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Abstract——Accurate sag source location and precise sag type
recognition are both essential to verifying the responsible party
for the sag and taking countermeasures to improve power quali‐
ty. In this paper, an attention-based independently recurrent
neural network (IndRNN) for sag source location and sag type
recognition in sparsely monitored power system is proposed.
Specially, the given inputs are voltage waveforms collected by
limited meters in sparsely monitored power system, and the de‐
sired outputs simultaneously contain the following information:
the located lines where sag occurs; the corresponding sag
types，， including motor starting, transformer energizing and
short circuit; and the fault phase for short circuit. In essence,
the responsibility of the proposed method is to automatically es‐
tablish a nonlinear function that relates the given inputs to the
desired outputs with categorization labels as few as possible. A
favorable feature of the proposed method is that it can be real‐
ized without system parameters or models. The proposed meth‐
od is validated by IEEE 30-bus system and a real 134-bus sys‐
tem. Experimental results demonstrate that the accuracy of sag
source location is higher than 99% for all lines, and the accura‐
cy of sag type recognition is also higher than 99% for various
sag sources including motor starting, transformer energizing
and 7 different types of short circuits. Furthermore, a compari‐
son among different monitor placements for the proposed meth‐
od is conducted, which illustrates that the observability of pow‐
er networks should be ensured to achieve satisfactory perfor‐
mance.

Index Terms——Independently recurrent neural network, sag
source location, sag type recognition, voltage sag, attention
mechanism.

I. INTRODUCTION

VOLTAGE sag, as one of the most critical power quality
issues, is attracting extensive attention from both indus‐

try and academia [1], [2]. The sag may cause great damage
to high-tech manufacturers. Statistically, more than 80% of
the complaints about power quality problems are due to volt‐
age sags [3]. Voltage sags bring not only significant econom‐
ic losses, but also adverse social impacts [4]-[6]. Both accu‐
rate sag source location and precise sag type recognition are
therefore essential to verifying the responsible party for the
sag and taking corresponding countermeasures to improve
power quality.

An analysis on the existing research dealing with sag
source locations shows that most of the existing methods
can be divided into two categories.

In the first category, the voltage is measured by a single
power quality monitor for upstream-downstream detection.
In detail, the direction of energy flow and the magnitude of
disturbance energy, or the changes of the current, voltage
and impedance are computed and compared before and after
sag occurrence [7]. However, such approaches can only de‐
termine which side of the monitor the sag originates on. In
other words, the above methods are incapable to locate the
line where the sag occurs.

With the construction of smart grid, a large number of
power quality monitors are being installed [8], [9]. Recent re‐
search consequently shifts the focus to be on accurately lo‐
cating the line of sag source in a power system with multi-
monitors [10], [11], which forms up the second category. In
[10], the path or a confined area where the source likely oc‐
curs is tracked by computing each branch current deviation
index, voltage-disturbance energy and current phase-angle
variation. In [11], the faulty line is located by a set of rules
utilizing the magnitude of three-phase voltage, voltage devia‐
tion of each phase and total average voltage deviation. How‐
ever, all these methods are not suitable for locating sag
source caused by motor starting or transformer energizing.
Specifically, the above handcraft-established indices or rules
have difficulties in capturing features for different sag sourc‐
es, since ① handcrafted-feature selection greatly relies on
prior domain knowledge, leading to complicated process;
and ② handcrafted-feature design may ignore some potential
or essential characteristics under different conditions, leading
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to limited accuracy.
To deal with the shortcomings of the above methods, data-

driven approaches have been introduced to realize sag
source location relying only on measured data [12]-[14]. For
example, in [12], a decision-tree based approach is adopted
to determine the faulty segment by using the measured volt‐
age and current.

Furthermore, it is necessary to point out that sag type rec‐
ognition is also essential in industrial applications, which is
of significant value to help estimate its damage on equip‐
ment. Existing techniques, such as S-transform and Clarke
transform, have been adopted to recognize sag types [15] -
[17]. However, the characteristics captured in time domain
and frequency domain by these techniques cannot sufficient‐
ly describe sag, resulting in low accuracy.

More significantly, it is worth mentioning that very limit‐
ed research has been carried out to realize all of the follow‐
ing features simultaneously: ① locate the line where sag oc‐
curs in the whole power system; ② recognize the sag type
for the located sag source including not only short circuits
but also the causes with motor starting and transformer ener‐
gizing; ③ identify the faulty phase for sag source caused by
short circuits, including single-line-to-ground fault, line-to-
line fault and three-phase short circuit.

Deep learning, as a representative of data-driven method,
has the following favorable properties: ① it enables a ma‐
chine or model to automatically learn deep and multi-aspect
features from data [18]; ② feature learning can be achieved
without knowledge of the power system model or human ex‐
pert experiences [19]. Thus, deep learning provides a power‐
ful solution to the above problems. Specifically, the recur‐
rent neural network (RNN), which adopts a layer-by-layer
feature extraction structure, can learn essential features from
time series data [20], such as the monitored voltage wave‐
forms. Recently, the potential of employing deep learning in
power systems starts to be explored, supported by the devel‐
opments of high-performance hardware [21], [22]. The stan‐
dard RNN owns the capacity to retain historical information
from an arbitrarily long past. However, in practical applica‐
tion, it faces vanishing or exploding gradient challenge. To
overcome the deficiency of standard RNN, the long short-
term memory (LSTM), gated recurrent unit (GRU) and inde‐
pendently recurrent neural network (IndRNN), as the variet‐
ies of standard RNN, have been proposed [23], [24]. More‐
over, the GRU further simplifies the LSTM with higher exe‐
cution efficiency [25]. The effectiveness of the proposed
method therefore shall be compared against that of GRU.

