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Abstract——Given the historically static nature of low-voltage
networks, distribution network companies do not possess the
tools for dealing with an increasingly variable demand due to
the high penetration of distributed energy resources (DERs).
Within this context, this paper proposes a probabilistic frame‐
work for tariff design that minimises the impact of DER on net‐
work performance, stabilises the revenue of network company,
and improves the equity of network cost allocation. To deal
with the lack of customers’’ response, we also show how DER-
specific tariffs can be complemented with an automated home
energy management system (HEMS) that reduces peak demand
while retaining the desired comfort level. The proposed frame‐
work comprises a nonparametric Bayesian model which statisti‐
cally generates synthetic load and PV traces, a hot-water-use
statistical model, a novel HEMS to schedule customers’’ control‐
lable devices, and a probabilistic power flow model. Test cases
using both energy- and demand-based network tariffs show
that flat tariffs with a peak demand component reduce the cus‐
tomers’’ cost, and alleviate network constraints. This demon‐
strates, firstly, the efficacy of the proposed tool for the develop‐
ment of tariffs that are beneficial for the networks with a high
penetration of DERs, and secondly, how customers’’ HEM sys‐
tems can be part of the solution.

Index Terms——Battery energy storage system, demand-based
tariff, distributed energy resource (DER), home energy manage‐
ment system (HEMS), low-voltage network, solar photovoltaic
(PV), thermostatically controlled load.
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Set of appliances (aÎA, A ={12...|A|})

Set of battery penetration levels (bÎB, B =
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C. Parameters
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Set of days in a month (d′ÎD′, D′ÌD)

Set of edges

Set of half-hour time-slots in a day (hÎH, H=
{12...48})

Set of months in a year (mÎM, M={12...12})

Set of total nodes and subset of nodes connected
to load buses

Set of PV penetration levels (pÎP, P ={1,2,...|P|})

Annual electricity cost

Dummy variable for modelling demand-based tar‐
iffs

Direction of power flow (0: demand to power grid,
1: power grid to demand)

State of charge of battery

Power of electric water heater (EWH)

Charging/discharging power of battery

Power flowing from/to power grid

Charging status of battery (0: discharging; 1: charg‐
ing)

Internal temperature of EWH

Outlet temperature of EWH

Inlet temperature of EWH

ON/OFF status of EWH (thermostatically con‐
trolled load) (0: OFF; 1: ON)

Appliance type of customer c

Charging/discharging efficiency of battery

Inverter efficiency

Efficiency of EWH (thermostatically controlled
load)

Scale parameter

Rate of draw events during the interval

Density of water

Shape parameter
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D. Tariffs

ppk

T fit

T fix

T flt

T pk

T tou

Cross-sectional area of EWH

The minimum state of charge of battery

The maximum state of charge of battery

Half hourly time step

Number of appliance types

Feeder head loading current

Implicit peak demand constraint

The maximum charging/discharging power of bat‐
tery

Base load of customer

Total demand of customer

Power of electric water heater

The maximum power taken from/to power grid

Power taken from/to power grid in Scenarios 1-3

Power from solar PV

Net residual demand

Power rating of EWH

Specific heat

Conductance

Size (in volume) of EWH

Substation voltage

Voltage at each (customer) load point

Yearly voltage profile

Water use of EWH

Monthly peak

Feed-in tariff

Fixed daily charge

Flat energy charge

Monthly peak demand charge

Time-of-use energy charge

I. INTRODUCTION

THE investment in customer-owned photovoltaic (PV) -
battery systems is growing rapidly across the globe, as

they become cost-effective in certain jurisdictions. For exam‐
ple, the total installed capacity of residential PV-battery sys‐
tems in Australia is projected to increase from 5 GW in
2017 to 19.7 GW in 2037 [1], [2]. In Germany, the total in‐
stalled capacity of PV-battery systems alone currently stands
at 43 GW, and is projected to increase to 150 GW by 2050
[3], [4]. The battery storage systems are expected to follow
suit, with currently 100000 installations (approximately 6
GWh) and projections to double within the next two
years [5].

