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Power Flow Based Volt/var Optimization
Under Uncertainty
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Abstract—Volt/var optimization (VVO) is a control function
that is employed in distribution systems to keep the load voltag-
es within the standard limits, and it includes secondary objec-
tives such as loss minimization. The power flow based VVO is
the way of choice in practical applications because it can han-
dle a variety of objective functions and provides a solution even
for large-scale network instances. This paper extends the power
flow based VVO to account for uncertainty in both the load val-
ues and the power generation from photovoltaic sources. The
proposed method employs circular arithmetic in complex vari-
ables to compute VVO settings that guard against load uncer-
tainty and an optimized linear decision rule that modulates the
reactive power of photovoltaic inverter in function of its active
power. Finally, the proposed method is tested on distribution
networks with up to 3146 nodes and is shown to produce opti-
mal solutions that are robust against power variations.

Index Terms—Circular arithmetic, optimization method, reac-
tive power control, voltage control, Wirtinger calculus.

I. INTRODUCTION

HE control of voltage and reactive power in modern

distribution networks achieves the best performance
when being carried out via a centralized system, as opposed
to local automatic controllers. The local automatic control-
lers have their parameters computed using offline studies
and therefore tend to be ineffective in many of the scenarios
that are encountered in the practical operation. Centralized
volt/var optimization (VVO) is a control function that is inte-
grated into the system for supervisory control and data acqui-
sition (SCADA) and the distribution management system
(DMS). It makes use of a real-time network model derived
from the result of the distribution system state estimator
(DSSE). For the daily operation of the distribution network,
the centralized VVO is commonly used in closed-loop
mode; another option is the advisory mode that requires the
review of the operator before implementation [1].

In practical applications, the centralized VVO can be rule-
based or power flow based, but both start from the system
state as given by the DSSE. The rule-based method employs
a pre-determined set of control rules derived from offline
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studies, while the power flow based method computes the
optimal solution of an objective function using a multi-step
discrete programming search [1], [2]. The multi-step discrete
programming search operates on integer variables that repre-
sent the switched capacitor settings and the tap positions of
load tap changers (LTCs) on substation transformers and
step voltage regulators. A power flow program is used to
check the optimality of the control settings throughout differ-
ent steps of the search. The multi-step discrete programming
search can handle different objective functions, and its per-
formance scales well with the problem size when being cou-
pled with the compensation technique [3] for speeding up
the power flow solution. The increased level of distributed
energy sources connected into some distribution systems has
impacts on the voltage profile and therefore requires the re-
active power from these sources to be part of the VVO solu-
tions [4]-[7]. This is also under the new IEEE 1547-2018
standard for smart inverters [8]. Although gradient-based
methods [7], [9] are known to produce sufficiently good so-
lutions in practical applications, programs that employ
mixed-integer optimization [10], [11] such as branch-and-cut
can provide better solutions to VVO. However, their applica-
bility is limited to relatively small networks. The power flow
model in practical VVO applications can typically include a
few thousand nodes, even for solving a subsystem of the
whole distribution network [1], therefore the performance of
the VVO in large-scale distribution networks is an important
issue.