In this paper, a deep learning architecture using attention-
based IndRNN is proposed to simultaneously realize sag
source location and type recognition. The main contributions
of this paper are concluded as follows.

1) A deep learning architecture based on IndRNN, which
can process longer sequences and construct deeper network,
is designed to fully learn the deep and multi-aspect features
from measured voltage in sparsely monitored power sys‐
tems. This is beneficial to improving accuracy and prevent‐
ing the vanishing or exploding gradients.

2) Attention mechanism is further combined with IndRNN

to simultaneously realize sag source location, sag type recog‐
nition and faulty phase identification with as few categoriza‐
tion labels as possible.

3) The effectiveness and practicability of the proposed at‐
tention-based IndRNN are verified and compared against
those of GRU-based model.

The remainder of this paper is organized as follows. In
Section II, the reasons for choosing attention mechanism and
IndRNN-based deep learning method are introduced, and
then, the overall architecture of the proposed model is illus‐
trated. In Section III, experiments are carried out on the
IEEE 30-bus system and a real 134-bus system to verify the
performance and feasibility. Finally, the conclusion is drawn
in Section IV.

II. MODEL CONSTRUCTION AND SOLUTION

In this section, the definition of the sag source location
and sag type recognition problems studied in this paper is
presented. Then a brief introduction to IndRNN and atten‐
tion mechanism is given. Finally, the proposed attention-
based IndRNN model is illustrated.

A. Problem Formulation

The problem of sag source location and sag type recogni‐
tion is defined to determine sag source and sag type simulta‐
neously by using the information from limited meters in
sparsely monitored power systems. In detail, sag source loca‐
tion aims at finding out the line in the whole power system
where the sag occurs. Meanwhile, sag type recognition in‐
tends to detect the type of the located sag source, where
monitors may not be installed. In particular, all the following
sag types can be recognized: sag caused by short circuits,
sag caused by motor starting and sag caused by transformer
energizing. Furthermore, the faulty phase also can be identi‐
fied if the sag type belongs to short circuits. In essence, this
problem is to establish a nonlinear function between the giv‐
en inputs and the desired outputs, where the given inputs are
voltage waveforms of the monitored buses and the desired
outputs are the lines of sag source and its corresponding sag
type. That is to say, by using only the monitored voltage
waveforms, sag source and sag type can be estimated direct‐
ly without system parameters and handcrafted features.

B. Brief Introduction of IndRNN

The IndRNN, as an improved version of RNN, is pro‐
posed in [26]. It can be described as:

h t = σ(Wx t +Uh t - 1 + b) (1)

where  is an operational symbol denoting Hadamard prod‐
uct; W and U are the matrices to show the connection
weights for the current inputs and the recurrent inputs, re‐
spectively; b is the bias vector; xt and ht are the inputs and
hidden states at time step t, respectively; and σ is a nonlin‐
ear activation function such as sigmoid or tanh functions.

In IndRNN, the processing of the inputs is independent at
different time steps and can be implemented in parallel. Be‐
sides, for IndRNN, each neuron in one layer is also indepen‐
dent from others. Aiming at the nth neuron, the hidden state
hn,t can be calculated as:
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hnt = σ(wn x t + unhnt - 1 + bn) (2)

where wn, un, and bn are the input weights, the recurrent
weights, and the bias vector of the nth neuron, respectively.

Since IndRNN addresses the gradient exploding and van‐
ishing problems over time, the gradient can be efficiently
propagated over different time steps. Therefore, the IndRNN
can be substantially deeper and longer. Compared with the
standard RNN and its variants, such as LSTM and GRU, the
IndRNN owns the following advantages, as demonstrated
in [26].

1) The IndRNN can be easily regulated to prevent vanish‐
ing or exploding gradients.

2) Long-term memory can be kept with IndRNNs to pro‐
cess long sequences.

3) Multiple layers of IndRNNs can be efficiently stacked
to increase the depth of the network.

In brief, the IndRNN is able to process longer sequences
and construct deeper networks, which enables the IndRNN
to fully extract the features of the inputs.

In our study, to fully learn deep and multi-aspect features
from the monitored voltage waveforms, IndRNN is designed
to construct deep learning architecture. It helps improve the
accuracy of sag source location and sag type recognition, as
we will demonstrate later.

C. Attention Mechanism

Learning from the selective attention mechanism in hu‐
man visual system, the idea of attention mechanism has
been proposed to assign different weights to different inputs
according to their respective importances [27]. Such a mech‐
anism can focus on significant information while ignoring
the insignificant information. In fact, not all features extract‐
ed by deep learning are equally meaningful for establishing
the relationship between inputs and outputs. Hence, it is an
effective method to pay more attention to the most relevant
and important information [28]. Recently, attention mecha‐
nism has been successfully employed in a wide variety of
tasks, such as sign language recognition, object detection, ac‐
tion recognition, defect detection and so on [29], [30]. In
general, attention mechanism is usually employed to further
optimize the extracted features [31]. In our work, the atten‐
tion mechanism is combined with IndRNN to explore the op‐
timized features of monitored voltage.

