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A Cloud-edge Cooperative Dispatching Method
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Photovoltaic Generation Uncertainty
Lu Shen, Xiaobo Dou, Huan Long, Chen Li, Ji Zhou, and Kang Chen

Abstract——With the increasing penetration of renewable ener‐
gy generation, uncertainty and randomness pose great challeng‐
es for optimal dispatching in distribution networks. We propose
a cloud-edge cooperative dispatching (CECD) method to exploit
the new opportunities offered by Internet of Things (IoT) tech‐
nology. To alleviate the huge pressure on the modeling and com‐
puting of large-scale distribution system, the method deploys
edge nodes in small-scale transformer areas in which robust op‐
timization subproblem models are introduced to address the
photovoltaic (PV) uncertainty. Considering the limited commu‐
nication and computing capabilities of the edge nodes, the cloud
center in the distribution automation system (DAS) establishes
a utility grid master problem model that enforces the consisten‐
cy between the solution at each edge node with the utility grid
based on the alternating direction method of multipliers (AD‐
MM). Furthermore, the voltage constraint derived from the lin‐
ear power flow equations is adopted for enhancing the opera‐
tion security of the distribution network. We perform a cloud-
edge system simulation of the proposed CECD method and
demonstrate a dispatching application. The case study is car‐
ried out on a modified 33-node system to verify the remarkable
performance of the proposed model and method.

Index Terms——Cloud-edge cooperative dispatching method,
transformer areas, uncertainty, alternating direction method of
multipliers (ADMM).

I. INTRODUCTION

THE randomness and volatility in renewable energy
sources (RESs) have highlighted the pressing need to

address power quality and security concerns in distribution
networks [1], [2]. Furthermore, traditional operation and dis‐
patching methods can no longer satisfy the needs of power
grid reliability and economic development because of the in‐

creasing number of nodes and devices. With the develop‐
ment of Internet of Things (IoT) technology [3], the power
flow and information flow are gradually becoming intercon‐
nected and integrated. Therefore, the development of a pow‐
er IoT to cope with the uncertainties in RESs has become a
key topic.

Cloud computing has become a mature centralized dis‐
patching method. However, the traditional centralized mode
has difficulties in handling the rapid expansion of the data
scale due to the increasing number of RESs and the high
computation demand [4], [5]. Therefore, edge nodes with cer‐
tain communication, storage, and dispatching capabilities de‐
ployed in transformer areas will be key to sharing the com‐
putation burden on the cloud center. The distribution system
operator in China defines a transformer area as an area pow‐
ered by a low-voltage transformer [6], which may be a line
or a regional grid. Edge computing technology extends the
function of power management to the devices in transformer
areas, i. e., the edge sides of the distribution network, and
provides extra margins for increasing the computation speed.
This method has low latency and supports distributed algo‐
rithms, which are suitable for topology analysis and decision
optimization [3], [7].

Recent efforts in the domain of distributed optimal dis‐
patching have focused on mathematical models and algo‐
rithms. For example, a distributed dispatching strategy in a
multi-microgrid system was introduced in [8]. Reference [9]
proposed a distributed energy management method based on
the alternating direction method of multipliers (ADMM),
which is scalable and privacy-preserving, and provided reli‐
able communication. Reference [10] provided the economic
insight of price negotiation to achieve fair energy trading in
the ADMM solution. In [11], [12], a fully-distributed method
based on ADMM and the projected gradient method for the
economic dispatching problem was proposed in which local
computation and exchange of the messages between adjacent
nodes were used. The aforementioned distributed methods fo‐
cused on local dispatching in microgrids. This requires the
consistency between neighboring microgrids, which increas‐
es the communication and computation pressure on the mi‐
crogrids. The studies also focused on distributed optimiza‐
tion models and algorithms rather than specific implementa‐
tions based on the actual environment. Much data and many
models were established, calculated, and stored by the distri‐
bution automation system (DAS). Distributed computing is
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not really realized in these studies.
Furthermore, the stochastic intermittence and fluctuation

nature of photovoltaic (PV) generation necessitate the consid‐
eration of uncertainty in a distributed algorithm. Numerous
works in the literature adopted stochastic programming (SP)
[13], chance constrained programming (CCP) [14], [15], and
robust optimization (RO) [16] to handle the uncertainties. In
[17], an SP model was constructed for the demand response
in microgrids. The combination of the SP and conditional
value at risk constraint methods reduced the possibility of ir‐
rational decisions [18]. In contrast to these approaches, RO
does not model the probability distribution, but only requires
the scope information of the uncertainties [17], [19]. Refer‐
ence [20] introduced an uncertainty budget to control the rel‐
ative values of the uncertain parameter offsets. Adaptive RO
was used to construct a two-stage RO model which includes
both pre-decision and re-decision in [21], [22]. An affine cor‐
rection process was then designed in [23]. Although RO was
designed for handling uncertainty, the traditional centralized
framework cannot fully realize the coordination and comple‐
mentarity of multiple transformer areas. In addition, most
dispatching models ignore the voltage security in the opera‐
tion of the distribution network and only impose power bal‐
ance constraints.