The periodicity of centralized VVO generally is up to 15
min. During this interval, the values of loads and power gen-
eration from photovoltaic (PV) sources can deviate from the
estimates given by the DSSE and consequently employed in
the VVO; such variations may give rise to significant volt-
age violations. A work-around is to cast the power flow mod-
el as a conic program and formulate the VVO problem using
robust [12], chance-constrained [13], or data-driven stochas-
tic [14] optimization theory. The solution in this case makes
use of mixed-integer optimization, which also limits the siz-
es of the networks that could be practically handled. Also,
the applicability of the conic power flow model is confined
to radial networks, while the subsystems controlled by VVO
may be weakly meshed [1]. The conic programming formula-
tions also appear in mathematically accurate statements of
the chance-constrained VVO under Gaussian error [15], in
distribution agnostic VVO [16], [17], and in interval optimal
power flow [18].
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This paper extends the practical power flow based VVO
to guard against uncertainty in the load and power genera-
tion from PV sources. Rather than having the demand mod-
eled as a fixed value, it is considered to vary within a disc
in the complex plane. The disc has its center at the forecast-
ing value, and its radius is chosen to reflect the uncertainty
in the actual load. The disc load model allows the multi-step
discrete programming search to compute the radius of volt-
age variation via circular arithmetic [19], and consequently
choose VVO settings that are robust against load fluctuations.
The computation of the voltage radius is made possible by a
new approximate expression for the voltage magnitude in
terms of the complex load power, that is derived using
Wirtinger calculus [20], [21]. In related work, [22] presents
new closed-form second- and third-order Taylor series expan-
sions for the power flow and voltage phasor solution, and then
discusses the application of these equations using circular
arithmetic. The approximate solutions in [22] are different
from the voltage magnitude solution that forms the basis of the
voltage radius computation. Given that PV sources only pro-
duce active power, the uncertainty of this value is handled by
computing a linear decision rule that dispatches the reactive
power of inverters in function of the PV active power [23]-
[25]. The slope of the linear decision rule for each of the in-
verters is chosen to minimize the deviation of voltages from
the VVO set-points, which is derived from the new approxima-
tion for the voltage magnitude and is given in closed form.

The proposed VVO method is tested on radial and weakly
meshed distribution networks with up to 3146 nodes. Monte
Carlo analysis shows that the VVO solution computed under
uncertainty is immune to power injection variations, contrary
to the classical multi-step discrete programming search.

II. CENTRALIZED VVO

Centralized VVO can be used to optimize any mathemati-
cal function that aligns with the operation objectives of the
distribution network. One possible function to be minimized
involves the sum of the power loss and a penalty term for
voltage magnitudes that violate their minimum/maximum
limits [1]:

f=P,. +C,,Zmax(0, v|-1v, )+
j=2
Cyzmax(o, Vil —‘VJ‘) (1)
j:2 min
where P, . is the active power loss of the network; V,‘ is

the voltage magnitude at node j; n is the number of nodes;

C, is the penalty coefficient for voltage violation; and ’ V,

min
and ‘VJ‘ are the minimum and maximum voltage magni-
max

tude limits, respectively. Reference [9] gives an explicit opti-
mization problem statement of centralized VVO. The func-
tion in (1) is practically minimized by adjusting the tap posi-
tions of LTCs on substation transformers and step voltage
regulators, the settings of switched capacitors, and the reac-
tive power from distributed generation units such as PV in-
verters. The optimization is carried out using a multi-step
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discrete programming search, technically known as the dis-
crete coordinate descent (DCD) algorithm [2], [9]. As its
name indicates, the DCD algorithm updates the decision vari-
ables in discrete steps, and therefore, its application to VVO
requires discretizing the range of reactive power generation
from PV inverters. The flowchart of the DCD search for
VVO is given in Fig. 1, where the following indexes are em-
ployed: (D best search direction (BSD); (2 coordinate de-
scent iteration (CDI) counter; (3) current/initial objective
function (COF/IOF) value; @ number of search direction
(NSD); (3 search direction (SD).

| Initialize control setting set CD/ = 1 |
I
| Form the nodal equation matrix ¥ and use LU factorization |
i
Compute the base-case power flow
Calculate the IOF

F
Determine the initial SDs (SD =1, 2, ..., NSD)
SetSD=1,BSD=0

gl

Move the control variable in the SD
Compute the COF using the compensation method
Restore the control variable

Move the control
variable in the BSD
Increase CDI by 1

Fig. 1. Flowchart of DCD search for VVO.

The DCD algorithm starts by initializing the control set-
tings of LTC transformer taps, switched capacitors, and reac-
tive power from PV inverters. The initial values could be ei-
ther the current operational ones or the nearest rounded ones
computed from continuous optimization [9]. The nodal equa-
tion matrix Y is then formed, and LU factorization is used.
The same LU factors are subsequently used to calculate the
power flow following any changes in the control setting of
the LTC taps and switched capacitors using the current injec-
tion power flow assisted by the compensation technique [3].
For the initial control settings, the DCD algorithm computes
the IOF from the power flow results and then enumerates
the possible SDs for each of the coordinates or decision vari-
ables. The search directions for a discrete variable are typi-
cally one step up in the control setting and one step down un-
less the variable has already been at one of its limits. The algo-
rithm then computes the COF for each of the search directions
and updates the values of the IOF and BSD whenever there is
an improvement in the objective function value, i.e., when
COF < IOF. The DCD search ends when it cannot find an im-
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provement in the objective function value after it processes all
the SDs at the current operation point.