D. Attention-based IndRNN Model

As described in Fig. 1, a deep learning architecture em‐
ploying attention-based IndRNN is proposed for sag source
location and sag type recognition, where J is the total num‐
ber of monitors, and L is the total number of layers. The
whole model is characterized by the following modules: in‐
put layer, IndRNN layer, attention layer and output layer. In
particular, several IndRNN layers are stacked together for
the deep and global feature extraction. Meanwhile, the atten‐
tion mechanism is adopted to capture their respective fea‐
tures for source location and type recognition. For clarity,
we give an example to illustrate the detailed process of the
proposed model as follows.

1) Input Layer
The input layer is the bottom component of this model,

whose outputs are directly sent to the IndRNN layer. The
layer is responsible for the measured data pre-processing.
Then, the processed data X are introduced to the model. The
shape of the inputs X is designed as [Batch_size, Time_steps,
Dimensions], where the Batch_size is the number of periods
for measured voltage in one batch; the Time_steps is the
product of the number of sampling points in one cycle and
the number of periods in one batch; and the Dimensions is
the dimension of the input data.

Due to the fact that three-phase voltages at each metered
bus are needed in our model, the measured data Xj for moni‐
tor j can be presented as:
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ct are the voltage amplitudes of phases

A, B, C measured by monitor j at time step t, respectively;
and t = 1, 2,, Time_steps.
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at as an example to explain the meaning

of the element in the above matrix. For batch m, the mea‐
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(4)

where x m
t is the three-phase voltage amplitude at time step t

for batch m, which is shown as (5); xjm
at , xjm

bt , and xjm
ct are

the voltage amplitudes of phases A, B, C measured by mon‐
itor j at time step t for batch m, respectively; and
t= 1, 2,, Time_steps.

x m
t =
[x1m

at x1m
bt x1m

ct x2m
at x2m

bt x2m
ct  xJm

at xJm
bt xJm

ct ]T

(5)

Finally, the inputs X for different batches m (m∈{1, 2, ,
Batch_size}) is given as (6) and it is further taken into the
next IndRNN layer.

X =[X 1 X 2  X m  X Batch_size- 1 X Batch_size ] (6)

The sketch of the shape of inputs X is demonstrated in
Fig. 2 for further understanding. It is observed that the shape
of inputs X is [Batch_size, Time_steps, 3J].
2) IndRNN Layer

In the IndRNN layer, multiple IndRNNs with batch nor‐
malization, are stacked together for global and deep charac‐
teristics extraction. The inputs X at each time step t are con‐
tinuously sent to the IndRNN layer.
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Here, let the number of neurons in each IndRNN denoted
as nneurons, the shape of the hidden states ht and h t - 1 in each

IndRNN is [Batch_size, nneurons ], and the shapes of W, U and b
in each IndRNN are [nneurons, Dimensions], [nneurons] and [nneurons],

respectively. The batch normalization follows each IndRNN
to further zero-center and normalize the data from IndRNN.

The whole operation of batch normalization is summarized

in (7)-(10) [32].

μβ =
1

Batch_size ∑t = 1

Batch_size

h t (7)

σ 2
β =

1
Batch_size ∑t = 1

Batch_size

(ht - μβ)
2 (8)

ĥ t =
h t - μβ

σ 2
β + ς

(9)

y t = γĥ t + β (10)

where μβ is the empirical mean; σ 2
β is the empirical standard

deviation; γ and β are the scaling parameter and shifting pa‐
rameters to be optimized, respectively; ς is a smoothing term
to avoid division by zero (typically 10-3); ĥ t is the zero-cen‐

Output layer

Measured voltage acquiring and sampling

Fully connected 1

Softmax 1

Output result with located branch
of sag source

Batch normalization

Batch normalization and label

X1 X2 X3 XJ
Input layer

IndRNN layer

IndRNN IndRNN IndRNN IndRNN

Batch normalization

IndRNN IndRNN IndRNN IndRNN

Batch normalization

IndRNN IndRNN IndRNN IndRNN

Batch normalization

Layer 1

Layer 2

Layer L

Attention layer

Feature vector with
different attention weights

Fully connected 2

Softmax 2

Output result with detected type
of sag source

Batch normalization

Attention layer

�

�

�

�

�

�

……… …

Fig. 1. Overall architecture of proposed model.
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tered and normalized inputs; and yt is the outputs of batch
normalization operation, which is a scaled and shifted ver‐
sion of its inputs.

In this layer, at time step t, if the outputs of last IndRNN
are denoted as ht

L, and the outputs of the last batch normal‐
ization are computed as yt

L, the final outputs of the IndRNN
layer Y can be written as:

Y = [ yL
1 yL

2  yL
t  yL

Time_steps- 1 yL
Time_steps ] (11)

where t = 1, 2, , Time_steps.
The shape of yt

L is [Batch_size, nneurons], and the shape of Y
is [Batch_size, Time_steps, nneurons]. In other words, for one
of the batch inputs, there are a total of nneurons feature vectors
at each time step to express X, which come from the input
layer. In general, aiming at the IndRNN layer, X is the in‐
puts, and Y is the outputs. Hence, Y can be regarded as the
extracted characteristics from X through the IndRNN layer.
3) Attention Layer

According to the problem formulation in Section II-A, sag
source location and sag type recognition can be regarded as
a classification problem, or more specifically, a supervised
learning classification task. Then, the number of categoriza‐
tion labels should be the product of numbers of lines and
sag types. For IEEE 30-bus system with 37 transmission
lines, the number of categorization labels should be set as
333 if the sag type is 9 (37× 9= 333). Obviously, the num‐
ber of categorization labels explodes for more complicated
networks. To effectively reduce the number of categorization
labels, an attention layer is introduced into our model, where
the number of categorization labels can be reduced to be the
sum of numbers of lines and sag types. That is to say, the
number of categorization labels decreases from 333 to 46
(37+ 9= 46) with the attention layer.

