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Abstract——This study proposes a deep reinforcement learning
(DRL) based approach to analyze the optimal power flow
(OPF) of distribution networks (DNs) embedded with renew‐
able energy and storage devices. First, the OPF of the DN is for‐
mulated as a stochastic nonlinear programming problem. Then,
the multi-period nonlinear programming decision problem is
formulated as a Markov decision process (MDP), which is com‐
posed of multiple single-time-step sub-problems. Subsequently,
the state-of-the-art DRL algorithm, i.e., proximal policy optimi‐
zation (PPO), is used to solve the MDP sequentially considering
the impact on the future. Neural networks are used to extract
operation knowledge from historical data offline and provide
online decisions according to the real-time state of the DN. The
proposed approach fully exploits the historical data and reduces
the influence of the prediction error on the optimization results.
The proposed real-time control strategy can provide more flexi‐
ble decisions and achieve better performance than the pre-deter‐
mined ones. Comparative results demonstrate the effectiveness
of the proposed approach.

Index Terms——Deep reinforcement learning (DRL), optimal
power flow (OPF), wind turbine, distribution network.

I. INTRODUCTION

IN the context of the energy shortage, climate change, and
environmental protection, the development of clean ener‐

gy and low-carbon economy, as well as the optimal alloca‐
tion of energy, is essential [1]. It is an effective way to use
sustainable energy by realizing the local consumption of re‐
newable energy in a distribution network (DN). However, re‐
newable energy is affected by natural conditions and has the
characteristics of intermittence and uncertainty, presenting

challenges to the dispatch and operation of the DN [2].
The optimal power flow (OPF) problems of the DN can

be classified into two categories. The first category is deter‐
ministic OPF problems. Specific values of the load demand,
sustainable generation, and particular network conditions are
usually needed to solve this type of problem. Various mathe‐
matical approaches [3] and swarm intelligence based ap‐
proaches are proposed for solving deterministic OPF prob‐
lems [4], [5]. However, the nonlinear characteristics of these
problems (introduced by the constraints of either the net‐
work or the devices) make it difficult for the optimization
tools to find the global optimum [6]. Evolutionary methods
are effective optimization methods when the space of poli‐
cies is sufficiently small or can be structured and a large
amount of time is available for the search [7]. However,
power systems have an uncertain nature. It is difficult to im‐
plement the intelligence-based methods in the actual opera‐
tion of power system when considering the uncertainty of
the load and the intermittency of renewable energy genera‐
tion.

The second category is probabilistic OPF (P-OPF) prob‐
lems. To deal with the uncertainty of the DN, numerous ap‐
proaches for solving the P-OPF problems have been pro‐
posed. References [8], [9] propose stochastic programming
based approaches for the optimization of the DN. The sto‐
chastic programming based methods assume the knowledge
of the distribution of uncertain variables, based on which the
scenarios of uncertainty realizations are generated. These
methods suffer from a heavy computational burden, as a
large number of scenarios must be considered. Moreover, it
is difficult to accurately determine the probability distribu‐
tion of uncertain variables in practice [10]. In contrast to sto‐
chastic programming based methods, robust optimization
based methods deal with the uncertainty by constructing an
uncertainty set and searching the solutions that are robust to
all realizations within the set. Robust optimization based
methods are proposed for the management of the DN in [11]-
[14]. Reference [13] proposes a robust optimization based
method that exploits the convex hull tool for the definition
of the uncertainty set. Reference [14] proposes a robust qua‐
dratic approach for the operation of a smart DN. In the simu‐
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lation, the proposed approach achieves better performance
than the linearized, nonlinear and quadratically constrained
ones. The robust optimization based methods require the ob‐
tained solution to be immune to the worst case in the uncer‐
tainty set. Thus, the results obtained via these methods are
relatively conservative. Chance-constrained methods are also
used for the optimization of DN operation [15], [16]. The
model predictive control (MPC) algorithm is sometimes used
in the two-stage optimization of the management of DNs
[17]. However, the performance of the MPC algorithm de‐
pends on the accuracy of the prediction of the renewable en‐
ergy generation and load demand. The past operating experi‐
ence has not been fully used [18], [19]. The aforementioned
methods must resolve a stochastic nonlinear problem partial‐
ly or completely when a new situation is encountered, which
may take some time [20]. Therefore, these methods might
not be applicable to real-time control problems. Moreover,
these methods greatly depend on accurate information regard‐
ing the parameters and topologies of the DN [21]. However,
it is hard to obtain the reliable network models in practice.