VVO is a problem with a non-convex search space and
discrete decision variables. Therefore, the DCD search may
converge only to a local optimum, close to the initial opera-
tion point, but in line with the practical necessity of reduced
controller switching. The DCD search forms the basis for
considering uncertainty as described below.

III. POWER INJECTION UNCERTAINTY

The previous DCD search for VVO computes the control
settings for a snapshot of the system that corresponds to the
estimated (constant power) complex load and the active pow-
er generation from PV inverters. Therefore, the performance
of the VVO is expected to deteriorate as the power injec-
tions deviate from their estimated values over the time inter-
val between the control set-points in the field. In practice,
this may translate into voltages operating outside their
bounds. This section proposes a method that hedges the
VVO against power injection uncertainty. The method builds
on a linear approximate relationship between the nodal volt-
age magnitude and the complex power injections.

A. Voltage Magnitude Approximation

Consider the network shown in Fig. 2, where the first
node is the slack node with the scheduled substation voltage
V, and nodes 2 to n have their complex power injections
(S,, S5, ....S,) specified. The voltage magnitude at node j can
be expressed in terms of the complex nodal voltage V; and
its conjugate V;:
v, @)

where the bar sign indicates the complex conjugation.

‘V‘:

J

Fig. 2. Network with complex power injections and a slack node.

By using Wirtinger calculus [20], can be approximat-

ed by a first-order Taylor series expanswn.

_ w1 [V [0V, ov. _
‘Vj‘z /I/jOV,.O+;E R as,i k+—a§’kASk+
n l al/j _
— AS, +
2 / 35, A5+ 55 A5 Q)

where V), is the complex nodal voltage at the network opera-
tion point and the partial derivatives are evaluated at the
same point. Exchanging terms between the summations in

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 9, NO. 5, September 2021

(3) results in:

V= o 9 0

el S5 [ 2 (7 s
(T, G
2o\ v st 7 e

k=2

AS, @)

Equation (4) can be written in terms of the real part
Re{-} of a complex quantity:

[Vil= Vo +Rel )

s([on, [Ton
| Vo as, |7, aS
To obtain the values of the partial derivatives in (5), i.e.,
oV,/0S, and 0V,/3S,, at the current operation point, the nodal
equations for the network are considered as specified in Fig. 2:

Yyw=I (6)
10 0 ... 0]
Y, Y, Y,, ... T,
Y= : : 7
Yo Yo Yo .. Y, ( )
—Ynl Yn2 Ynk Ynn—
v=[v, vV, .. vV, .. VT
W% S /7 < sw |V
I=[v, S,/V, S/Ve o SJVI=|o <o }
—Spq®qu
®)
where V| is the scheduled slack node voltage; S, and V,, are

column vectors containing the complex power mJectlons and
voltages at nodes 2 to n, respectively; and () denotes the Had-
amard (element-by-element) division. Taking the partial deriv-
ative of (6) with respect to S, (k=2,3, ..., n), we can obtain:

Yov)oS,= ol oS, 9)

0
aI/aSk: 1:_ (qu @ VP?Z) © al?pq/ask:' 10

where © and © denote the Hadamard product and power, re-
spectively. Similarly, taking the partial derivative of the con-
jugate of (6) with respect to S, (k=2,3,...,n), we can obtain:

Yov/oS,= oI/ oS, (11)

) 0
oI/aS,=v, + { (5, OV)ow, /asj (12)

rq

where v, is an nx 1 vector of zeros except for element & that
has the value 1/V,. Combining (9)-(12), we can obtain the

following system of equations:

avyes,| L,

S PYP FV/ 551_ [0.4]

(13)
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where D {-} is the diagonal matrix operator that converts a
vector to a square diagonal matrix with the elements of the
vector on the main diagonal. The solution to (13) is the par-
tial derivatives in the column vectors 0V/4S, and 6!7/ oS,.
Cosidering (14), the complex conjugate of this solution
gives the coefficients needed in (5) [20].