In detail, from the IndRNN layer, the above extracted
characteristics Y are sent to the attention layer, where the fea‐
ture Y is further analyzed. Note that the feature Y contains
two parts. One part intends to reflect the relationship be‐
tween input voltage waveforms and lines in the whole power
system, which is helpful for sag source location. The other
part aims to establish the relationship between input voltage
waveforms and sag types, which is useful to recognize the
type of located sag sources. Here, the attention layer is com‐
bined with the previous IndRNN layer, where the extracted

global features from the IndRNN layer are divided into two
parts. One part of the extracted global features is adopted to
locate sag sources, while the other part is applied to recog‐
nize sag types.

As presented in (12), an attention function is adopted to
calculate the attention weight.

Attention(yL
t q)=

exp(s(yL
t q))

∑
t = 1

Time_steps

exp(s(yL
t q))

(12)

where Attention(yL
t q) is the attention function; s(yL

t q) is the
score function which can be calculated by the additive atten‐
tion or dot-product attention; and q is a query vector, which
can be regarded as an indirect expression of the output re‐
sults of sag type and sag source.

Specifically, q can be taken as referring to the states of
fully connected 1 and fully connected 2 in the output layer
in Fig. 1. The additive attention sadditive (yL

t q) and dot-product
attention sdot - product (yL

t q) are the two most frequently used at‐
tention functions, and correspondingly, their definitions can
be described as:

sadditive (yL
t q)= νT tanh(Wy yL

t +Wqq) (13)

sdot - product (yL
t q)= (yL

t )Tq (14)

where Wy , Wq , and ν are the weight matrices.
Then, the attention mechanism is presented as:

Attention(Yq)= ∑
t = 1

Time_steps

yL
t Attention(yL

t q) (15)

Finally, features with different attention weights for line
location and type recognition of sag sources are achieved, as
described in Fig. 1. Hence, for one batch input, the nneurons

feature of Y, which has been received from the IndRNN lay‐
er at each time step, can be separated into two parts: θline and
ψ type . The θline feature is employed for sag source location,
and the ψ type feature is adopted for sag type recognition of
the located sag source.
4) Output Layer

The output layer is the top component of this model and
it is responsible for determining the line and type of sag
source according to their feature vectors from the attention
layer, respectively. Assuming that the number of lines in the
whole system is nline, it can be concluded that the shape of
fully connected 1, as presented in Fig. 1, is [Batch_size,
nline]. And the shape of fully connected 2, as presented in
Fig. 1, is [Batch_size, ntype], where ntype is the number of sag
types. And then, the above results can be directly fed to
their batch normalization layer for further data regulation. Fi‐
nally, the above outputs are sent to their Softmax respective‐
ly, where the corresponding probability indicates the line and
type of sag source.

Using the proposed model as presented in Fig. 1, the pa‐
rameters or hyper-parameters can be well learned with a
large amount of training data, where the weights and parame‐
ters or hyper-parameters of the model are optimized to
match the given inputs with their desired outputs. Then, the
well-trained model can be used for sag source location and
sag type recognition in the practical field. Figure 3 demon‐
strates the whole flow chart for sag source location and sag

Time_steps

Dimensions

m
tx

mX

jX
1
Time_stepsx

Batch_size

Fig. 2. Sketch of shape of inputs X.
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type recognition in a real application. Firstly, the measured
three-phase voltage waveforms at each metered bus are ac‐
quired and sampled. Secondly, the above sampled data are
directly fed into the proposed model as presented in Fig. 1
once the sag is detected. Here, the sampled data are batched,
normalized, feature extracted and optimized. Finally, the line
on which the sag occurs is located. Meanwhile, the type of
the located sag source is also recognized. Figure 4 illustrates
how the proposed method is adopted to realize sag source lo‐
cation and sag type recognition.

III. EXPERIMENTATION AND RESULTS

In this section, the validation of the proposed method with
IEEE 30-bus system and a real 134-bus system is presented,
and the performance is also analyzed.

A. Dataset Description

The effectiveness of the proposed method has been firstly
tested with IEEE 30-bus system, as presented in Fig. 5. The
system comprises 6 sources, 30 buses, and 37 transmission
lines. Here, it is noted that the number and placement of
monitors play an important role for sag source location and
sag type recognition. According to the method presented in
[33], 4 meters are located at bus 2, bus 15, bus 21, and bus
25, respectively, as shown in Fig. 5. These meters are distrib‐
uted in the network to ensure that the whole system is ob‐
servable.

For preparation, the dataset should be generated to train
the model and test the performance of the proposed method.
Specially, a total of 9 mutually exclusive types of voltage
sag causes, including phase A grounding, phase B ground‐
ing, phase C grounding, phase A and phase B fault, phase A
and phase C fault, phase B and phase C fault, three-phase
fault, motor starting, and transformer energizing, are consid‐
ered in this paper. Moreover, the faulty resistance variation,
the transition resistance variation, the sag duration change,
the active power variation, and the reactive power variation
are also considered, where the range of faulty resistance is
between 0.5 Ω and 10 Ω, the range of ground resistance is
between 0.01 Ω and 5 Ω, and the range of the active power
and reactive power is between 0.95 p. u. and 1.05 p. u., re‐
spectively.