In recent years, machine learning (ML) has been a popu‐
lar research topic in computer science. By continuously ex‐
tracting knowledge from historical data, ML-based methods
can generate powerful models to deal with the uncertainty
and dynamics of a system without a physical model. The
learned models can be generalized to new situations and pro‐
vide control decisions in real time [22], [23]. Therefore, ML-
based methods are promising alternatives with better dynam‐
ic performance of real-time optimization of the DN when ac‐
curate parameters are unknown [24]. Among the various ML-
based methods, reinforcement learning (RL) has the most po‐
tential for the optimization of the DN, as it can learn opti‐
mal control strategies from historical data without knowing
the global optimum [25]. In [26], a Q-learning method is
used for the energy management of a hybrid electric vehicle.
As an effective and famous RL algorithm, Q-learning in‐
volves learning an action value function, which is a dis‐
cretized lookup-table matrix. The size of the matrix is deter‐
mined by the discretized states and actions. When the states
and actions are high-dimensional vectors, the sharply increas‐
ing matrix size of the action value function makes the con‐
vergence difficult. This limits the application of Q-learning
in practical scenarios with high-dimensional and continuous
states and action spaces. To address this problem, [27] pro‐
poses the deep RL (DRL) algorithm using a deep neural net‐
work (DNN) as the approximator of the action value func‐
tion. The DNN can take continuous variables as inputs and
does not have to discretize the input states. By combining
the strong nonlinear approximation ability of the DNN and
the decision-making capacity of RL, DRL gives the comput‐
er the human-level performance in various complex tasks
[28], e. g., play Atari video games and the game Go. In
2016, Google AlphaGo defeated a human champion in
chess, which indicates the remarkable potential of DRL.

Various energy management strategies based on the DRL
algorithms have been proposed [20], [22]. Reference [20]
proposes a deep Q-network (DQN) based approach for the
management of a battery storage system (BSS) in a micro-

grid. Simulation results indicate that the proposed approach
can deal with the uncertainty of the environment. However,
the DQN must discretize the control variables. For optimiza‐
tion problems with a continuous action domain, the discreti‐
zation of the control variables unusually leads to suboptimal
solutions. The deep policy gradient (DPG) based method has
been proven effective in the scenarios with high-dimensional
and continuous action spaces. Focusing on the building ener‐
gy optimization problem, [22] proposes a DPG-based meth‐
od to perform online management of the building energy.
The DPG-based method can take multiple actions at the
same time and achieve better results than the DQN.

Inspired by recent research, we develop a DPG-based
method with continuous action search to solve the P-OPF
problem of the DN with renewable energy generation and
BSS. The multi-time P-OPF problem is first formulated as a
Markov decision process (MDP). Then, the proximal policy
optimization (PPO) algorithm, which is the state-of-the-art
DPG-based method, is used to solve the MDP, by sequential‐
ly considering the influence of the current action on the fu‐
ture. Neural networks (NNs) are used to extract the optimal
operation knowledge to cope with the uncertainties from his‐
torical data. This model considers the uncertainty of the de‐
mand, the initial energy level of the BSS, and the wind pow‐
er generation. The objective of this model aims to minimize
the cost of the power loss by controlling the BSS and the re‐
active power of the wind turbine under relevant constraints.
Comparative experiments are performed using a modified
IEEE 33-bus DN to evaluate the performance of the pro‐
posed approach. The main contributions of this paper are pre‐
sented as follows.

First, a real-time energy management strategy for DN
based on the DRL algorithm is proposed. The proposed ap‐
proach embeds operation knowledge extracted from histori‐
cal data in the DNN to make near-optimal control decisions
in real time. The extracted operation knowledge is adaptive
to the uncertainty of the system and can be generalized to
newly encountered situations. The decision process is similar
to recalling the past experience from the memory when a
new state is obtained, without resolving the OPF problem.
Therefore, the proposed approach can be used for the online
optimization of the DN and provide a better response to sys‐
tem dynamics.

Second, the proposed approach decomposes the multi-peri‐
od decision problem into multiple single-time-step sub-prob‐
lems, which are sequentially solved while considering their
impact on the future. This reduces the computation complexi‐
ty introduced by the time correlation of the storage devices.

The remainder of this paper is organized as follows. In
Section II, the problem formulation is presented. The princi‐
ple of the proposed approach and the training process are in‐
troduced in Section III. The experimental details and the re‐
sults of a case study are presented in Section IV. Finally,
Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, the mathematical model of the P-OPF
problem with wind turbines, load demand, and BSS is pre‐

1102



CAO et al.: DEEP REINFORCEMENT LEARNING BASED APPROACH FOR OPTIMAL POWER FLOW OF DISTRIBUTION NETWORKS...

sented.

