,” Journal of Modern Power Systems and
Clean Energy, vol. 5, no. 6, pp. 863-875, Nov. 2017.

[2] J. Wang, H. Zhong, J. Qin et al., “Incentive mechanism for sharing
distributed energy resources,” Journal of Modern Power Systems and
Clean Energy, no. 7, no. 4, pp. 837-850, Jul. 2019.

[3] M. Khorasany, Y. Mishra, B. Babaki et al., “Enhancing scalability of
peer-to-peer energy markets using adaptive segmentation method,”
Journal of Modern Power Systems and Clean Energy, no. 7, no. 4, pp.
791-801, Jul. 2019.

[4] Y. Xue and X. Yu, “Beyond smart grid-cyber-physical-social system in
energy future,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2290-
2292, Dec. 2017.

[5] Y. Song, Y. Ding, S. Pierluigi et al., “Optimization methods and ad‐
vanced applications for smart energy systems considering grid-interac‐
tive demand response,” Applied Energy, vol. 259, pp. 1-3, Feb. 2020.

[6] D. Azuatalam, A. C. Chapman, and G. Verbič, “Probabilistic assess‐
ment of impact of flexible loads under network tariffs in low-voltage
distribution networks,” Journal of Modern Power Systems and Clean
Energy, vol. 9, no. 4, pp. 951-962, Jul. 2021.

[7] Z. Liu, Q. Wu, M. Shahidehpour et al., “Transactive real-time electric
vehicle charging management for commercial buildings with PV on-
site generation,” IEEE Transactions on Smart Grid, vol. 10, no. 5, pp.
4939-4950, Sept. 2019.

[8] J. Hu, H. Zhou, Y. Li et al., “Multi-time scale energy management
strategy of aggregator characterized by photovoltaic generation and
electric vehicles,” Journal of Modern Power Systems and Clean Ener‐
gy, vol. 8, no. 4, pp. 727-736, Jul. 2020.

[9] K. Sou, J. Weimer, H. Sandberg et al., “Scheduling smart home appli‐
ances using mixed integer linear programming,” in Proceedings of
2011 50th IEEE Conference on Decision and Control and European
Control Conference, Orlando, USA, Dec. 2011, pp. 5144-5149.

[10] K. Paridari, A. Parisio, H. Sandberg et al., “Energy and CO2 efficient
scheduling of smart appliances in active houses equipped with batter‐
ies,” in Proceedings of 2014 IEEE International Conference on Auto‐
mation Science and Engineering (CASE), Taipei, China, Aug. 2014,
pp. 632-639.

[11] T. Sousa, H. Morais, Z. Vale et al., “Intelligent energy resource man‐
agement considering vehicle-to-grid: a simulated annealing approach,”
IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 535-542, Mar.
2012.

[12] M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill, “Coordinated
scheduling of residential distributed energy resources to optimize
smart home energy services,” IEEE Transactions on Smart Grid, vol.
1, no. 2, pp. 134-143, Sept. 2010.

[13] M. Fukushima and G.-H. Lin, “Smoothing methods for mathematical
programs with equilibrium constraints,” in Proceedings of Internation‐
al Conference on Informatics Research for Development of Knowledge
Society Infrastructure, Kyoto, Japan, Mar. 2004, pp. 206-213.

1215



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 9, NO. 5, September 2021

[14] C. Hu, “Exactness of penalty functions for solving MPEC model of
the transportation network optimization problems with user equilibri‐
um constraints,” in Proceedings of 2006 International Conference on
Management Science and Engineering, Lille, France, Oct. 2006, pp.
2045-2049.

[15] X. Xu, Y. Jia, Y. Xu et al., “A multi-agent reinforcement learning
based data-driven method for home energy management,” IEEE Trans‐
actions on Smart Grid, vol. 11, no. 4, pp. 3201-3211, Jul. 2020.

[16] F. Ruelens, B. J. Claessens, S. Vandael et al., “Demand response of a
heterogeneous cluster of electric water heaters using batch reinforce‐
ment learning,” in Proceedings of 2014 Power Systems Computation
Conference (PSCC), Wrocław, Poland, Aug. 2014, pp. 1-7.

[17] H. Berlink and A. H. R. Costa, “Batch reinforcement learning for
smart home energy management,” in Proceedings of 1st International
Workshop on Social Influence Analysis/24th International Joint Confer‐
ence on Artificial Intelligence (IJCAI), Buenos Aires, Argentina, Jul.
2015, pp. 2561-2567.

[18] E. Mocanu, D. C. Mocanu, P. H. Nguyen et al., “On-line building en‐
ergy optimization using deep reinforcement learning,” IEEE Transac‐
tions on Smart Grid, vol. 10, no. 4, pp. 3698-3708, Jul. 2019.

[19] B. Wang, Y. Li, W. Ming et al., “Deep reinforcement learning method
for demand response management of interruptible load,” IEEE Trans‐
actions on Smart Grid, vol. 11, no. 4, pp. 3146-3155, Jul. 2020.