The trend towards more residential PV-battery systems is
being driven by two major factors. On one hand, the average
household electricity prices in the Organisation for Econom‐

ic Cooperation and Development (OECD) countries in‐
creased by over 33% from 2006 to 2017 (using purchasing
power parity). In particular, in Australia and Germany, prices
have risen to about 20.4 and 39.17 US cent/kWh, respective‐
ly, from roughly 12.52 US cent/kWh (in Australia) and
20.83 US cent/kWh (in Germany) in 2006 [6]. The feed-in-
tariff (FiT) rates for PV generation have been reduced simul‐
taneously in these countries. On the other hand, the costs of
PV and battery systems have seen precipitous falls in recent
times. These energy price hikes and reductions in the asset
cost are driving customers to increase their levels of self-con‐
sumption by investing in energy storage technology to com‐
plement rooftop PV-battery systems.

This presents a dilemma to distribution nework service
providers (DNSPs) and vertically-integrated electricity utili‐
ties, i.e., how to design tariffs that reflect the long-term mar‐
ginal cost of electricity network assets, so that all consumers
receive a price signal indicating the extent to which they
each contribute to network peak demand, while ① not en‐
couraging customers with distributed energy resources
(DERs) to defect from the power grid, and ② without unfair‐
ly apportioning network costs on customers without PV or
other DERs. This is proven to be a difficult task in the litera‐
ture [7]-[10].

To this end, this paper proposes a probabilistic framework
to enable DNSPs to test the cost-reflectivity of various net‐
work tariffs. The framework considers various DER includ‐
ing rooftop PV, battery storage and flexible loads. It inte‐
grates statistical models of PV generation, electricity de‐
mand, and electric hot water use, a novel formulation of
home energy management system (HEMS) that explicitly
models peak demand charge, and a Monte Carlo (MC) pow‐
er flow model to assess the technical and economic impacts
of network tariffs on distribution networks. This paper thus
fills an important gap in the existing research, which has so
far considered either only technical or only economic as‐
pects of the problem using deterministic tools.

In more detail, recent studies have considered the econom‐
ic impacts of energy- and demand-based tariffs on the reve‐
nues of residential customers and utilities. Demand-based tar‐
iffs can effectively resolve the instability of network price
and reduce cross-subsidies between consumers without
DERs or prosumers [11], and also ensure a stable revenue
for DNSPs [12]. From the perspective of customers, [13] us‐
es a peak coincidence network charge coupled with a fixed
charge to reduce the energy cost for price-responsive custom‐
ers. This slightly outperforms a peak demand charge, but
leads to a reduction in the overall system cost compared
with traditional volumetric tariffs.

Reference [14] suggests that a peak demand tariff based
on a customer’s yearly peak demand should be considered
by DNSPs, as it performs the best in terms of cost-reflectiv‐
ity and predictability among other tariff types. On the con‐
trary, demand-based tariffs proposed by the Australian Ener‐
gy Regulator (AER) has been tested on households in Syd‐
ney. Without due adjustments made, these tariffs show low
cost-reflectivity [15]. It is evident that the suitability of net‐
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work tariffs in terms of cost-reflectivity is dependent on the
assumptions made in the actual design and on how custom‐
ers respond to these tariffs [16].

Despite these efforts, very little research has considered
the technical impacts and consequences of network tariff de‐
signs on the use of distribution networks. This is paramount
because the aggregate network peak demand and energy loss‐
es are the long-term network cost drivers. In [17], the time-
of-use (ToU) tariffs alone can increase peak loading on net‐
works with high penetration levels of DERs, where custom‐
ers seek to maximise their cost savings. In view of this, [18]
shows that demand-based tariffs could be used to mitigate
transformer loading at medium-voltage (MV) substations.
Similarly, the results in [19] demonstrates the effectiveness
of demand-based tariffs in alleviating peak demand consider‐
ing demand response from controllable appliances of custom‐
ers. In [19], however, customers are exposed to spot market
prices (dynamic prices), and the effects of PV-battery sys‐
tems are not considered.

Given this background, this paper extends our preliminary
results [20] to address two main problems.

1) DNSPs currently do not possess tools to assess the im‐
pact of network tariffs on peak demand. Thus, we propose a
probabilistic framework that supports the design of DER-spe‐
cific cost-reflective tariffs.

2) Even when appropriate tariffs exist, they might not be
effective due to the lack of customers’ response. Therefore,
we also show how DER-specific tariffs can be complement‐
ed with an automated HEMS that allows customers to shift
the demand while retaining the desired comfort level.