As illustrated in Table I, numerous simulations are operat‐
ed to generate the dataset, where nIndRNN is the number of In‐
dRNN layers. All data are collected through MATLAB/Simu‐
link simulation.

Start

Measure and sample voltage

Is sag detected?

Y
Pre-process data

Locate and recognize the sag source according
to the proposed model as illustrated in Fig. 1

Output results with sag source location and type recognition

End

N

Fig. 3. Flow chart for sag source location and sag type recognition.
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Figure 6 demonstrates the flow chart for dataset genera‐
tion. All simulated data are complementarily split into train‐
ing set and testing set. Here, 80% of the simulated data are
used for training, and 20% of the simulated data are used for
testing (without being used in training process). For each
sag type at each line, there are 400 samples for training and
100 samples for testing.

The detailed procedure for data separation can be de‐
scribed as follows.

Step 1: for each sag type at each line, a total of 500 sam‐
ples are generated according to Fig. 6. Then, 400 samples
are randomly extracted from these 500 samples to form up
the training set. The remaining 100 samples are taken as the
testing set.

Step 2: the final training set is wholly formed with 333

parts (9×37=333), which are generated according to Step 1.
Similarly, the final training set is also wholly formed with
333 parts. It is obvious that the final training set and testing
set are comprehensive and balanced.

To test the feasibility of our method, we conduct simula‐
tions for the following different cases. The first case is that
a motor starting occurs between bus 15 and bus 18. Corre‐
spondingly, Fig. 7(a) - (d) illustrates the monitored voltages
through 4 meters at bus 2, bus 15, bus 21 and bus 25, re‐
spectively. The second case is for a scenario that a three-
phase short circuit occurs at the same line as that in the first
case, and the monitored voltages are demonstrated in
Fig. 8(a)-(d). The third case is that a three-phase short cir‐
cuit occurs on another line between bus 8 and bus 9, where
the monitored voltages are shown in Fig. 9(a)-(d).

As clearly validated by Fig. 7 and Fig. 8, it can be ob‐
served that on the same line, different sag types will lead to
different voltage waveforms. Furthermore, compared Fig. 8
with Fig. 9, it is noted that the different sag sources (sag
lines) with the same sag type also lead to different voltage
waveforms. Therefore, there is a one-to-one correspondence
between the monitored voltage waveforms and sag sources
or sag types. Conversely, sag source and sag type can be de‐
tected through monitored voltage waveforms.

Obviously, the relationship or function between the moni‐
tored voltage waveforms and sag sources or sag types is non‐
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Fig. 8. Monitored voltage with three-phase short circuit between bus 15
and bus 18. (a) Monitored voltage of bus 2. (b) Monitored voltage of bus
15. (c) Monitored voltage of bus 21. (d) Monitored voltage of bus 25.
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Fig. 7. Monitored voltage with motor starting between bus 15 and bus 18.
(a) Monitored voltage of bus 2. (b) Monitored voltage of bus 15. (c) Moni‐
tored voltage of bus 21. (d) Monitored voltage of bus 25.

TABLE I
PARAMETERS AND HYPER-PARAMETERS OF MODEL

Parameter and hyper-parameter

Time_steps

Dimensions

Batch_size

Learning rate

nIndRNN

nneurons

θline

ψtype

nline

ntype

Value

62

12

36

0.00015

8

512

406

106

37

9

NIs the updated number
greater than the sample

number?

Start

End

Randomly change transition resistance between 0.01 Ω and 5 Ω

Randomly change duration

Run MATLAB/Simulink model

Output the measured voltage with monitors

Set sag type and line for each sag

Increase updated number by 1

Y

Set sample number and updated number

Randomly change fault resistance between 0.5 Ω and 10 Ω

Save the .mat file as dataset

Randomly change the active power and reactive
power between 0.95 p.u. and 1.05 p.u. 

Fig. 6. Flow chart for dataset generation.
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linear. The proposed model, as presented in Fig. 1, is adopt‐
ed to automatically associate the monitored voltage wave‐
forms with sag source and sag type.

B. Design of Parameters and Hyper-parameters

It should be pointed out that the proper selections of pa‐
rameters or hyper-parameters are necessary for the proposed
architecture illustrated in Fig. 1 to achieve satisfactory per‐
formance. There are mainly the following parameters or hy‐
per-parameters to be determined, including Time_steps, Di‐
mensions, Batch_size, Learning rate, nIndRNN, nneurons, θ line ,
ψ type , nline and ntype. Detailed parameters or hyper-parameters
are given in Table I.

Firstly, it is noticed that Time_steps is related to sampling
frequency, accuracy and computational burden. In our work,
the frequency of fundamental voltage is 50 Hz, and thus, ac‐
cording to Shannon’s theorem, the sampling frequency is de‐
signed as 1050 Hz to guarantee a better restitution perfor‐
mance. Then, the Time_steps is chosen as 62 to achieve a
good balance between accuracy and complexity.

Secondly, as presented in Section III-A, the number of
monitors J is 4, and three-phase voltages at each monitor are
acquired. The Dimensions should be chosen as 12. That is,
3´ 4= 12.

Thirdly, the ntype is 9 since 9 mutually exclusive sag sourc‐
es are considered, and the nline is 37 since there are 37 trans‐
mission lines in the IEEE 30-bus system.

Finally, it is worth mentioning that Batch_size is closely
related to the real-time performance. Figure 10 demonstrates
the relationship between the Batch_size and the algorithm ex‐
ecution time, and that between the Batch_size and the data
acquisition time, respectively.