In this paper, the linear approximation of the nonlinear
power flow equations in rectangular coordinates is leveraged
on to satisfy the voltage security constraint [24], [25]. A vari‐
ety of methods exploiting the relaxation of the nonlinear
power flow equations have been proposed in different
works. Reference [26] proposed an optimal inverter dispatch‐
ing strategy based on optimal power flow (OPF) which uti‐
lizes semi-definite programming (SDP) relaxation [27] to
find the optimal setpoints for PV inverters. However, this ap‐
proach involves numerous optimization variables, and may
become computationally expensive as the network size in‐
creases [28]. Different from the relaxation method, [29] pro‐
posed an approximate model as a generalization of the DC
power flow model in which the optimal reactive power flow
problem is cast into the class of convex quadratic, linearly-
constrained optimization problems. Similarly, [24] developed
a linear approximation to the power flow equations which
avoids the non-convexity in OPF problems and results in a
convex function. In this work, we adopt a closed-form linear
power flow (LPF) equation [24], [25] for the nodal voltage
to formulate tractable optimization problems.

In summary, a cloud-edge cooperative dispatching
(CECD) method considering the uncertainties is proposed
for the distribution network. The main contributions of this
paper are as follows.

1) With the development of IoT cloud-edge technology,
the proposed CECD method places a greater emphasis on
practical implementation than most previous works. In partic‐
ular, because of the limited data transmission and computing
capabilities in the edge nodes, the direct iteration of neigh‐
boring edge nodes is replaced by the communication be‐
tween the cloud center and multiple edge nodes. The cloud
center establishes a utility grid master problem (UGMP)
model and enforces the consistency between the solution of
each edge node and the utility grid in order to provide high

computation speed.
2) Compared with most existing works on dispatching

strategies, this work proposes a distributed RO model based
on the ADMM which addresses the uncertainties in small-
scale transformer areas. A second difference is that the volt‐
age constraint derived from linear flow equations is consid‐
ered instead of the traditional power balance constraint. This
addresses the neglected threat to nodal voltage security
caused by the PV uncertainty in the transformer areas. The
proposed method not only narrows the uncertainty range of
the PV forecasting for conservativeness reduction, but also
guarantees the operation security of the distribution network.

The remainder of this paper is organized as follows. In
Section II, the detailed dispatching strategy is introduced.
Sections III and IV present the mathematical model as well
as its solution. A set of dispatching application software is
developed in Section V. The case studies are analyzed in
Section VI and the conclusions are drawn in Section VII.

II. DISPATCHING STRATEGY

An optimal dispatching strategy considering the uncertain‐
ty in PV generation is proposed in this work. We assume
that a transformer area contains gas turbines, PV generators,
energy storage (ES), and other devices. Figure 1 shows that
the dispatching model is divided into two problems, namely,
the transformer area subproblem (TASP) and the UGMP.

Specifically, an RO-based TASP is established to realize
the autonomous allocation and dispatching of controllable re‐
sources. The deterministic optimization model with the objec‐
tive of minimizing the network loss and operation cost is cre‐
ated first. The maximization part of the max-min two-layer
model is constructed by formulating an uncertainty set de‐
scribing the range of PV fluctuations. The UGMP model is
constructed to minimize the network loss and purchase cost
from the external grid. In addition, we set a security con‐

UGMP
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PV uncertainty set

PV prediction 

 

Objective: purchase
cost and network loss

Constraint: voltage
security constraint

Power purchased from
the external grid

Power exchanged with
transformer areas
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cost and network loss
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device limitations
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optimization model

Minimization part in
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Fig. 1. Framework of proposed dispatching strategy.
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straint on the nodal voltage derived from the LPF equations.
The TASPs determine the worst scenarios. This avoids the
disadvantages of massive computations and high conserva‐
tiveness caused by global uncertainty. The ADMM is then
utilized to incorporate the results from the TASPs into the
UGMP for generating new solutions. After multiple itera‐
tions between the UGMP and TASPs, the global optimal so‐
lution is obtained.

III. MATHEMATICAL MODEL

In this section, the matrix inverse, transpose, and complex
conjugate are denoted by (×)-1 , (×)T, and (×)*, respectively, and
the real and imaginary parts of a complex number are denoted
by Re(×) and Im(×), respectively. A diagonal matrix formed
with entries composed of the elements of vector x is denoted
by diag(x). The N × 1 vectors with all ones and all zeros are
denoted by 1N×1 and 0N×1, respectively. The spaces of N × 1
real-valued and complex-valued vectors are denoted by RN

and ℂN, respectively.