oV/aS,= oV/as,

S (14)
ov/a8,= aV]as,

B. Load Uncertainty

To model the load uncertainty, it is assumed that its com-
plex power injection can vary within an uncertainty disk in
the complex plane. The center of this disk is at the forecast-
ing load value S, from the DSSE, and its radius p; is chosen

based on historical observations as a fraction of the apparent
power. Therefore, the variation over the predicted value lies
within a disk centered at the origin and with radius p;. It can

be defined by the following circular complex interval [19]:
AS, = <Ovps,,>: {Aske C, AS,(’S,OSA} (15)

where the two values in (-,-) are the center and radius, re-

spectively. Equation (5) can be rewritten in compact form:

\m\z\vjo\+Re{zcjkAsk} (16)
k=2

o [, [, )
Ve as, |7, as,

Using circular arithmetic, ECjk AS, is evaluated to a circu-

k=2
lar complex interval:
Y C,AS, = <0,pM> (18)
k=2 j
A1y~ 2 el (19

Therefore, the approximation (16) for the voltage magni-
tude at node j decreases to a real interval:

V= | 7alay vk, |

Using the minimum and maximum limits of the real inter-
val (20), the VVO objective function (1) can be modified to
account for load uncertainty:

J

=P, + C,,Zmax(o,
i=

CVimax(O,
j=2

When using (21) in the DCD search in Fig. 1, pM is re-

(20)

Valtay, =1V

Vil [0 \+py/|) 1)

computed each time after the search direction is enumerated,
i.e., after a change in a control variable setting is implement-
ed.
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C. PV Power Uncertainty

The DCD search in Fig. 1 produces the reactive power g,,
amongst other quantities, which should be dispatched from
an inverter producing active power p,. The uncertainty in
the PV active power production Ap, is modeled by having it
vary in a real interval AP,, i.c.,

AP, =[APP™ APP™ = {Ap, e RLAPI™ <Ap, <AP™| (22)

where AP <0< AP, To mitigate the effect of the PV ac-
tive power variability on voltage excursions, the reactive
power of inverters can be adjusted following an affine deci-
sion rule [23]-[25]:

Agq,=a,Ap, (23)

where a, is the slope, which is a constant that can be opti-
mally chosen and communicated to the inverter together
with ¢,. Then, (16) can be used to estimate the voltage mag-
nitude variation at node jcorresponding to a change in the
complex power injection from a PV inverter at node £:

AV [=[V]= |V = Re{C, (ap, —ing,)}=

i

Cilp,+CiAg, = (Ci+Cha ) Ap, — (24)

where Cj, and C}, are the real and imaginary parts of C,, as
computed in (17), respectively. The optimal value of «, is
calculated by minimizing the effect of Ap, on the sum of
voltage deviations (24) squared over all nodes, i.e.,
n X 2
min Z(ij( + Cj’kak)

Jj=2

(25)

The closed-form solution is obtained by taking the deriva-
tive of (25) with respect to o, and setting it to be zero:

n
r i
2.CiCi
iz

0= (26)

n

>(ci)

j=2
Using (26), the reactive power contribution from the in-
verter at node k becomes:
9 =90 + 0, Ap; 27)
If the apparent power capacity of inverters is s, then the

corresponding active power p, =p,, +Ap, and reactive power
(27) have to satisfy [26]:

g < (sp)’ (28)
V) -pisais V) - @9

Thus, if g, from (27) does not satisfy (29), then it is fixed
at the violated limit.

IV. VVO IMPLEMENTATION

The three methods listed below are implemented for com-
parison.

1) Method 1 (M1): the DCD search in Fig. 1 is used to
solve the VVO problem without considering the uncertainty
in the values of the load, and the reactive power from each
PV inverter is held constant at the optimized setting indepen-
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dent of the changes in PV active power generation (to the
maximum extent that (29) allows). Ml is essentially the
same as Roytelman’s DCD implementation discussed in [9].