In Fig. 10, the algorithm execution time is strongly associ‐
ated with calculation ability of computer hardware. It is test‐
ed by changing Batch_size from 1 to 69 on our experimental
platform as described in Section III-C. The data acquisition
time denotes the product of Bacth_size and the fundamental
period, as presented in Fig. 10, where the fundamental peri‐
od is 20 ms. The intersection point of the above two curves
happens when the Batch_size is between 35 and 36. That is
to say, the Batch_size should be greater than or equal to 36
to guarantee the on-line performance for our current hard‐

ware, and the corresponding execution time is greater than
or equal to 0.72 s. Hence, the proposed method can realize
real-time source location and type recognition under this con‐
dition. Since a too large Batch_size may lead to high memo‐
ry resource occupancy, we chose the Batch_size as 36,
where the corresponding time is 0.72 s.

Besides, it is necessary to note that the Learning rate,
nIndRNN, nneurons, θ line and ψ type also should be designed carefully
and balanced well to gain satisfactory results. However,
there is no effective way to theoretically figure out the best
values of these hyper-parameters. Fortunately, for each of
the above-mentioned hyper-parameters, the qualitative analy‐
sis on the relationship between hyper-parameters and accura‐
cy, model complexity, computational cost has been developed
with a lot of experimental results. As for nIndRNN and nneurons,
more features or information will be captured with larger
numbers of nIndRNN and nneurons, while the computation burden
and time cost also increase correspondingly. Therefore, the
above-mentioned hyper-parameters are selected to achieve a
good balance between the accuracy and complexity by the
cut-and-trial method.

C. Verification of Effectiveness of Proposed Method

The overall algorithm is implemented by using the Tensor‐
Flow software. The software environment adopted is Anacon‐
da Python 3.6.8. All the experiments have been carried out
on a workstation equipped with an Intel i7-8700K processor
and a GTX 1080 Ti×2 graphics processing unit.

Since cross-validation can effectively avoid overfitting,
and it is helpful for checking how well a model has generali‐
ty for new data [34], the 5-fold cross validation technique
has been adopted to evaluate the performance of the pro‐
posed model. In detail, the above-mentioned training set is
further separated into complementary subsets, and each mod‐
el is trained against a different combination of these subsets
and validated against the remaining parts. The single test is
finally measured against the testing set to confirm the perfor‐
mance of the proposed method. Moreover, two indices, in‐
cluding the respective Accuracy for sag source location and
type recognition, the respective Loss based on cross-entropy
for sag source location and type recognition, are adopted to
evaluate the performance of the proposed model. The defini‐
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Fig. 10. Relationship between Batch_size and algorithm execution time,
and that between Batch_size and data acquisition time.
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Fig. 9. Monitored voltage with three-phase short circuit between bus 6 and
bus 7. (a) Monitored voltage of bus 2. (b) Monitored voltage of bus 15. (c)
Monitored voltage of bus 21. (d) Monitored voltage of bus 25.
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tions of Accuracy and Loss are presented as shown in (16)
and (17), respectively.

Accuracy=
Ncorrect

Ntotal

´ 100% (16)

Loss=-
1
M∑i = 1

M∑
k = 1

K

yi
k ln ŷi

k (17)

where Ncorrect is the number of correct results; Ntotal is the
number of total tests; ŷi

k is the outputs of Softmax in output
layer; yi

k is the 0-1 parameter, and it is equal to 1 if the tar‐
get class for the ith instance is k, otherwise, it is equal to 0;
M is the total number of instances; and K is the total number
of target classes.

Figure 11 demonstrates the attention weights in the atten‐
tion layer, as presented in Fig. 1. Here, all these attention
weights are dynamically decided by the attention layer in
Fig. 1, according to the measured voltage. The measured
three-phase voltages corresponding to the attention weights
in Fig. 11 are illustrated in Fig. 12.

From Fig. 11 and Fig. 12, the following conclusions can
be obtained.

1) The attention weights are different at different time

steps. This means that the attention layer in Fig. 1 enables
the extracted features Y from the IndRNN layer to have dif‐
ferent importance for sag source location and sag type recog‐
nition. The greater attention weight, the more important it is
for sag source location and sag type recognition. It is also
noticed that attention weights tend to be larger during chang‐
ing time such as starting and ending moments in Fig. 12,
while attention weights tend to be smaller for stable situa‐
tion in Fig. 12.

2) The extracted global features Y can be automatically di‐
vided into two parts: the first half part is mainly adopted to
locate the sag source, and the latter half part is mainly used
to recognize the sag type. Note that compared with the sag
source location, the sag type recognition requires more de‐
tailed information during changing time. Therefore, the atten‐
tion weights for time steps 43-53 are relatively higher than
those for other time steps in Fig. 11.

In short, the attention layer does play a significant role in
capturing their separate information for sag source location
and type recognition.

The relationship between the epochs and loss for sag
source location and type recognition is indicated in Fig. 13.
Further, Fig. 14 shows the relationship between the epoch
and the accuracy for the sag source location and sag type
recognition, respectively.

From Fig. 13, it can be observed that the model converges
gradually with steady decreasing loss along the training pro‐
cess, where around 40 epochs are needed for the proposed
deep learning architecture to achieve a loss less than 10-1.
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Fig. 12. Measured three-phase voltages corresponding to Fig. 11. (a) Mea‐
sured three-phase voltages of bus 2. (b) Measured three-phase voltages of
bus 15. (c) Measured three-phase voltages of bus 21. (d) Measured three-
phase voltages of bus 25.
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And then, the model provides the best system performance
with the loss value close to 10-9. This indicates that the In‐
dRNN can be trained robustly and also with a small value of
loss.