The proposed framework first generates synthetic traces of
PV generation, electricity demand, and electric hot water
use, which are fed into an HEMS optimisation model that
determines the optimal DER schedule given the network tar‐
iff. The HEMS optimisation is then run for 332 customers
for a year to account for seasonal variations in demand and
solar PV output. Three scenarios are considered based on
customer DER ownership, namely, electric water heater
(EWH) only, EWH+ PV, and EWH+ PV+ battery. Simula‐
tions are performed for four different network tariff types.
The output of the HEMS optimisation model, which deter‐
mines the shape of the electric demand profile, is used in
probabilistic power flow to examine the impact of the tariff
types on typical low-voltage (LV) distribution networks.

The objective of the HEMS optimisation model based on
mixed-integer linear programming (MILP) is to minimise
customers’ electricity cost under energy- and demand-based
network tariffs, subject to device constraints and grid connec‐
tion limits. For modelling demand-based tariffs, we include
the peak demand charge as a linear term in the objective
function corresponding to an additional peak demand vari‐
able multiplied by the set demand charge. It is incorporated
into the model using an inequality constraint that sets the
peak demand variable equal to the maximum monthly de‐
mand. In this way, we retain the computational efficiency of
the MILP approach by avoiding the computationally expen‐
sive min-max formulation [19] that models the peak demand

explicitly. We have built on our earlier work in [20] by in‐
cluding EWHs as part of the HEMS formulation, since they
account for a considerable portion of energy consumption in
Australia and can affect peak loading [21].

In summary, the proposed framework is underpinned by:
① a novel home energy management formulation that explic‐
itly considers peak demand charges while retaining the com‐
putational efficiency of the conventional MILP formulation;
② a principled statistical solar PV and demand model to
synthesise a pool of residential load traces; ③ a principled
statistical model of electric hot water use to synthesise a
pool of residential electric hot water use profiles.

To validate the methodology, we demonstrate the impacts
of energy- and demand-based network tariffs on typical LV
distribution networks. Specifically, we investigate the effects
of these network tariffs on annual feeder head loading and
customer voltage profiles at different penetration levels of
PV-batteries.

The remainder of this paper is organised as follows. Sec‐
tion II presents an overview of the tariff assessment frame‐
work. Section III describes the steps to derive the statistical
models of solar PV/demand and electric hot water use. Sec‐
tion IV outlines the modelling of household DER. Section V
details the optimisation model of the network tariff types
and steps taken to calculate the annual electricity cost. Sec‐
tion VI describes the framework of power flow analysis. The
case study is described in Section VII while the simulation
results are presented and discussed in Section VIII. Section
IX concludes the paper and suggests further work.

II. METHODOLOGY OVERVIEW

To evaluate the impact of network tariffs on customer re‐
sponse and the resultant effects on an LV distribution net‐
work, it is imperative to model the HEMS of each customer
individually. Figure 1 shows the weekday net demand pro‐
files for a set of ten customers at 80% penetration level of
PV and the aggregate net demand of the same ten customers.

It is observed from Fig. 1 that while the net demand of in‐
dividual customers can be negative, which implies power ex‐
port to the grid, the aggregate profile is always positive.
This shows that an aggregate demand model can be mislead‐
ing. In contrast, we model each customer individually. The
statistically generated demand profiles are then randomly as‐
signed to different locations in the network using an MC ap‐
proach, which serves as an input for probabilistic load flow
analysis.
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Fig. 1. Weekday net demand profiles for a set of ten customers at 80%
penetration level of PV and aggregate net demand of the same ten custom‐
ers.
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An overview of the methodology for the probabilistic as‐
sessment framework is detailed in Fig. 2. In Module 1, us‐
ing yearly historical data, a pool of net load traces and the
corresponding electric hot water use profiles are generated
by applying the statistical models of PV generation, electrici‐
ty demand, and electric hot water use, which will be de‐
scribed in Section III. In Module 2, the outputs of the statis‐
tical models are fed as inputs to the MILP-based HEMS to
solve the yearly optimisation problem for different tariff
types, and the results are saved for each customer. The
MILP-based HEMS is described in Sections IV and V. First‐
ly, Section IV describes the detailed models of battery ener‐
gy storage system (BESS) and the electric hot water system,
which can be reused under different tariff designs and incen‐
tive structures. Secondly, Section V outlines the optimisation
model, whose objective is to minimise the electricity cost of
customers under energy- and demand-based tariffs. Section
V also details the optimisation model for three scenarios
based on DER ownership, and the cost implications of differ‐
ent tariff types. Based on this, the economic impacts of the
network tariffs are analysed and discussed in Section VIII-A.