2) Method 2 (M2): the DCD search in Fig. 1 is used to
solve the VVO problem without considering the uncertainty
in the values of the load, but the reactive power from each
PV inverter is adjusted for variations in active power genera-
tion as described in Section III-C, i.e., according to the lin-
ear decision rule and the PV inverter capacity (26)-(29). M2
is essentially similar to the approach recently proposed in
[25], which adopts a linear decision rule based on a linear
approximation from the Newton-Raphson power flow Jacobe-
an.

3) Method 3 (M3): the DCD search in Fig. 1 is used to
solve the VVO problem while accounting for the uncertainty
in the values of the load using circular arithmetic as de-
scribed in Section III-B, and the reactive power from each
PV inverter is adjusted for variations in active power genera-
tion as described in Section III-C.

V. NUMERICAL RESULT

The VVO implementations (M1, M2, and M3) are tested
on four networks, which include modified radial version
(B_R) and modified meshed version (B_M) of a Brazilian
distribution network in addition to two more extensive
meshed networks with 1464 and 3146 nodes, which are de-
noted as 1k5 and 3k, respectively. Table I includes a summa-
ry of the test data, showing the number of nodes (n), the
number of switched capacitors (N,,,), the number of load
tap changing transformers (V,;.), the number of PV inverters
(N,,), the PV active power generation as a percentage of the
total real load in the system snapshot (£,,), and the ratio of
the inverter apparent power capacity to the connected capaci-
ty of PV real power (R). The complete data sets of the test
systems in Table I are available by downloading from [27].
In the simulation setup, it is assumed that the complex pow-
er load can vary in an uncertainty disc whose radius is at
5% of the estimated apparent power load value and that the
PV active power generation can change by +20% of the esti-
mated value from the DSSE. Moreover, with the 20% varia-
tion, the PV system would generate active power at its con-
nected capacity level. The uncertainty values reflect the dif-
ferences that can occur in the power injections relative to
their estimates, during the interval before the VVO set-
points are re-implemented in the field.

TABLE I
TEST SYSTEM DATA

Network n Nep Nyre Npy Ppy (%) R
B R 161 2 6 7 57.47 1.35
B_.M 160 2 6 7 57.47 1.35

1k5 1464 8 8 5 68.51 1.10
3k 3146 13 15 10 84.10 1.10

Table II shows the reduction percentage in power loss
from the VVO controller settings when the load and PV ac-
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tive power generation remain at their nominal DSSE values.

TABLE II
REDUCTION PERCENTAGE IN POWER LOSS WHEN INJECTIONS REMAIN AT
NOMINAL VALUES

Reduction percentage (%)

Network
Ml M2 M3
B R 23.54 23.54 23.14
B M 23.38 23.38 22.96
1k5 11.50 11.50 9.38
3k 20.32 20.32 18.16

In this ideal scenario, M1 and M2 realize the same reduc-
tion in loss value that is higher than that of M3, i.e., M3 ap-
pears at a disadvantage. The benefit of accounting for uncer-
tainty in the VVO solutions, as in M2 and M3, is apparent
whenever the injections deviate from their nominal values. A
Monte Carlo simulation is carried out with 1000 trials of
load and PV active power uniformly chosen from the above-
mentioned uncertainty sets. Half of the trials consider con-
forming load variations chosen from the peripheries of the
uncertainty discs, while the other half do not. The results of
the simulations are summarized in Tables III-V that quantify
the effects of M2 and M3 on the robustness of the VVO set-
tings.

TABLE III

AVERAGE TOTAL VOLTAGE VIOLATION AT ALL NODES OBSERVED FROM
1000 TRIALS

Average total voltage violation (p.u.)