A. LPF Model

The voltage security constraint is derived from the linear
approximation to the power flow equations [24], [25]. We
consider a distribution network containing m branches and n +
1 nodes. The branch vector is M, and the node vector is N.
Define the set N ′ including all nodes except node 1 (the
slack bus), i. e., N ′ =N\{1}. Let I =[I2, I3,, IN + 1]

T, V =
[V2, V3,, VN + 1]

T and S =[S2, S3,, SN + 1]
T, I, V, SÎCN. The

voltage equation and power balance equation can be ex‐
pressed as:

I =YV + ȲV1 (1)

S = diag(V )I * (2)

where V1 is the slack-bus voltage, which is set as the refer‐
ence voltage. Let Ȳ ÎCN and Y ÎCN × N . The vector of shunt
admittances Ysh, which is negligible in the present setting,
can thus be extracted as:

Ysh =Y1N ´ 1 + Ȳ = 0N ´ 1 (3)

We linearize (2) by substituting (1) and neglecting the
higher-order terms. The voltage deviation, defined as DV =
V -V11N ´ 1, is obtained as:

DV =Y -1diag(1 V *
1 )S* (4)

We add a row for V1, i.e., DV̂ =[0DV T]T, V̂ =[V1V T]T, so
that (4) is then modified as:

V̂ =V11( )N + 1 ´ 1 +DV̂ = Ŷ -1diag(1 V *
1 )Ŝ* (5)

ì

í

î

ïï
ïï

Ŷ -1 = é
ë
ê

ù
û
ú

1 0T
N ´ 1

1N ´ 1 Y -1

Ŝ* =[V 2
1 S*]T

(6)

As shown in (6), Y and S are modified to Ŷ and Ŝ, so that
(5) expresses the nodal voltage, including the slack bus volt‐
age V1. Actually, Ŷ and Ŝ have no physical meaning.

Finally, we expand (5) by using Ŷ -1 =R+ jX and
Ŝ = P̂ + jQ̂. The real and imaginary components of V̂ (V̂re =
Re(V̂ ), V̂ im = Im(V̂ )) are given by

é

ë
êê

ù

û
úú

V̂re

V̂ im

= é
ë
ê

ù
û
ú

R X
X -R

é

ë
êê

ù

û
úú

P̂

Q̂
(7)

It is worth mentioning that the error of the nodal voltage
increases as the node moves electrically further away from
the slack bus [24]. Next, we apply the voltage expression (7)
in the following optimization problems and verify its accura‐
cy in Section VI-B.

B. TASP Model

We begin with a deterministic TASP model, which can be
cast into an RO form later. The model in each unit compris‐
es the following:

1) Gas turbine: the gas turbine is considered as a control‐
lable distributed generator (DG), and the operation cost can
be expressed as the linear function (8) [16].

C t
ijg =Kg P t

ijgDt (8)

where C t
ijg is the operation cost of the gas turbine connected

to node j in the ith transformer area during the period t; Dt is
the dispatching step, which is taken as 1 hour; Kg is the cost
coefficient; and P t

ijg is the generated active power of the gas
turbine, subject to (9), while its reactive power Qt

ijg is con‐
trolled by the rated power factor angle φg.

P min
g £P t

ijg £P max
g (9)

Qt
ijg =P t

ijg tan(φg) (10)

where P min
g and P max

g are the minimum and maximum generat‐
ed active power of the gas turbine, respectively.

2) ES: the ES cost mainly comprises the investment and
operation cost [30]. The average charging and discharging cost
during the investment recovery period can be expressed as:

C t
ijes =Kes (P t

ijesdis η +P t
ijeschη) Dt (11)

where Kes is the cost coefficient after conversion; P t
ijesch and

P t
ijesdis are the active charging power and discharging power

of the ES inverter, respectively; and η is the charging/dis‐
charging efficiency. The ES constraints are given as:

ì

í

î

ï
ï
ï
ï

0£P t
ijesdis £P max

esdis

0£P t
ijesch £P max

esch

E t
ijes =E t - 1

ijes + ( )P t
ijeschη- P t

ijesdis η Dt

E min
es £E t

ijes £E max
es

(12)

where P max
esch and P max

esdis are the maximum charging and dis‐
charging power, respectively, which are limited by the capac‐
ity of the ES; E t

ijes is the remaining capacity; and E min
es and

E max
es are the minimum and maximum remaining capacities al‐

lowed during the dispatching process to prevent overcharg‐
ing or over-discharging, respectively, which can reduce the
service life [30]. The generated and consumed reactive pow‐
er in the ES is

{Qt
ijesdis =P t

ijesdis tan(φesdis)

Qt
ijesch =P t

ijesch tan(φesch)
(13)

where Qt
ijesch and Qt

ijesdis are the reactive charging power
and discharging power of the ES inverter, respectively; and
φesch and φesdis are the rated charging and discharging power
factor angles of the ES, respectively.