To assess the technical impacts of the network tariffs on
the distribution network, we assume that the residential cus‐
tomers, with individually modelled HEMS and price re‐
sponse, all form part of an LV distribution network. Hence,
the optimisation results and output data from Module 1 are
used to perform time-series yearly MC power flow studies
on three representative LV distribution networks using
OpenDSS [22] as described in Section VI. MC simulation is
employed to cater for the uncertainties in customer location
and the size of DER. Therefore, 100 MC power flow simula‐
tions are performed to investigate the impacts of the network

tariff types on the voltage profile of customers and feeder
head loading at different penetration levels of PV-battery.

III. STATISTICAL MODELS OF DEMAND, SOLAR PV, AND

ELECTRIC HOT WATER USE

In order to perform a probabilistic assessment of the im‐
pact of flexible loads in LV distribution networks under vari‐
ous network tariffs, a large pool of PV, demand, and EWH
profiles are required. To this end, we provide the models to
generate representative profiles using principled statistical ap‐
proaches.

A. Statistical Models of Demand and Solar PV

In this section, we extend the nonparametric Bayesian
model introduced in [23] to generate a pool of demand and
PV profiles needed to perform probabilistic power flow stud‐
ies. To accomplish this, we firstly cluster historical data
sourced from the solar home electricity data of Ausgrid into
representative clusters using the maximum a-posteriori
Dirichlet process mixtures (MAP-DP) technique. Next, we
employ the Bayesian estimation method to estimate the prob‐
ability that an unobserved customer possesses certain fea‐
tures identified in particular clusters. The number of occur‐
rence of these features (count) is used as a hyperparameter
of a Dirichlet distribution Dir(α).

To assign a cluster to an unobserved customer, we use a
random variable drawn from a categorical distribution Cat(γ)
over the features of the particular cluster, where the parame‐
ters γ are obtained by sampling from Dir(α). We then gener‐
ate a pool of net load traces specific to assigned features
based on a Markov chain process. More details on the statis‐
tical models of demand and solar PV can be found in [24].

The demand and solar PV statistical models are cross-vali‐
dated in [24], using the smart-grid smart-city (SGSC) data
set. As an illustration, the comparison between 1000 synthet‐
ic demand profiles and the aggregate demand profile of the
1000 customers to generate the synthetic data are presented
in Fig. 3. A very good match can be observed with the mean
absolute error of 9.80% in this case.

Module 1: Synthesis of demand, PV and electric hot water use

Module 2: HEMS problem

Module 3: MC power flow

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Generate a pool of net load traces using
the statistical model of PV and demand

Generate corresponding profiles of electric hot water
use using the hot water use statistical model

Use tariff and DER data and output from Steps 1 and 2,
and solve the HEMS problem using MILP for a year

Save the yearly power import/export results and
calculate the annual electricity cost for each customer

Use data from Steps 1 and 2 and the power exchange
results from Step 4 to run yearly MC power flow

Save customer voltage profiles and feeder
head loading for each MC simulation

Fig. 2. Overview of methodology. 6 12 18 240
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Fig. 3. Demand profiles. (a) 1000 synthetic demand profiles. (b) Aggre‐
gate observed and synthetic weekday demand profiles.
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B. Statistical Model of Electric Hot Water Use

The statistical model of electric hot water is defined for
the aggregate intervals of time slots during the day. It com‐
prises a location distribution within an interval and a magni‐
tude distribution for each time slot. The model is estimated
following three steps. Firstly, the data is broken into the in‐
tervals of the day, comprised of sets of contiguous time
slots. The specific intervals used in this paper are given in
Table I.

Secondly, a location process is estimated for each interval.
This consists of a distribution over the number of the draws
in an interval, and is given by a homogeneous Poisson distri‐
bution Poi(μ) with a probability given by:

P(k draws in interval)= exp ( )-μ
μk

k!
(1)

Thirdly, a magnitude distribution is estimated for the size
of the draws in each interval. The magnitude of the draws is
modeled as following a Weibull distribution Wei(κσ) with a
probability density function given by:

f (x|κσ)=

ì

í

î

ïï
ïï

σ
κ ( )x
κ

σ - 1

exp
é

ë
êê

ù

û
úú- ( )x

κ

σ

x³ 0

0 x< 0

(2)

Sampling from this model involves one additional ele‐
ment. Specifically, once the model is estimated and the val‐
ues of μ, κ, and σ are computed, the full sampling process
for an interval involves: ① sampling a number of draws in
an interval according to Poi(μ); ② allocating these draws to
the time slots over the interval according to a uniform distri‐
bution; ③ sampling the draw size for each draw according
to Wei(κσ).