A. Objective Function

The objective of the P-OPF problem is to minimize the
cost of power loss. The optimization horizon is 1 day, and
the time interval of optimal scheduling is 1 hour. The objec‐
tive function is formulated as:

min
PbssQbssQw

F =min∑
t = 1

T

Cp (t)Ploss (t) (1)

Ploss (t)=
1
2∑i = 1

N∑
j = 1

N

G(ij)[V 2
e (it)+V 2

f (it)+V 2
e ( jt)+

V 2
f ( jt)- 2(Ve (it)Ve ( jt)+Vf (it)Vf ( jt))] (2)

where F is the total cost of the power loss for an optimiza‐
tion horizon; Ploss (t) is the power loss of the DN during hour
t; Cp (t) is the electricity price during hour t; G(ij) is the real
component of the complex admittance matrix elements;
Ve (it) is the real component of the complex voltage at bus i
during hour t; Vf (it) is the imaginary component of the com‐
plex voltage at bus i during hour t; T is the length of one tra‐
jectory; and N is the number of nodes in the DN. The con‐
trol variables are Pbss, Qbss, and Qw, which represent the ac‐
tive power of the BSS, reactive power of the power condi‐
tioning system (PCS) of the BSS, and reactive power of the
wind turbine, respectively.

B. Constraints

1) Wind Power
The constraints of the active and reactive power of the

wind turbine are expressed as [29]:

Pw (kt)=

ì

í

î

ï
ï
ï
ï

Pwmax (k) vr £ v£ vco

Pwmax (k) ( )v
vr

3

vci £ v< vr

0 otherwise

(3)

P 2
w (kt)+Q2

w (kt)£ S 2
w (k) (4)

where Pw (kt) is the active power of wind turbine k during
hour t; Pwmax (k) is the rated power of wind turbine k; v, vr,
vci, and vco are the actual speed, rated speed, cut-in speed,
and cut-out speed of the wind turbine, respectively; Qw (kt)
is the reactive power of wind turbine k during hour t; and
Sw (k) is the upper bound of the apparent power of wind tur‐
bine k. The parameters of the wind turbine are vci = 4 m/s,
vr = 14 m/s, and vco = 24 m/s.
2) BSS

The BSS consists of a storage unit and a PCS unit. The
PCS controls the charging and discharging processes and per‐
mits the outputs of active and reactive power, in accordance
with the following constraints:

P 2
bss (kt)+Q2

bss (kt)£ S 2
PCSmax (k) (5)

|Pbss (kt)|£ P̄bss (k) (6)

where Pbss (kt) is the active power of BBS k during hour t
(when BBS k is charging, Pbss (kt) is a positive value; when
it is discharging, Pbss (kt) is a negative value); Qbss (kt) is
the reactive power of BBS k during hour t; SPCSmax (k) is the

upper limit of the apparent power of BBS k; and P̄bss (k) is
the charging power limit of BBS k.

The energy balance of the BSS should satisfy (7).

ì

í

î

ïï
ïï

E(kt + 1)-E(kt)- ηch Pbss (kt)= 0 Pbss (kt)> 0

E(kt + 1)-E(kt)-
Pbss (kt)
ηdis

= 0 Pbss (kt)£ 0
(7)

where E(kt) is the state of charge (SOC) of BSS k during
hour t; and ηch and ηdis are the charging and discharging coef‐
ficients, respectively. The storage capacity cannot cross the
lower or upper bound (20% or 90% of the storage capacity,
respectively).

Emin £E(kt)£Emax (8)

where Emin and Emax are the lower and upper bounds of the
SOC of BSS, respectively. Owing to the uncertainty of load
demand and renewable energy generation during the intra-
day operation, the BSS needs to be flexibly scheduled to
cope with the uncertainties in practice. Therefore, the remain‐
ing level of BSS is uncertain. In order to get better simula‐
tion results of the real circumstance and fully exploit the
BSS, the uncertainty of the initial level of BSS is taken into
account.
3) Power Flow and Voltage Constraints

The power flow constraints are expressed as:

Ve (it)∑
j = 1

N

(G(ij)Ve ( jt)-B(ij)Vf ( jt))+

Vf (it)∑
j = 1

N

(G(ij)Vf ( jt)+B(ij)Ve ( jt))+P(it)= 0 iÎN (9)

P(it)=Pload (it)-Pw (it)+Pbss (it) iÎN (10)

Vf (it)∑
j = 1

N

(G(ij)Ve ( jt)-B(ij)Vf ( jt))-

Ve (it)∑
j = 1

N

(G(ij)Vf ( jt)+B(ij)Ve ( jt))+Q(it)= 0 iÎN (11)

Q(it)=Qload (it)+Qbss (it)-Qw (it) iÎN (12)

where B(ij) is the imaginary component of the complex ad‐
mittance matrix elements; P(it) and Q(it) are the injection
values of the active and reactive power at bus i during hour
t, respectively; and Pload (it) and Qload (it) are the active and
reactive power of the load demand at bus i during hour t, re‐
spectively. Equations (9) and (11) are the active and reactive
power flow equations, respectively; and (10) and (12) give
the injection values of the active and reactive power, respec‐
tively.