Network
Ml M2 M3
B R 1.37x1072 8.22x107* 1.55x107
B M 1.39x1072 7.67x107* 1.36x107
1k5 6.54x107! 2.32x107! 1.77x107
3k 1.44x10° 9.01x10"! 5.63x107°
TABLE IV

AVERAGE PERCENTAGE OF NODES WITH VOLTAGE VIOLATIONS OBSERVED
FROM 1000 TRIALS

Average percentage (%)

Network

M1 M2 M3
B R 3.30 0.77 0.05
B M 3.22 0.65 0.05
1k5 6.84 4.06 0
3k 7.48 6.16 0
TABLE V
NUMBER OF NODES WITH VOLTAGE VIOLATIONS OBSERVED FROM 1000
TRIALS
Number of nodes
Network
M1 M2 M3
B R 17 7 4
B M 16 5 2
1k5 522 289 1
3k 1196 868 6
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Tables III and IV show the average total voltage violation
at all nodes and the average percentage of nodes with volt-
age violations observed from the 1000 trials. As expected,
M3 has the best results measured by the extent of mitigating
voltage violations, followed by M2. Table V lists the maxi-
mum observed number of nodes with voltage violations, and
again shows the vast superiority of M3. The effect of M3 on
power loss is shown in Table VI, which reports the percent-
age increase in power loss relative to centralized optimiza-
tion, i.e., when the VVO problem is centrally re-solved for
the reactive power of PV inverter corresponding to each of
the sampled trials. The effect of using the linear decision
rule (Section III-C) comes at the maximum cost of 2.62% in-
crease in loss for the 3k.

TABLE VI
PERCENTAGE INCREASE IN POWER LOSS USING M3 RELATIVE TO
CENTRALIZED OPTIMIZATION OBSERVED FROM 1000 TRIALS

Network Percentage increase in power loss (%)
B R 0.55
B M 0.59
1kS 2.12
3k 2.62

In terms of computation time, the largest network is
solved in less than 1 min using M1 and M2, and less than
13 min using M3. The computation time is recorded using a
MATLAB implementation running on a MacBook Pro that
has 2.9 GHz Intel Core i5 processor with a memory of 8
GB 2133 MHz.

A central aspect of M3 is the computation of the voltage
radius. A Monte Carlo simulation with 10000 trials is used
to validate the closed-form solution for the voltage magni-
tude radius pM, as given by (19). In each experiment, the

nodal complex power injections are sampled from the bound-
aries of the uncertainty discs, and the current injection pow-
er flow is used to find the voltage solution of the trial and

its distance from the nominal solution. The radius p{MVT at

each node is computed as the maximum distance observed
over the 10000 trials. To quantify the accuracy of the radius
computation (19), the relative error at each node is defined

by (30) or (31).
i

*pfff)‘ (’ g ‘*M)

p‘r;}: MCS x 100 30)
/ Vi iy
MCS _
“’m ”w‘
s Ll T 31)
|V/‘ ‘Vj‘_,’_pMCS

i

Table VII shows the maximum and average values of the
relative error over all nodes when computed for the network
state before and after the VVO solution. The results verify
the accuracy of the proposed solution (19).
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TABLE VII
RELATIVE ERROR OF VOLTAGE MAGNITUDE RADIUS
Relative error (%)
Network Before VVO After VVO
Average Maximum Average Maximum
B R 0.0059 0.0295 0.0044 0.0193
B M 0.0057 0.0295 0.0043 0.0192
1k5 0.1008 0.4024 0.0643 0.3470
3k 0.1287 0.5283 0.0739 0.4618

VI. CONCLUSION

Centralized VVO is practically solved using a multi-step
discrete programming search that gives a solution corre-
sponding to the estimated power injections, involving loads
and power from PV sources. This paper proposes a method-
ology for extending the classical VVO solution to account
for the uncertainty in the power injections during the time in-
terval when the VVO control settings are applicable. The
method is two-pronged and aims to alleviate voltage magni-
tude violations. It involves the use of circular arithmetic to
guard against load variations and a linear decision rule that
tailors the reactive power of PV inverters in function of its
active power. Both components of the solution that combats
uncertainty are fundamentally based on a linear approximat-
ed relationship between the nodal voltage magnitude and
complex power injections. The relation is a complex variable
first-order Taylor series expansion of the voltage magnitude,
derived by Wirtinger calculus. The proposed method is test-
ed on distribution networks with up to 3146 nodes and com-
pared with the techniques that either neglect uncertainty alto-
gether [9] or only account for PV active power uncertainty
[25]. The numerical comparison shows that the proposed
method is significantly better in terms of the quality of deliv-
ered power, and yet keeps the energy losses within an ac-
ceptable margin from an ideal centralized inverter dispatch-
ing solution.
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