It is emphasized that each interval firstly has a number of
draws sampled from the estimated Poisson distribution, and
then that number of locations are allocated to the draws in
the interval according to a uniform distribution (with replace‐
ment) over time slots, which is as the standard approach for
sampling from the Poisson processes. Different from the de‐
mand and PV traces, the cross-validation for EWH traces is
not possible due to the lack of empirical ToU data of electric
hot water use.

IV. MODELLING OF HOUSEHOLD DER

For each customer cÎ C who possesses a set of appliances
A:={12...|A |}, let αÎ{12...M } denote the appliance
type of customer c, wherefore Aα ÍA. In this work, only

three appliance types are considered (M = 3). Type 1 set in‐
cludes energy storage devices, particularly batteries. Type 2
set includes thermostatically-controlled devices, particularly
EWHs. Type 3 appliances constitute the base load and in‐
clude all must-run and uncontrollable devices.

A. Modelling of BESS

The operation model of BESS is linearised so that it fits
the MILP optimisation framework. The battery sizes used in
this paper range from 6 to 12 kWh and are obtained from
ZEN Energy [25]. We have assumed the minimum/maximum
battery SOC of 10%/100% nominal capacity and a round-
trip efficiency of 90% for all battery sizes. For all
aÎA1hÎH:

eb
ah = eb

ah- 1 +Dh[ ]ηb+
a pb+

ah- 1 - (1/ηb-
a )pb-

ah- 1 (3)

pb+
ah £ p̄b+sb

ah (4)

pb-
ah £ p̄b- (1- sb

ah) (5)

0£ pb+
ah £ p̄b+ (6)

0£ pb-
ah £ p̄b- (7)

-e
b £ eb

ah £ ēb (8)

B. Modelling of EWH

The operation model of EWH is given by a set of differ‐
ence equations in order to fit them into an optimisation mod‐
el [26], [27]. We consider single-element EWH tanks from
Rheem Electric Storage Water Heaters Specification Sheet,
and estimate the EWH sizes for the 123 selected customers
using their electric hot water profiles. Some of the simula‐
tion parameters of EWH are presented in Table II. For all
aÎA2hÎH:

pah = η th
a uth

ahQa (9)

T in
ah = T in

ah- 1 +ψa pah + λa (T out
ah- 1 - T in

ah- 1)+ ϕa (T inlet
ah- 1 - T in

ah- 1)
(10)

T inmin
ah £T in

ah £T inmax
ah (11)

where A» 6V 2 3; ψa =
Dh
C

; λa =
UADh

C
; C = ρVs; ϕa = ρWd; ρ=

1000 kg/m3; s = 4.18 kJ/kg ×℃; TinÎ[6082]℃; and U = 1.00
W/m2 ×℃.

The second term at the right-hand side (RHS) in (10) rep‐
resents the energy from the resistive element of the EWH.
The third term represents the heat losses to the ambient,
while the last term represents the energy required to heat the
inlet cold water.

TABLE I
INTERVALS IN ELECTRIC HOT WATER MODEL WITH TIME SLOTS INDICATED

BY BEGINNING TIME AND ENDING TIME

Beginning time

23:00

02:00

05:00

08:00

Ending time

01:30

04:30

07:30

10:30

Beginning time

11:00

14:00

17:00

20:00

Ending time

13:30

16:30

19:30

22:30

TABLE II
SOME PARAMETERS OF EWH

Percentage of customers (%)

2.44

8.94

86.99

1.63

V (L)

80

125

160

250

Qa (kW)

1.8

3.6

3.6

4.8

A (m2)

1.114

1.500

1.768

2.381
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V. OPTIMISATION MODEL AND CALCULATIONS OF

ELECTRICITY COST

In this section, the optimisation model for all tariff types
considering customers with EWH and PV-battery is de‐
scribed. Each problem is solved for a year using a rolling ho‐
rizon approach and a monthly decision horizon. For custom‐
ers with just EWH and solar PV, the models are modified ac‐
cordingly by removing the battery parameters as described
in Section V-C. In Section V-D, we provide the formulas for
computing the annual electricity cost for each tariff type.