The voltage constraint is expressed as:

Vmin (i)£V (it)£Vmax (i) iÎN (13)

where V (it) is the voltage at bus i during hour t; and Vmin (i)
and Vmax (i) are the lower and upper bounds of the voltage at
bus i, respectively.

The P-OPF problem formulated above is a stochastic non‐
linear programming problem with high complexity owing to
the network and time domain introduced by the BSS. This
study proposes a DRL-based approach to solve this problem,
which is described in detail in Section III.
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III. PROPOSED CONTROL METHODOLOGY

In this section, the OPF problem is modelled as an MDP
first, and then the PPO algorithm is used to solve the MDP.
Subsequently, the DNN architecture for function approxima‐
tion is presented. Finally, the training process of the pro‐
posed approach is illustrated in detail.

A. MDP Modelling

The MDP is used to model RL problems. As the optimiza‐
tion of the DN is a sequential decision-making problem, it
can be modelled as an MDP with finite time steps. The
MDP can be divided into four parts: SAPR .

1) S represents the state set. The state st is composed of
five parts: Pload (it), Qload (it), Pw (kt), E(kt), and Cp (t).

2) A represents the action set. The action at is composed
of three parts: Pbss (kt), Qbss (kt), and Qw (kt).

3) P represents the probability of a transition to the next
state st + 1 after action at is taken in state st. The state transition
from st to st + 1 can be expressed as st + 1 = f (stPbss (kt)ω t),
where ω t represents the randomness of the environment. The
state transition for the SOC of BSS E(kt) is controlled by
Pbss (kt). This can be denoted explicitly by the equality con‐
straint in (7). Since the wind power generation and load de‐
mand for the next hour are not accurately known, the state
transitions of Pload (it) and Pw (kt) are subject to the environ‐
mental randomness. However, it is difficult to accurately
model the randomness ω t in practice. To address this prob‐
lem, a model-free DRL-based approach is used to learn the
transition procedure from historical data, as described in Sec‐
tion III-B.

4) R represents the reward rt after action at is taken in
state st. A single-step reward rt is defined as:

rt =Ploss (t)Cp (t)+ δ1 + δ2 + p(t) (14)

p(t)=
ì

í

î

ïï
ïï

-η(20%-E(t)) E(t)< 20%

0 20%£E(t)£ 90%

-η(E(t)- 90%) E(t)> 90%

(15)

where δ1 is the penalty applied when the voltage exceeds the
limit; δ2 is the penalty applied when the capability limitation
of PCS is not satisfied; p(t) is the penalty applied when the
upper or lower bound of the storage unit is exceeded; and η
is a coefficient. The units of δ1, δ2, and η are $/MWh, thus,
the penalty terms have the same measurement term as the
cost of the power loss.

At time step t, the agent makes a decision at based on the
observation of the environment st and then obtains a reward
rt. Then, the environment transfers to the next state st + 1. This
is an MDP. In the context of the P-OPF, the SOC of BSS is
a continuous variable, which is affected by the charging/dis‐
charging action performed by the agent. Therefore, when de‐
termining at, it is reasonable to consider the future reward
that the agent obtains after performing action at. However,
the same reward may not be obtained by the agent the next
time, even if the same action is considered, owing to the sto‐
chastic nature of the environment (i. e., the uncertainty of
wind power generation). Therefore, it is necessary to intro‐
duce a discount factor γÎ[01] to represent the uncertainty of

the environment. The discounted cumulative reward that the
agent obtains after action at is performed in state st is ex‐
pressed as:

R(t)=∑
k = 0

T - t

γkrt + k (16)

The objective of the RL is to learn a policy, which maps
the state st to the action at that can maximize the discounted
cumulative reward. By formulating the multi-period optimi‐
zation problem as an MDP with finite time steps, the prob‐
lems can be solved sequentially using the DRL algorithm by
considering their influence on the future. Instead of solving
the multi-period optimization problem by traditional ap‐
proaches, sequentially solving the MDP helps reduce the
computation complexity of the proposed approach. The over‐
all structure of the proposed approach for optimization is il‐
lustrated in Fig. 1.

It should be noted that although the introduction of the
discount factor reduces the complexity of the proposed ap‐
proach, the selection of γ requires trial and error process,
which is a deficiency of the decomposition.

B. Adopting PPO Algorithm to Solve MDP

PPO is an actor-critic based algorithm (consisting of an ac‐
tor and a critic). The actor is the policy function that maps
the state st to the action at. The critic is the value function
that maps the state st to a scalar that measures the quality of
the input state.