[20] C. Keerthisinghe, A. C. Chapman, and G. Verbic, “Energy manage‐
ment of PV-storage systems: policy approximations using machine
learning,” IEEE Transactions on Industrial Informatics, vol. 15, no. 1,
pp. 257-265, Jan. 2019.

[21] K. Paridari, D. Azuatalam, A. C. Chapman et al., “A plug-and-play
home energy management algorithm using optimization and machine
learning techniques,” in Proceedings of 2018 IEEE International Con‐
ference on Communications, Control, and Computing Technologies for
Smart Grids (SmartGridComm), Aalborg, Denmark, Oct. 2018, pp. 1-6.

[22] Y. Bao, T. Xiong, and Z. Hu, “Multi-step-ahead time series prediction
using multiple-output support vector regression,” Neurocomputing,
vol. 129, pp. 482-493, Apr. 2014.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

[24] FA. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: con‐
tinual prediction with LSTM,” Neural Computation, vol. 12, no. 10,
pp. 2451-2471, Oct. 2000.

[25] D. P. Kingma and J. Ba. (2014, Dec.). Adam: a method for stochastic
optimization. [Online]. Available: https://arxiv.org/abs/1412.6980

[26] S. M. Frank and P. K. Sen, “Estimation of electricity consumption in
commercial buildings,” in Proceedings of 2011 North American Power
Symposium, Boston, USA, Aug. 2011, pp. 1-7.

Huayanran Zhou received the B.S. degree in electrical engineering and au‐
tomation from North China Electric Power University, Baoding, China, in
2018. She is currently pursuing the master’s degree with the School of Elec‐
trical and Electronic Engineering, North China Electric Power University,
Beijing, China. Her research interests include distributed energy resources
energy management, transactive energy and their participations in prosumers
energy management, and multi-energy system optimization.

Yihong Zhou received the B.S. degree in electrical engineering and its auto‐
mation from North China Electric Power University, Beijing, China, in
2020. His research interests include machine learning, multi-agent system

and their application in prosumers energy management and smart grid.

Junjie Hu received the M.Sc. degree in control theory and control engineer‐
ing from Tongji University, Shanghai, China, in 2010, and the Ph.D. degree
in electrical engineering from the Technical University of Denmark, Copen‐
hagen, Denmark, in 2014. He was a Postdoctoral Researcher with the De‐
partment of Electrical Engineering, Technical University of Denmark. He is
currently an Associate Professor with the School of Electrical and Electron‐
ic Engineering, North China Electric Power University, Beijing, China. His
current research interests include distributed energy resources energy man‐
agement, transactive energy and their participations in prosumers energy
management, and multi-energy system optimization.

Guangya Yang received the Ph. D. degree in 2008 from the University of
Queensland, St Lucia, Australia, in the field of electrical power systems.
Currently, he is a Senior Power System Engineer with Ørsted and Senior
Scientist with Technical University of Denmark, Copenhagen, Denmark.
Since 2009, he has been developing and leading many industrial collabora‐
tive projects in Denmark. He is editorial board member of IEEE Transac‐
tions on Sustainable Energy, IEEE Transactions on Power Delivery, IEEE
Access, and Journal of Modern Power System and Clean Energy. His re‐
search interests include power system dynamic security and protection, off‐
shore wind power system design and control, and transactive energy applied
to distributed energy resources.

Dongliang Xie received the Ph.D. degree in electrical engineering from
Southeast University, China, in 2012. During 2011-2012, he was a Research
Associate in Hong Kong Polytechnic University, Hong Kong, China. He is
currently working for State Grid Electric Power Research Institute (SGE‐
PRI), Nanjing, China. His research interests include analysis, simulation and
control for smart grid architectures and essentials consisting of renewable
power generation, power market and power system interactions, and de‐
mand elasticity.

Yusheng Xue received the Ph.D. degree from the University of Liege,
Liege, Belgium, in 1987. He has been an Academician with the Chinese
Academy of Engineering since 1995. He is currently the Honorary President
of the State Grid Electric Power Research Institute (SGEPRI), Nanjing, Chi‐
na, an Adjunct Professor in dozens of Chinese universities, and an Adjunct
Professor with the University of Newcastle, Newcastle, Australia. He is the
Editor-in-Chief of the Automation of Electric Power System (in Chinese)
and the Journal of Modern Power Systems and Clean Energy, as well as the
Chairman of the Technical Committee of Chinese National Committee of CI‐
GRE since 2005. His research interest includes power system automation.

Lars Nordström received the M.Sc. degree in electrical engineering from
Royal Institute of Technology (KTH), Stockholm, Sweden, in 1996, and the
Ph. D. degree in industrial information and control systems from KTH, in
2006. He is currently a Professor in information systems for power system
control at KTH. He is head of the division of Electric Power and Energy
Systems at KTH and Deputy Head of the School of Electrical Engineering
and Computer Science, with specific responsibility for faculty development.
His research and teaching are focused on issues at the crossroads of control,
communication and power systems. His research interests include future ar‐
chitectures, functionality and quality aspects of information and communica‐
tion systems used for power system control, operation, automation and pro‐
tection.

1216