A. Optimisation Model for Energy-based Tariffs

For customers facing an energy-based tariff (Flat or ToU,
which will be explained in Section VII-B), the monthly opti‐
misation model is given in (12) for all hÎH, subject to (2)-
(11), and (13)-(18).

min
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B. Optimisation Model for Demand-based Tariffs

For the customers facing a demand-based tariff (FlatD or
ToUD, which will be explained in Section VII-B), an addi‐
tional constraint (20) is used to limit the power import from
the grid according to the demand charge component T pk p̂ in
(19). This does not explicitly model the demand charge as in
practice, but implicitly achieves the same objective of clip‐
ping the peak demand of a customer and subsequently reduc‐
ing the annual electricity costs, which are shown in Figs. 4
and 5. Different tariffs including Flat, ToU, FlatD, and
ToUD will be discussed in detail in Section VII-B. The
monthly optimisation model is given in (19) for all hÎH,
subject to (3)-(11), (13)-(18), and (20).
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C. Optimisation Scenarios

The optimisation models described above are solved for
three scenarios based on the ownership of customer DER.
Scenario 1 is the base case where all customers possess just
EWH. DERs are then progressively added to form the other
two scenarios following (13). pd

h = pbase
h + pewh

h , then the follow‐
ing scenarios hold:

1) Scenario 1: the energy balance equation for customers
with EWH only is:

pg +
h = pd

h (21)

2) Scenario 2: the energy balance equation for customers
with EWH and solar PV is:

pg +
h - pg -

h =-ηi ppv
h + pd

h (22)

3) Scenario 3: the energy balance equation for customers
with EWH, solar PV and batteries is:

pg +
h - pg -

h = ηi (pb+
h - pb-

h - ppv
h )+ pd

h (23)

D. Calculations of Annual Electricity Cost

The annual electricity costs for the customers with PV or
PV-battery (Scenarios 2 and 3) are calculated for each tariff
type as in (24)-(27) using pg +

d ′h and pg -
d ′h, which are obtained

as the output variables from the optimisation. For the cus‐
tomers without DER (Scenario 1), the calculations are done
without the power export component T fit pg -

d ′h.

C(Flat)=∑
d ÎD

( )T fx
d +∑

hÎH
(T flt pg +

dh - T fit pg -
dh)Dh (24)
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Fig. 4. Annual electricity cost for 332 customers in three scenarios.

2

4

6

8

Im
po

rt 
po

w
er

 g
rid

 (k
W

)
Im

po
rt 

po
w

er
 g

rid
 (k

W
)

2

4

6

8

6 12 18 240
Time (hour)

(a)

6 12 18 240
Time (hour)

(b)

FlatD
Flat

ToUD
ToU

Fig. 5. Illustration of peak demand reduction due to p̂ in optimisation prob‐
lem (20). (a) Peak demand reduction achieved using demand charges with
Flat tariff. (b) Peak demand reduction achieved using demand charges with
ToU tariff.

956



AZUATALAM et al.: PROBABILISTIC ASSESSMENT OF IMPACT OF FLEXIBLE LOADS UNDER NETWORK TARIFFS IN...

C(ToU)=∑
d ÎD

( )T fx
d +∑

hÎH
(T tou

h pg +
dh - T fit pg -

dh)Dh (25)

C(FlatD)=∑
d ÎD

( )T fx
d +∑

hÎH
(T flt pg +

dh - T fit pg -
dh)Dh +∑

mÎM
(T pk ppk

m )

(26)

C(ToUD)=∑
d ÎD

( )T fx
d +∑

hÎH
(T tou

h pg +
dh - T fit pg -

dh)Dh +∑
mÎM

(T pk ppk
m )

(27)

where ppk
m is calculated either based on the peak monthly de‐

mand (FlatD and ToUD) or on the average top four daily
peak demand (FlatD4 and ToUD4) for each month. In es‐
sence, each of the demand-based tariffs has two variants
based on the calculation of monthly peak demand.