The actor corresponding to the policy function is parame‐
terized by θμ. In traditional policy-based approaches, the pa‐

Multi-period optimization problem

Stochastic
nonlinear

programming

Stochastic
nonlinear

programming

Stochastic
nonlinear

programming

t = 1 2t = t=T

…

…s1 s2 s3 sT�1 sTa1 a2

rT�1r2r1

aT�1

MDP

st

Temporal 
different
 errors

Critic NN

Loss function Policy gradient
Update Update 

Environment (DN)

Actor NN

atrtObserve

PPOLoad

Wind power

SOC,
electricity price

Fig. 1. Overall structure of proposed approach for optimization.
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rameters are updated by maximizing the reward [7], which is
expressed as:

ÑR
θμ
=Eτ~p

θμ
(τ) (R(t)Ñ lg p

θμ
(τ))»

1
N∑n= 1

K∑
t = 1

T

R(tn)Ñ lg p
θμ

(atn|stn)

(17)

where E ( )⋅ is the expectation function; K is the number of
trajectories; p

θμ
(atn|stn) is the probability of taking action atn

in state stn under the policy, which is parameterized by θμ;
Ñ lg p

θμ
(atn|stn) is the direction that improves the probability

of choosing action atn in state stn; and R(tn) is the reward,
which indicates the extent of the probability improvement.
Therefore, ÑR

θμ
can adjust the strategy in the direction that

increases the probability of action with a greater reward val‐
ue in state st.

In (17), since R(tn) represents the discounted cumulative
reward that the agent obtains after state stn, the parameters
of the actor network can only be updated after one episode
is completed, which reduces the learning efficiency. To solve
this problem, the critic network parameterized by θQ is intro‐
duced. The critic network maps state st to a scalar V π (st),
which is the expected cumulative reward that the agent ob‐
tains after visiting state st under policy π. The R(tn) in (17)
can be replaced with the temporal-difference error, which is
given by the value function A(stat), as shown in (18):

A(stat)= r(stat)+ γV π (st + 1)-V π (st) (18)

The temporal-difference error indicates the advantage of
performing action at in state st over the expected reward val‐
ue of all actions. Since r(stat) is the immediate reward, the
parameter can be updated step by step. The parameters of
the value function are optimized by minimizing L(θQ).

L(θQ)=E((V π (st)- yt)
2) (19)

yt = r(stat)+ γV π (st + 1) (20)

However, each batch of data can only be used to update
the parameter θμ once, which is a disadvantage of traditional
policy gradient methods. To improve the data efficiency and
prevent policy updates from becoming too large simultane‐
ously, a clipped objective function is proposed [30]. The pa‐
rameters of the policy function θμ are updated by:

LCLIP (θμ)=

∑
(stat)

min ( )p
θμ

(at|st)

p
θμ′ (at|st)

A(stat)clip ( )p
θμ

(at|st)

p
θμ′ (at|st)

1- ε1+ ε A(stat)

(21)

where ε is the clipping rate, which restricts the update range
of the new policy in a trusted region; and θμ′ is the parame‐
ters of the “old” actor, which is in charge of interacting with
the environment. The data generated by the “old” actor can
be utilized to update the parameters of actor θμ several
times. The clipped function clip(×) helps the PPO algorithm
achieve a trade-off among simplicity, sample complexity,
and wall-time [30].

C. DNN Architecture for Function Approximation

DNN has a powerful function fitting ability. As reported

in [31], an NN can approximate the functions of arbitrary
complexity with arbitrary precision. Therefore, NNs are used
to fit the value function and policy function in this paper.

In the PPO algorithm, the actor represents the policy func‐
tion, which maps state st to action at, and st and at are the in‐
put and output of the policy function, respectively.

at = z μl (z μl - 1 (z μ1 (st))) (22)

z μi = g(W μ
i oμ

i - 1 + bμ
i ) i = 23l (23)

where z μi is the mapping relationship of the ith layer of the
policy function; oμ

i - 1 is the output of the (i - 1)th layer; W μ
i

and bμ
i are the weight and bias of the ith layer of the policy

function, respectively; and g(×) is the activation function of
the neurons.

The critic represents the value function, which maps the
state st to V π (st):

V π (st)= z Q
l (z Q

l - 1 (z Q
1 (st))) (24)

z Q
i = f (W Q

i oQ
i - 1 + bQ

i ) i = 23... l (25)

where z Q
i is the mapping relationship of the ith layer of the

value function; oQ
i - 1 is the output of the (i - 1)th layer; W Q

i

and bQ
i are the weight and bias of the ith layer of the value

function, respectively; and f (×) is the activation function of
the neurons.