However, it also can be concluded that the convergence
speed of the trained model is not so fast. Actually, there ex‐
ists a balance between convergence speed and model perfor‐
mance, where a faster convergence may be reached at a cost
of degraded performance. For example, according to the liter‐
ature [34], although the learning rate can be increased so as
to further speed up the convergence rate, the convergence is
now fast but the network accuracy is suboptimal. Another in‐
fluencing factor, namely Batch_size, is not only related to
convergence rate, but also relevant to real-time performance.
The detailed analysis about the selection of Batch_size is
demonstrated in Section III-B.

Although a sophisticated method shall be able to reach
faster convergence speed, it usually requires complicated op‐
erations. For example, the Learning rate may be set as an
exponential decay function to allow a changeable Learning
rate rather than a constant Learning rate. Consequently the
convergence speed may become faster, but additional param‐
eters need to be tuned.

Since an offline training method is adopted in this paper,
the convergence speed is not a very critical concern.

Due to the considerations as discussed above, we choose
a relatively simple method to set the Learning rate with a
relatively low speed but reliable performance.

Moreover, as illustrated in Fig. 14, it can be further con‐
cluded that the testing accuracies for both the sag source lo‐
cation and the sag type recognition are higher than 99%.
Specifically, sag sources including not only short circuits but
also causes with motor starting and transformer energizing
are considered in this paper. It is noticed that the features of
motor starting cases and transformer energizing causes are
similar, where only one transient process (also namely the
starting process) can be used. Therefore, it is not easy to
achieve 100% accuracy resulting in sag type recognition.

D. Comparison Among Different Monitor Placements

For the proposed method, the basic requirement is that the
measured inputs X through monitors, as presented in (4),
should reflect each sag in the considered power system. In
other words, monitor placement should enable each sag in
the considered network to be detected. Monitor placement
therefore can affect the performance as different monitor
placements generate different observabilities for the whole
power system. Ideally, monitors can be installed at all buses
in the power system, in whose case any sag can be detected.
Such an approach, however, is not practical for economic
reasons. A reasonable approach is to install only a limited
number of monitors at the selected buses where the whole
power system is observable. Here, we take the method pro‐
posed in [33] as reference for monitor selection, where un‐
certainties associated with transition resistance are consid‐
ered. It has been proven that this method achieves more ap‐
plicable and satisfactory performance compared with the tra‐

ditional methods [33].
For the proposed method in this paper, the influences of

the number and allocation of monitors on accuracy have
been verified, as illustrated in Table II and Fig. 15.

From Table II and Fig. 15, the following statements and
conclusions can be summarized.

1) The accuracy of sag source location and the accuracy
of sag type recognition are improved effectively with an in‐
creased number of monitors. It is because that it is beneficial
by more monitors for data redundancy.

2) When the number of monitors reaches a certain value,
the accuracy is improved slowly when the number further in‐
creases. A good balance among installation costs, computa‐
tional burden, accuracy, costs and complexity needs to be
considered. In this paper, the number of monitors is set as a
moderate value of 4.

3) Not only the number of monitors, but also the alloca‐
tion of them is of significant importance. For placements at
buses 18, 24, 25 and placements at buses 15, 22, 25, differ‐
ent allocations with the same number of monitors generate
different results. However, for placements at buses 2, 15, 16,
21, 25 and placements at buses 2, 15, 18, 21, 25, different
locations with the same number of monitors achieve the sim‐
ilar accuracy. The main issue is that the allocation of moni‐
tors needs to ensure a certain level of observability of the
network.

4) For monitor placements at buses 18, 24, 25, the accura‐
cy for sag source location and the accuracy for sag type rec‐
ognition are unsatisfactory. This is because that the monitor
placements cannot fulfill the observability of the network,
leading to insufficient data and information.

TABLE II
ACCURACY FOR DIFFERENT MONITOR PLACEMENTS

Monitor placement

18, 24, 25

15, 22, 25

15, 22, 27

2, 15, 21, 25

2, 15, 18, 21, 25

2, 15, 16, 21, 25

2, 5, 15, 16, 21, 25

Number of
monitors

3

3

3

4

5

5

6

Accuracy of sag
source location

(%)

56.36

80.41

88.61

99.78

99.81

99.82

99.85

Accuracy of sag
type recognition

(%)

55.28

79.25

89.65

99.67

99.70

99.71

99.75
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Fig. 15. Accuracy with different monitor placement. (a) Accuracy of sag
source location. (b) Accuracy of sag type recognition.
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E. Comparison Between Proposed Model and GRU-based
Model

To further test the performance of the proposed model, we
compare it with the GRU-based model. Here, the monitor
placements at buses 2, 15, 21, 25, as illustrated in [33], are
adopted for fair comparison. We observe that as follows.

1) As clearly shown in Fig. 16, the loss of the proposed
model is less than that of the GRU-based model. Specifical‐
ly, the minimum loss of our model can achieve 1×10-9,
whereas, that of GRU-based model can only achieve 3×10-2,
as illustrated in Table III. This shows that the nonlinear rela‐
tionship or function between the monitored voltages and sag
sources or sag types can be more accurately captured by the
proposed model, whereby achieving higher accuracy for the
sag source location and sag type recognition. The main rea‐
son of this phenomenon lies in the fact that IndRNN can pro‐
cess longer sequences and construct deeper neural networks.