3) Voltage security constraint: in order to simplify the cal‐
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culation, the influence of reactive power in PV generation is
ignored. The power injection at node j is given by:

{P t
ij =P t

ijg +P t
ijesdis -P t

ijesch -P t
ijload +P t

ijpv

Qt
ij =Qt

ijg +Qt
ijesdis -Qt

ijesch -Qt
ijload

(14)

where P t
ijload and Qt

ijload are the active power and reactive
power of the load at node j in the ith transformer area, re‐
spectively; and P t

ijpv is the active power output of the PV.
The voltage vectors V t

ire and V t
iim in the ith transformer ar‐

ea are calculated using (7), where V1 is taken as the refer‐
ence voltage. The voltage magnitudes are constrained to re‐
main within the defined limits V max and V min:

V min £V t
ire £V max (15)

In addition, the network loss C t
iloss of the TASP is given by:

C t
iloss =K t

i∑
j = 1

Ni

P t
ijDt (16)

where K t
i is the unit power cost; and Ni is the total number

of the nodes in the ith transformer area.
Consequently, the ith deterministic TASP is modeled as:

ì

í

î

ïï
ïï

min fi =∑
t = 1

NT é

ë
êê

ù

û
úú∑

j = 1

Ni

( )C t
ijg +C t

ijes +C t
iloss

s.t. ( )9 ( )10 ( )12 - ( )15

(17)

where NT is the total number of dispatching periods. Equa‐
tion (17) can be reformulated to a simple form (18) includ‐
ing the deterministic PV output value, where y is the control
variable as defined in (19), and û is the predicted value of
the PV output as defined in (20).

ì

í

î

ïï
ïï

min cT y

s.t. Dy ³ d

Iu y = û
(18)

y = [P t
ijg P t

ijesdis P t
ijesch P t

ijpv ]
T

(19)

û= é
ëû

t
i1pv  ût

ijpv  ût
iNi pv

ù
û

T

(20)

where c is the coefficient column vector corresponding to
the objective function (17); d is a constant column vector;
ût

ijpv is the PV predicted output of node j in the ith transform‐
er area; and D and Iu are the coefficient matrices correspond‐
ing to the constraints. Dy ³ d is the inequality constraint and
incorporates (9), (12), and (15). Iu y = û is the deterministic
constraint on the PV forecasting.

C. UGMP Model

The optimization objective of the UGMP includes the
power loss C t

netloss and purchase cost C t
netPCC via the point of

common coupling (PCC):

min g =∑
t = 1

NT

( )C t
netPCC +C t

netloss (21)

C t
netPCC =K t

net P
t
netPCCDt (22)

C t
netloss =K t

net∑
l = 1

Nnet

P t
netlDt (23)

where K t
net is the power market price; P t

netPCC is the power in‐

jected from the external grid, subject to (24); P t
netl is the in‐

jected active power of the node l in the utility grid, which is
divided into the two cases given in (25) and (26) depending
on whether the node is an edge node; and Nnet is the set of
nodes in the utility grid. The optimization model needs to en‐
sure the operation security of the utility grid. The nodal volt‐
age V t

net can be obtained from (7).

-P max
netPCC £P t

netPCC £P max
netPCC (24)

{P t
netl =-P t

netlload

Qt
netl =-Qt

netlload

lÎNnet\NC (25)

{P t
netl =P t

netli -P t
netlload

Qt
netl =Qt

netli -Qt
netlload

lÎNC (26)

where P max
netPCC is the maximum power allowed by the distribu‐

tion line connected to PCC; Qt
netl is the injected reactive

power of node l in the utility grid; P t
netlload and Qt

netlload are the
active and reactive power of the load at node l, respectively;
NC is the set of edge nodes connected to the transformer areas;
and P t

netli and Qt
netli are the exchange active and reactive pow‐

er via the lth edge node, respectively. The voltage security con‐
straint is

V min £V t
netre £V max (27)

IV. MODEL SOLUTION

RO is an efficient approach to obtain fully robust solu‐
tions against PV uncertainty in the TASP model described in
Section III-A. Compared with traditional methods such as
SP, RO has the advantages in guaranteeing constraint satis‐
faction, not requiring the knowledge of the probability distri‐
butions of uncertain variables, and a relatively fast computa‐
tion speed [19], [31]. In the RO technique, an uncertainty
set is a deterministic set comprising the lower and upper
bounds of the uncertain variables. A robust feasible solution
is one in which all the constraints are satisfied regardless of
the actual values of the uncertain variables in the uncertainty
set [32]. In this work, the PV power generation is modeled
within an uncertainty set by interval prediction tools [33]:

U  {u= é
ë

ù
ûut

i1pv  ut
ijpv  ut

iNi pv

ut
ijpvÎ [ ]ût

ijpv -Dumax
ijpv ût

ijpv +Dumax
ijpv

(28)

where ut
ijpv is the introduced uncertain PV output variable af‐

ter considering the uncertainty; and Dumax
ijpv is the maximum

fluctuation deviation allowed. The ith deterministic TASP
(18) can be reformulated as:

ì

í

î

ïï
ïï

max
uÎU

min
y

cT y

s.t. Dy ³ d

Iu y = u

(29)

The following forms are then obtained using the strong du‐
al theory [34], [35]:

ì

í

î

ïï
ïï

max
uÎUγπ

( )d Tγ+ uTπ

s.t. DTγ+ I T
u π £ c

γπ ³ 0

(30)
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where γ and π are the dual variables related to the con‐
straints in (29). It is remarkable that the max-min structural
RO model has been cast into a single-layer linear optimiza‐
tion model, which can be solved efficiently using a state-of-
the-art solver.

Furthermore, the proposed CECD method is actually a dis‐
tributed optimization model in the form of a master problem
and multiple subproblems. In the literature, distributed opti‐
mization techniques such as the sub-gradient method and the
ADMM, have been widely applied to smart grids [36], [37].
The ADMM is preferred for fast convergence [38]. A consen‐
sus version of the ADMM [36] assumes that each subprob‐
lem has its own local objective function and a local set of
constraints which act on a global variable shared between all
the subproblems. The subproblem is solved for the respec‐
tive local copies of the global variables by finding the opti‐
mal solution for the local copies subject to the condition that
all the local copies are equal to the global variables. The op‐
timization problem is solved iteratively, with all the local
copies eventually converging to the global optimum provid‐
ed that the problem is convex. For the TASP model, the lo‐
cal objective function and constraints only involve the vari‐
ables in their own transformer area and the shared variable
with the utility grid. The boundary information is transmitted
between the UGMP and TASPs to update the calculation re‐
sults until the global optimal solution is obtained, instead of
each TASP iterating with one other.

We integrate the UGMP and TASPs in (31), which can be
reformulated into the standard format of the ADMM (32).

ì

í

î

ïï
ïï

min ( )∑
i = 1

NC

fi+ g

s.t. ( )9 ( )10 ( )12 - ( )15 ( )24 - ( )28

(31)

{min ( )f ( )x + g ( )z

s.t. xÎXzÎZ
x = z

(32)

where fi and g are the objective functions of the ith TASP in
(17) and the UGMP in (21), respectively; and f (x), X, g(z),
and Z are the objective functions and constraints in (31).
The control variable x is redefined from the TASP models.
In fact, it is the set of all the results from the TASPs and not
obtained directly. The exchange power is set as the boundary
variable. x is specifically expressed as:

x =

é

ë

ê

ê

ê

ê

ê

ê
êêê
ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú
úúú
ú

ú

ú

x 1
1  x t

1  x NT

1

  

x 1
i  x t

i  x NT

i

  

x 1
NC

 x t
NC

 x NT

NC

(33)

ì

í

î

ï

ï
ïïï
ï

ï

ï
ïïï
ï

x t
i = [ ]P t

ic Qt
ic

T

P t
ic =∑

j = 1

Ni

P t
ij

Qt
ic =∑

j = 1

Ni

Qt
ij

(34)

The variable z, which has the same structure and meaning
as x, is introduced in the UGMP model. The two variables
are unified by the equivalence constraint x = z. The ADMM
comprises the local minimization step, decision variable up‐
date, and augmented Lagrangian multiplier update [33] as
follows:
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é
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z

é
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ù
û
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ρ
2
 xk+1 -z

2

2

λk+1 =λk +ρ ( )xk+1 -zk+1

(35)

where ρ is the penalty coefficient; and λk is the Lagrange
multiplier in the kth iteration.

The iterative solution is shown schematically in Fig. 2.
The convergence of the ADMM can be characterized by the
primal residue rk + 1 and dual residue sk + 1 [36], which satisfy

{rk + 1 = xk + 1 - zk + 1

sk + 1 = ρ ( )zk + 1 - zk (36)

Thus, the convergence criterion can be defined as:

{ rk + 1 2

2
£ εpri

 sk + 1 2

2
£ εdual

(37)

where εpri and εdual are both greater than zero. rk+1 reflects the
infeasibility of the model, while sk+1 is used to determine
whether the iteration has converged to the optimal solution.
The detailed steps of the solution are shown in algorithm 1.