Therefore, the policy function and value function are pa‐
rameterized by θμ ={W μ

1 bμ
1 W μ

2 bμ
2W μ

l bμ
l } and θQ ={W Q

1 
bQ

1 W Q
2 bQ

2 W Q
l bQ

l }, respectively.

D. Training Process

The training process of the DNN is presented in Algo‐
rithm 1. The parameters of the proposed approach can be de‐
noted as θ = {θμ θμ′θQ}. At the beginning of the training pro‐
cess, the θ of all the NNs are randomly initialized. The pa‐
rameters of the “old” actor θμ′ are copied from θμ. Then, the
algorithm is trained for M episodes to adjust θ. Several ac‐
tors parameterized by θμ′ simultaneously interact with the en‐
vironment. At the beginning of an episode, each “old” actor
obtains a start state s1 of a day randomly chosen from the
training data. At each time step, the actor chooses the action
according to the input state st. The action is then performed,
and the environment transfers to the next state; simultaneous‐
ly, a reward is obtained. Then, the advantage estimates are
calculated using (18). When all the actors finish T time
steps, the parameters of the policy network θμ are updated
by:

L(θμ)=
1
M

×

∑
(stat)

min ( )p
θμ

(at|st)

p
θμ′ (at|st)

A(stat)clip ( )p
θμ

(at|st)

p
θμ′ (at|st)

1- ε1+ ε A(stat)

(26)

θμt + 1 = θμt - ημÑθμ
L(θμ) (27)

where ημ is the learning rate for the policy network; and M
is the mini-batch size. Owing to the introduction of the
clipped function, the collected data can be used for updating
θμ several times. Simultaneously, the parameter of the critic
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network is updated by minimizing the loss L(θQ).

L(θQ)=
1
M

(V π (st)- yt)
2 (28)

θQ
t + 1 = θQ

t - ηQÑθQ L(θQ) (29)

where ηQ represents the learning rate for the critic network.
At the end of each episode, set θμ′¬ θμ. When the training
is finished, the parameters of the algorithm can be output for
real-time optimization of the DN.

E. Reward Rescaling Based on Clipped Reward Function

Owing to the uncertainty of the environment, the variance
of the reward is large. This reduces the accuracy of the val‐
ue-function estimation and increases the variance of the poli‐
cy gradient, which may reduce the convergence speed and
even lead to a suboptimal policy. To address this problem, a
clipped function based reward-rescaling technology is intro‐
duced in this paper. The reward sent to the value function is
scaled as:

rt = clip ( )rt -m

σ
- bb (30)

where m and σ are the mean value and variance of the cumu‐
lative discounted reward of an episode, respectively; and -b
and b are the lower and upper bounds of reward rt, respec‐
tively. The variance of the rescaled reward is significantly re‐
duced, which helps the value function to learn unbiasedly.

IV. CASE STUDY

In this section, the performance of the proposed approach
is analyzed according to numerical results for a DN system.
First, the application scenario is presented. Second, the ex‐
perimental setup is detailed. Third, the training process is de‐
scribed to demonstrate that the algorithm can extract useful
operation knowledge from the training data to reduce the
cost of power loss. Fourth, a comparison is performed using
test data to illustrate the generalization ability of the extracted
operation knowledge and the benefits of the proposed ap‐
proach.

A. Application Scenario

The proposed approach is tested on a modified IEEE 33-
bus system to demonstrate the potential for reducing the cost
of power loss in the DN. The topology of the DN is shown
in Fig. 2. The BSSs are connected to buses 8, 15, 24, and
31. Distributed wind turbines are connected to buses 5, 10,
16, 20, 26, 30, 35, and 36. Bus 1 is selected as the slack
bus, and the other buses are PQ buses.

The peak price is 117 $/MWh and the off-peak price is 65
$/MWh. The rated power is 500 kW for all the wind tur‐
bines. The installed capacity of the BSS is 1000 kWh. The
charging and discharging power limit are 300 kW. ηch and
ηdis are both set as 0.9. The lower and upper bounds of the
storage capacity are set as 20% and 90%, respectively. The
wind power generation data obtained from western Denmark
cover 65 days and are divided into the following two
groups. The data of the first 60 days are used as training da‐
ta (to train the algorithm). The data of the remaining 5 days
are used as test data to evaluate the generalization ability of
the extracted operation knowledge and the performance of
the proposed approach.