2) As listed in Table III, the training time of the proposed

model is significantly shorter than that needed by the GRU-
based model. The proposed model can be trained more effi‐
ciently since the IndRNN can be easily regulated to prevent
vanishing or exploding gradients.

Furthermore, Fig. 17 demonstrates the results of the pro‐
posed model if the phase A and phase B grounded short cir‐
cuit occurs on line 20.

Specially, the probability in Fig. 17 denotes the product of
Pi and P'j, where Pi is the possibility that the sag source is lo‐
cated on line i (i∈{1, 2, , 37}); and P'j is the possibility
that the type of sag source belongs to type j (j∈ {1, 2, ,
9}). Here, the Pi and P'j are respectively obtained from the
proposed model as illustrated in Fig. 1 by using the moni‐
tored voltage waveforms of buses 2, 15, 21, and 25. From
Fig. 16, it is observed that the maximum probability corre‐
sponds to line 20 and type 3, which shows an accurate detec‐
tion. In fact, P20 is the maximum value among Pi, and P'3 is
the maximum value among P'j. Therefore, P20 P'3 must be the
maximum value among Pi P'j.

F. Performance Verification for Large-scale Power Grid

We further evaluate the performance of the proposed meth‐
od in a large-scale power grid. Here, the presented method
is implemented on a real 134-bus system, which has been il‐
lustrated in [12]. As described in Fig. 18, the detailed proce‐
dure includes the following steps.

Step 1: meter placement can be determined to ensure that
the whole system is observable by adopting the methods in
[33], [35]. For the 134-bus system, 6 monitors have been in‐
stalled at buses 23, 30, 63, 79, 96 and 112, respectively.

Step 2: based on the topology of power system, we can
manually divide the whole system into several smaller areas
or segments according to the placement of protective devic‐
es, such as reclosers, circuit breakers and sectionalizing
switches. For the 134-bus system, it can be separated into 12
segments, as demonstrated in [12].

Step 3: the simulation can be implemented using MAT‐
LAB/Simulink according to Fig. 6. Meanwhile, the data for
the monitors at buses 23, 30, 63, 79, 96 and 112 (as ob‐
tained from Step 1) are collected to generate the datasets.
Similarly, 80% of the simulated data are used for training,
and 20% of the simulated data are used for testing, as elabo‐
rated in the Section III-A.

Step 4: totally 12 models have been established for 12 seg‐
ments (as given in Step 2). It should be mentioned that all
these 12 models should own the specific architecture, as
demonstrated in Fig. 1. Meanwhile, with the datasets generat‐
ed in Step 3, the parameters or hyper-parameters for each of
these 12 models shall be developed using the method demon‐
strated in Section III-B.
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TABLE III
COMPARISON BETWEEN DIFFERENT MODELS

Model

GRU-based model

Model with IndRNN (proposed)

Training time for
one epoch (s)

93.1

50.6

Number of training epochs
with loss of 10-1

100

40

Number of training epochs
with loss of 10-3

Unable

80

Number of training epochs
with accuracy of 95%

30

9

Minimum
loss

3×10-2

1×10-9
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Fig. 17. Demonstrated result of proposed model.
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Step 5: each of the 12 models should be further verified
as discussed in Section III-C.

Step 6: the 12 models can be used to realize sag source lo‐
cation and sag type recognition if their verification perfor‐
mances are verified as in Step 5. Otherwise, the parameters
or hyper-parameters should be redesigned or recalculated
with the method described in Section III-B.

The detailed performance for the 134-bus system is pre‐
sented in Table IV and Fig. 19.

TABLE IV
ACCURACY FOR REAL 134-BUS SYSTEM

Area number

1

2

3

4

5

6

7

8

9

10

11

12

Average

Accuracy of sag source
location (%)

99.72

99.61

99.55

99.65

99.46

99.77

99.42

99.63

99.67

99.53

99.42

99.84

99.61

Accuracy of sag type
recognition (%)

99.56

99.65

99.38

99.71

99.53

99.49

99.50

99.59

99.82

99.57

99.51

99.63

99.58

As shown in Table IV and Fig. 19, it can be observed that
the average accuracy for sag source location is 99.61% and
the location accuracy for each area is higher than 99.42%.
Meanwhile, the average accuracy for sag type recognition is
99.58% and the recognition accuracy for each segment is
higher than 99.38%.

IV. CONCLUSION

In this paper, an attention-based IndRNN for sag source
location and sag type recognition is proposed. The effective‐
ness of the proposed architecture is also confirmed. Using
only the measured voltages with monitors in the sparsely
monitored power system, the proposed method can simulta‐
neously locate the line of sag source, recognize the type of
located sag source, including motor starting, transformer en‐
ergizing and short circuits, and identify the faulty phase for
short circuits without knowledge of system parameters or
system model. Experiments on IEEE 30-bus system and a re‐
al 134-bus system have been conducted to confirm the effec‐
tiveness and practicability of the proposed method. More‐
over, a comparison between the proposed model and the
GRU-based model has been performed. The comparison re‐
sults show that the proposed model can be trained more effi‐
ciently and achieve higher accuracy.

The number and allocations of monitors are significant for
the sag source location and sag type recognition. The opti‐
mal number of the monitors and their best allocations to en‐
sure observability of the power system will be studied in our
future work.

Since it may remain as a challenge to collect abundant
high-quality data in our further studies, we will try to devel‐
op the data-driven methods requesting only a limited amount
of data, or adopting an unsupervised learning so as to reduce
the dependence on data or label.
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