Algorithm 1: ADMM for CECD model

Set k = 0, λ0 = 1, ρ0 = 1, z0 = 0

for k = 1, 2, (repeat until convergence) do

[Cloud center]: receive zk;
update zk+1 via (35).

[Edge node i]: for i = i:NC;

receive zk+1 and calculate xi
k+1 via (35);

update xk+1 via (33), (34);

end for.

[Cloud center]: calculate λk+1 via (35);

calculate rk+1, sk+1 via (36);

end for.

V. APPLICATION IMPLEMENTATION

The CECD method is applied to the distribution network

UGMP

Update

Update

Update

Update

TASP 1 TASP 2

TASP 3

x1
k+1

x3
k+1

x3
k+1x1

k+1

z1
k+1

z3
k+1 x2

k+1

x2
k+1

z2
k+1

RO-based model
Uncertain set

max-min structure

λk+1, zk+1

Fig. 2. Iterative solution.
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architecture shown in Fig. 3. The cloud center is built into
the DAS and not only obtains the operation data, grid topolo‐
gy, and standard models of the various devices, but also as‐
signs tasks to the edge nodes. The distribution transformer
terminal unit (TTU) with computing, storage, and communi‐
cation capabilities is set as an edge node. Based on the speci‐
fied communication protocol, the edge nodes detect and col‐
lect the facility and network operation status information in
the transformer area. Moreover, because of the enormous
pressure on cloud-centric computing due to high-frequency
data, some applications are embedded in the edge nodes to
undertake tasks assigned by the cloud center. The implemen‐
tation framework of CECD application is shown in Fig. 4,
where SCADA stands for supervisory control and data acqui‐
sition; GIS stands for geographic information system; DSM
stands for demand-side management; and PMU stands for
phasor measurement unit. A dispatching system software is
developed for the cloud center to assign the dispatched tasks
to the corresponding edge nodes for completion and coordi‐
nate their compution results. The edge nodes in turn com‐
plete their dispatched tasks autonomously under the control
of the power management application and then return the op‐
timization results to the cloud center.

In this work, the proposed CECD method is implemented
on a cluster of 4 processors connected by 100 Mbit/s Ether‐

net to simulate a cloud center and 3 edge nodes. The de‐
tailed system configurations are given in Table I. The dis‐
patching system software and power management app are
modeled in Microsoft Visual Studio 2017 [39] by calling
MATLAB R2018b [40] programs, including the UGMP and
TASP modules. The established optimization model is solved
by a commercial solver Gurobi 8.9.0 [41]. The cloud center
keeps a copy of the data collected by each edge node based
on the UDP communication protocol. Users can also directly
access edge nodes by the address stored in the cloud center.
The data from all edge nodes can be shared from the cloud
center if an edge node requires the data.

VI. CASE STUDIES

A modified IEEE 33-node test system is used to test the
CECD method. In this section, we first validate the accuracy
of the LPF model and analyze the dispatching results with
the voltage security constraints. The feasibility and superiori‐
ty of the proposed CECD method are then further illustrated
via the comparison with the centralized RO method, the de‐
centralized RO method, and the distributed deterministic dis‐
patching method.

A. Simulation System

A modified IEEE 33-node test system is used to verify the
effectiveness of the CECD method. Figure 5 shows the de‐
tailed topological structure adopted in this paper. There is a
110 kV/10 kV transformer between nodes 1 and 2. The re‐
maining transformers are 10 kV/380 V transformers. The
TTUs are installed at the low-voltage sides of the transform‐
ers, i.e., nodes 7, 19 and 26 [6]. Four gas turbines, six PVs
and three ESs are integrated into the network. The detailed
parameters of the ES and gas turbine are as follows: P max

esdis =
400 kW, P max

esch = 400 kW, E min
es = 0 kWh, E max

es = 1200 kWh,
Kes = 0.4 ¥/kWh, η = 0.95, P max

g = 200 kW, P min
g = 0 kW, and

Kg = 0.65 ¥/kWh. The prices in the power market are pre‐
sented in Table II. Figure 6 shows the forecasted daily load
profile and PV power profile [42]. The fluctuation range of
the PV power differs in different areas, and thus we adopt
20%, 15% and 10% of the predicted value according to the
historical deviation in the respective transformer areas [43],
respectively. The system base is 100 MVA. The voltage up‐
per limit and lower limit are set as 1.05 p.u. and 0.95 p.u.,
respectively. More detailed information can be found in [44].

To verify the advantages of the proposed CECD method,
five methods are investigated to compare and analyze the
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Fig. 3. Simplified schematic diagram of distribution network.
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Fig. 4. Implementation framework of CECD application.