B. DNN Architecture and Hyper-parameter Setting

The PPO algorithm is an actor-critic based DRL method
that employs an online actor network, a critic network, and a
target network. The actor network is a copy of the online ac‐
tor network. The input of the actor network is the system
state st, and the output is the action at. The input of the crit‐
ic network is also the system state st. The output is the value
of the state V π (st). Both the actor and critic networks have
three hidden layers, which have 200, 100, and 100 neurons,
respectively. The NNs use the rectified linear unit for all the
hidden layers and the output layer of the critic networks.
The output layer of the actor network uses both the tanh acti‐
vation unit and the softplus activation unit. A workstation
with an NVIDIA GeForce 1080Ti graphics processing unit
and an Intel Xeon E5-2630 v4 central processing unit is
used for the training. The DRL algorithm is implemented in
Python with TensorFlow, and the power loss is computed in
MATLAB. The parameters of the DRL algorithm are present‐
ed in Table I.

C. Training Process

The proposed approach and the original PPO algorithm
without the clipped reward function are trained off line for
5500 episodes to learn the operation knowledge from the
training data.

Algorithm 1: training process of DNN

Input: ηQ, ημ, ε, M, γ, T, Na

Output: π
1: Model initialization: randomly initialize critic network Q(sa|θQ) and

actor μ(s|θμ) with parameters θQ and θμ, and initialize “old” actors
with parameters θμ′¬ θμ

2: for episode = 1:M do
3: for actor = 1:Na do
4: Start state s1 of a random day
5: for time step t = 1:T do
6: Select action according to (22), execute at, obtain re‐

ward rt, and the environment transfers to next state
7: Compute advantage estimates A(stat) according to (18)
8: end for
9: end for
10: Optimize the parameters of the actor network θμ according to (26)

and (27)
Optimize the parameters of the critic network θQ according to

(28) and (29)
11: Update parameters of “old” actors: θμ′¬ θμ

12: end for

1 2 3 4 5 6
7 8

9
10 11

12 13 14 15
16

24 25 26

20
21 22

27
28

29 30 31 32 3334

23

35

17 18 19 36

WT2

WT1

BSS1

WT7

WT3WT4

WT5

WT6
WT8

BSS2

BSS3 BSS4

Fig. 2. Topology of DN for case study.
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There are 24 steps in each epoch, which represents one
day. The cumulative reward during the training procedure is
depicted in Fig. 3. The cumulative reward is shown on a log
scale for better visualization. At the beginning of the train‐
ing, the agent cannot make good decisions and explore the
action spaces to achieve more reward information in each
state. Through constant interactions with the environment,
the proposed approach finally learns a good policy to
achieve high cumulative rewards. The proposed approach
with the clipped function converges faster than the original
PPO algorithm. This is because the clipped function reduces
the variance of the reward, thereby reducing the unfavour‐
able influence of the uncertainty of the wind power genera‐
tion on the approximation of the value function.

The proportion of satisfied constraints (PSC) and the aver‐
age cost of the power loss for the training data are shown in
Fig. 4. At the beginning of the training, the PSC is almost 0,
and the cost of the power loss is high. This is because the
agent is unaware of how to make optimal decisions to re‐
duce the cost of the power loss while satisfying the correlat‐
ed constraints. Therefore, the agent attempts to explore the
environment and accumulate experience. The PSC increases
sharply until the 1300th episode. At this stage, the cost of the
power loss decreases sharply. In this process, the agent
learns to make decisions for reducing the cost of the power
loss under the correlated constraints.

From the 2000th to 5200th episodes, the cost of the power
loss is relatively low, while the PSC fluctuates between 0.92
and 1. This indicates that the agent has mastered the skills to
reduce the cost of the power loss but sometimes violates the
constraints. After approximately the 5200th episode, the PSC
is around 1, suggesting that most of the decisions made by
the agent satisfy the correlated constraints. This indicates
that the proposed approach can extract powerful operating
knowledge from training data via the NN to reduce the cost
of the power loss under correlated constraints.

D. Comparison Results

1) Experimental Setup
To test whether the knowledge extracted by the NN can

be generalized to new situations and to evaluate the perfor‐
mance of the proposed approach, comparative experiments
are performed using test data, which cover 5 days. An uncon‐
trolled strategy, the double DQN (DDQN) algorithm, and sto‐
chastic programming (SP) are used for comparison. The opti‐
mal solution of the proposed approach is the output of the
NN, whose parameter is fixed after the training. The DDQN
algorithm is an improved version of deep Q-learning, which
solves the problem of overestimation of the value function
when the action dimension is high [32]. The input of the
DDQN algorithm is the state st, and the output comprises
the discrete actions. Owing to the characteristic of the
DDQN algorithm, the control variables must be aggregated.
There are three types of control variables: Pbss, Qbss, and Qw.
Each action is discretized into five values. Therefore, the out‐
put layer has 125 neurons, each corresponding to a set of ac‐
tions. The value functions are approximated by the NNs con‐
taining three hidden layers, the neuron numbers of which are
400, 200, and 200, respectively. Note that for the proposed
approach, the batteries are uniformly controlled while the
wind turbines are controlled separately. For the DDQN and
the proposed approach, the uncertainty of the initial SOC of
BSS is considered. At the beginning of each episode, the ini‐
tial SOC of BSS is sampled from Gaussian distribution, the
mean and variance of which are 0.5 and 0.1, respectively.
The sampled initial SOC of BSS is bounded between 0.2
and 0.9. For the uncertainty modelling of the SP method, it
is assumed that the variation of the load demand and the
wind power follows a normal distribution. The mean value
of the distribution is the forecasted value of the load and
wind power. Two hundred sets of scenarios are generated ac‐
cording to the assumed distributions. Then, the number of
scenarios is reduced to 20 to reduce the computation burden.
Next, the particle swarm optimization algorithm is used to
solve the optimization problem.
2) Performance Evaluation