TABLE I
SYSTEM CONFIGURATION

Configuration

Cloud center

Edge node 1

Edge node 2

Edge node 3

CPU
core

12

4

4

4

Processor

Intel
Xeon 4

Intel
Core i5

Intel
Core i5

Intel
Core i7

Memory
(GB)

64

8

8

16

HDD
(TB)

1.0

0.5

0.5

0.5

SDD
(GB)

256

128

128

256

Operation
system

Win10
(64 bit)

Win 10
(64 bit)

Win 10
(64 bit)

Win 10
(64 bit)
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performance in different scenarios.
1) Method 1: with no dispatching method.
2) Method 2: with the proposed CECD method.
3) Method 3: with the centralized RO method.
4) Method 4: with the decentralized RO method.
5) Method 5: with the distributed deterministic method.

It is worth noting that Method 4 also uses the ADMM to
solve multiple TASPs. However, differing from the proposed
CECD method, this method requires each edge node to com‐
municate with neighboring nodes to achieve consistency in‐
stead of establishing a UGMP in the cloud center to obtain
the global optimal solution cooperatively and iteratively.

B. Analysis of CECD Application Results

Based on the parameters of the above system, the optimal
results from the proposed CECD method (Method 2) are
shown in Fig. 7. The operation status of the devices in trans‐
former area 1 is analyzed as an example. The ES charges
and discharges according to the power market price and PV
generation (positive and negative values represent power dis‐
charging and charging, respectively). When there is superflu‐

ous PV power, excessive electricity is stored in the ES. In the
opposite case, the ES can discharge to satisfy the load demand.

In the CECD method, the cloud center re-optimizes the re‐
sults obtained by the edge nodes considering the purchase
from the external grid. The exchange power of each edge
node is shown in Fig. 8, where positive and negative values
represent power export and import, respectively. When the
PV power drops sharply, the transformer areas absorb power
to balance the power supply and demand. Otherwise, the
transformer areas export power.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1817

26 27 28 29 30 31 3332

19 20 21 22

232425

Gas turbine

PV 
ESTransformer area 1

Transformer
area 3

Transformer area 2

Fig. 5. Modified 33-node distribution network system.

TABLE II
ENERGY PRICE
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Time division
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1.322

0.832

0.369

0

1.6

3.2

0

2

4

6

8
7

5

1

3

5 10 15 20 23

PV uncertainty
PV forecasting

PV
 p

ow
er

 (M
W

)

2.4

0.8

(c)

0

3.0

6.0

5 10 15 20 23

PV uncertainty
PV forecasting

PV
 p

ow
er

 (M
W

)

4.5

1.5

(d)

0

1.0

2.0

Time (hour) Time (hour)

Time (hour) Time (hour)

5 10 15 20 23

PV uncertainty
PV forecasting

PV
 p

ow
er

 (M
W

)

1.5

0.5

(a)

0

1.0

2.0

5 10 15 20 23

PV uncertainty
PV forecasting

PV
 p

ow
er

 (M
W

)

1.5

0.5

(b)

Lo
ad

 p
ow

er
 (M

W
)Load forecasting

Fig. 6. Forecasting results of PV and load. (a) Transformer area 1. (b)
Transformer area 2. (c) Transformer area 3. (d) Distribution network system.
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Furthermore, the voltages are simulated for comparison to
demonstrate the accuracy of the LPF equations. As shown in
Fig. 9, the real (magnitude) and imaginary (phase angle)
parts of the voltage obtained by the LPF equations have lit‐
tle deviation from the results of the nonlinear power flow
equations. The maximum deviations of the voltage magni‐
tude and phase angle are 0.0001 p.u. and 0.0004 rad, respec‐
tively. This result demonstrates that the LPF model can re‐
place the nonlinear power flow equations while imposing the
voltage security constraint and reducing the calculation pres‐
sure.

The treatment of overvoltage by the voltage security con‐
straint in the LPF equations is considered in the TASPs. Fig‐
ure 10 represents three voltage results at the 11th hour from
Method 1, Method 2, and Method 2 without voltage con‐
straint. Method 2 without voltage constraint reduces the volt‐
age level by a certain extent, although the voltage is still un‐
safe around node 22. However, the voltage security-con‐
strained Method 2 can ensure that all nodes are within the
safe range of less than 1.05 p.u..