The cost of the power loss with four different methods on
five consecutive test days is shown in Fig. 5. As shown, the
cost of the power loss varies significantly among the differ‐
ent cases, owing to the variations of the distributed wind en‐
ergy generation and load demand. However, the proposed ap‐
proach always has the minimum cost of the power loss. This
indicates that the operation knowledge extracted by the NN
can be generalized to new situations with various levels of

TABLE I
PARAMETERS OF DRL ALGORITHM

Parameter

γ

ημ
ηQ

Value

0.99
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Fig. 3. Cumulative reward during training procedure.

0 1000 2000 3000 4000 5000 5500
Episode

Cost of power loss
PSC

50
60
70
80
90

100
110
120

PS
C

0

0.2

1.2

0.4

0.6

0.8

1.0

C
os

t o
f p

ow
er

 lo
ss

 ($
)

Fig. 4. PSC and cost of power loss during training procedure.
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the distributed wind power generation and load demand.

The quantitative results are presented in Table II. Com‐
pared with the DDQN method, the proposed approach re‐
quires no discretization of the actions and avoids informa‐
tion loss during the training procedure; thus, it achieves bet‐
ter results. The proposed approach also achieves better re‐
sults than the SP method. This may be because the adaptive
control strategies learned by the proposed approach during
the training procedure are scalable to newly encountered situ‐
ations. When the training is finished and the algorithm is de‐
ployed in a practical system, the proposed approach and the
DDQN method can provide the control decisions in a few
milliseconds. The decision process is similar to recalling
past experience from memory, without resolving the optimi‐
zation problem. Thus, the proposed approach can provide
control decisions based on the latest observed state of the
DN. However, the control decisions of SP are pre-deter‐
mined and cannot be adjusted according to the latest infor‐
mation of the DN. The real-time decisions provided by the
adaptive strategies based on the latest information of the DN
can yield better results than the pre-determined decisions pro‐
vided by SP method. This confirms the efficiency of the pro‐
posed approach.

The load demand and wind power on a low-wind-speed
day and the changes in the cost of the power loss are pre‐
sented in Fig. 6. Since the optimization horizon is an entire
day, no method ensures the global optimum during each
hour. It can be observed that the cost of the power loss is
high if no control strategy is applied. When the DDQN and
SP methods are used, the cost of the power loss is reduced.
Compared with the DDQN method, the proposed approach
has the continuous action search ability, thus it avoids the in‐
formation loss and achieves a better control performance.
Since the proposed real-time optimization approach makes
decisions based on the latest state of the DN, it obtains less

cost of the power loss than the pre-determined decisions
made by the SP method, i. e., t = 9- 18 hours for example.
This is consistent with Fig. 5 and Table II.

V. CONCLUSION

The increasing penetration of renewable energy and BSS
presents great challenges for the operation of the DN. In this
context, we propose a DRL-based approach for the manage‐
ment of the DN under uncertainty. The P-OPF problem is
first formulated as an MDP with finite time steps. Then, the
PPO algorithm is used to solve the MDP sequentially. NNs
are used to obtain the optimal operation knowledge from his‐
torical data to deal with the uncertainties. A reward-rescaling
function is introduced to reduce the influence of the uncer‐
tainty of the environment on the learning process and in‐
crease the convergence speed. The operation knowledge ex‐
tracted from the historical data is scalable to newly encoun‐
tered situations. When the training is complete, the proposed
approach can provide control decisions in real time based on
the latest state of the DN, without resolving the OPF prob‐
lem. Comparative tests confirm that the proposed real-time
energy management strategy can provide a more flexible
control strategy than the pre-determined decisions provided
by the SP method. The proposed DRL-based approach is
promising for providing the real-time operation of the DN.
Considering that demand response is a promising approach
to reduce the power loss by providing consumers with eco‐
nomic incentives, we intend to include it in our future
works. The safe DRL-based approach for the optimization of
DN while explicitly considering the operation constraints
will also be studied in our future works.
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