C. Comparison with Centralized and Decentralized RO
Methods

The voltage magnitudes at the 14th hour calculated by the
different methods are shown in Fig. 11. Because of the high
penetration of PV power generation, the voltages of nodes
19 and 20 exceed the upper limit (1.05 p. u.) in Method 1.
Although the nodal voltage of Method 3 has a marginal im‐
provement compared with Method 1, the voltage magnitude
at node 19 is still around 1.05 p.u.. This is because the PV
uncertainty set range adopted in Method 3 is the average lev‐
el of multiple transformer areas. However, in fact, the PV

fluctuation ranges in different regions are usually not the
same. As shown for transformer area 3, when a worse sce‐
nario beyond the uncertainty set occurs, voltage security
may not be guaranteed. Method 2 and Method 4 have simi‐
lar voltage levels and all nodes are within the safe range.

The operation costs of the three methods are given in Ta‐
ble III. For Method 3, the inaccurate average PV uncertainty
adopted in several areas results in a higher total operation
cost (¥16253.7) than that of Method 2 (¥16104.9). Besides,
although the costs of the three transformer areas under Meth‐
od 4 are slightly decreased compared with that of Method 2,
the cost of the utility grid is much higher. This demonstrates
that the proposed CECD method can provide extra margins
for the total operation costs of the distribution system.

The dataset conditions and required computation time for
the three methods in the aforementioned simulated environ‐
ment are compared in Table IV, which further validates the
superiority of the proposed CECD method. It can be con‐
cluded that the computation time of Method 2 is less than
that of the other two methods, especially Method 3. In tradi‐
tional centralized methods, the cloud center needs to collect
and calculate the global data from the entire distribution net‐
work. As shown in Table IV, the full dataset requires 600 kB
to store and has over 25000 entries in the coefficient matrix
of the optimization model. However, Method 2 and Method
4 utilize decentralized collection or storage as well as distrib‐
uted computation to reduce the dataset size and dimensions,
and thus the calculation pressure on the cloud center is
spread out and the computation time is shortened. In Method
4, the limited communication and computing capabilities of
the edge nodes result in more time taken to directly ex‐
change data between the edge nodes without a cloud center.
Notably, the results in Table IV are based on a 33-node dis‐
tribution system including three edge nodes. When the pro‐
posed CECD method is applied to a larger-scale distribution
network with more transformer areas, its advantages in re‐
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TABLE III
COMPARISON OF OPERATION COSTS

Method

Method 2

Method 3

Method 4

Cost (¥)

Area 1

2687.2

2491.6

2582.5

Area 2

2774.6

2805.1

2694.7

Area 3

4201.4

4547.6

4168.2

Utility grid

6441.7

6409.4

6771.8

Total

16104.9

16253.7

16217.2
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ducing the computation time and burden will become more
prominent.

D. Comparison with Distributed Deterministic Dispatching
Method

In order to verify the validity of the day-ahead uncertainty
consideration, the proposed method is compared with the dis‐
tributed deterministic dispatching method (Method 5). In this
case, the purchase/sale price in the real-time market is as‐
sumed to be 1.5/0.5 times the price in the corresponding pe‐
riod of the day-ahead electricity market [45].

The forecasting error makes it necessary to compensate
for the imbalance between the planned dispatching scheme
and the actual situation on the next day. Both the methods
require the purchase or sale of electricity in the real-time
market to balance power supply and demand, which results
in the balancing cost. The balancing cost in Table V is calcu‐
lated using the actual PV power generation on the second
day [42]. It can be seen that the day-ahead operation cost of
Method 5 is lower than that of Method 2. However, since
the purchase/sale price of the real-time market is generally
higher/lower, the balancing cost of Method 5 for satisfying
load demand is much higher. Consequently, the comparison
clearly shows that the proposed CECD method outperforms
Method 5 in terms of robustness against real-time market
price fluctuation risks.

VII. CONCLUSION

A new implementable CECD method for distribution net‐
works to cope with the uncertainties in PV generation by uti‐

lizing IoT technology is proposed in this paper. The edge
nodes deployed in TTUs build the RO-based TASP models,
while the cloud center establishes the UGMP in the DAS
and exchanges boundary information with the edge nodes to
obtain the global optimal solution using the ADMM. We use
a modified 33-node distribution network, which includes
three transformer areas for simulation. The results fully dem‐
onstrate that the proposed CECD method reduces the calcula‐
tion pressure on the centralized cloud computing in the DAS
and provides extra margins for reducing the computation
time. The CECD method further outperforms the other meth‐
ods such as the centralized RO method, the decentralized
RO method, and the distributed deterministic dispatching
method in minimizing the operation cost and satisfying the
nodal voltage constraint. Notably, the proposed CECD meth‐
od can support the development of RESs by adding edge
nodes and enhance the operation security and economical op‐
eration of distribution networks.

The above conclusions demonstrate the advantages of the
hourly robust dispatching scheme. The high speed and low
delay of edge computing technology make it possible to
study real-time optimization strategies for distribution net‐
works. Our future work will also analyze the effects of data
transmission and width on the real-time results in practice.
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