VI. POWER FLOW ANALYSIS

We consider an LV distribution network as a radial system
denoted by G (NE). This comprises |N| nodes in set N:=
{01...N} representing network buses and distribution lines
denoted as a tuple (ij), which connects the nodes and is rep‐
resented by the set of edges E:={(ij)}ÌN ´N. Each cus‐
tomer cÎ C in the network is connected to a load bus as a
single-phase load point, where the load buses Nc is a subset
of the total nodes in the network and Nc ÍN. Let V =
[v0v1...vN] be the voltage magnitudes at the nodes. The
voltages at each (customer) load point vc are monitored at ev‐
ery half-hour in the year to check for any voltage violations.
More so, the current ihead is monitored to check for any ther‐
mal loading problems. We assume that each customer cÎ C
in the network utilises an HEMS to manage a set of appli‐
ances in order to minimise the electricity cost.

The net power exchange of the grid pg
d = pg +

d - pg -
d resulting

from the HEMS optimisation solution and the data generated
from statistical models (Module 3, Step 5 in Fig. 2) are fed
as the input to a distribution network model to perform MC
power flow analysis using Algorithm 1.

We then carry out a probabilistic assessment of the yearly
voltage profiles vdc for each customer and feeder head load‐
ing ihead

d in order to ascertain the level of voltage and thermal
loading problems associated with any particular network.
The definitions of voltage and thermal loading problem are
described below.

1) If a customer’s voltage goes outside the range of 0.95
p.u.£ vdc £ 1.05 p.u. during 95% of days in a year, the cus‐
tomer is regarded to have a voltage problem [28].

2) If the current flowing through line ihead
d (feeder head) ex‐

ceeds its thermal rating, there is a thermal loading problem
in the network.

VII. CASE STUDY

Necessary data are provided for the case study, which in‐
clude the data for three representative LV distribution net‐
works, the network tariff and retail charges, and the custom‐
er demand and DER data.

A. LV Distribution Networks

The LV distribution network data used in this work are ob‐
tained from the LV distribution network solutions project
[29]. Table III summarizes the main features of the three net‐
works used as case studies in this paper.

These are residential LV distribution networks of different
lengths and numbers of load points. Feeders 1 and 2 are fair‐
ly balanced, while Feeder 3 is unbalanced. Given that these
feeders are from the UK, we have modified them to suit the
Australian context. Typical Australian LV distribution net‐
works are more robust with higher load capacity compared
with those from the UK. Therefore, the transformer capacity
is increased by a factor of 3 and decreased the line imped‐
ances by a factor of 3 since the average consumption in Aus‐
tralia is roughly three times that in the UK. However, the
overall structures of LV distribution networks in both coun‐
tries are similar.

B. Network Tariffs and Retail Charges

A typical residential customer retail bill consists of net‐
work (distribution and transmission) charges, generation
costs for energy, charge of retailer, and other related costs.

TABLE III
NETWORK DATA

Feeder number

1

2

3

No. of customers

175

186

302

Total length of all
lines (m)

5206

4197

10235

Feeder head
ampacity (A)

1200

1200

1155

Algorithm 1: MC power flow algorithm

Set P:={0255075}, B:={04080}, and C:={12...| C |}
1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

for each pÎP do

Read yearly load and PV profile

if p= 0 then

Read pg
dc"cÎ Cd ÎD, for Scenario 1 ▷base case: 0% PV-bat‐

tery

for k ¬ 1 to 100 (Step 1) do ▷100 MC simulations

Sample uniformly from pgSc1
dc for allocation to load points

Run yearly power flow

Return iheadk
d and vk

dc, "cÎ Cd ÎD
end for

else

for each bÎB do

Read pg
dc"cÎ Cd ÎD, for Scenarios 1-3

for k ¬ 1 to 100 (Step 1) do ▷100 MC simulations

pgSc1
dc :=(100- p)% × pgSc1

dc + p% ×(100- b)% × pgSc2
dc + p% × b% × pgSc3

dc

Repeat lines 6-8

end for

end for

end if

end for

Note: ▷ means comment.
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We have sourced the network tariff data as shown in Table
IV from Essential Energy Network Price List and Explanato‐
ry Notes. These are assumed to be fixed and known in ad‐
vance. The peak demand charge is for the monthly peak de‐
mand of a customer, or, alternatively, the average of the top
four daily peak demands of a customer in a month. In Table
V, the residential electricity prices for the customers in the

essential energy distribution zone for the retailer, Origin En‐
ergy is shown. These prices comprise the actual cost of elec‐
tricity, service fee of retailer, and the network charge. In this
paper, we have assumed that the retailers pass on the DNSP
tariff structure to the consumers. The different network tar‐
iffs, i. e., energy-based (Flat and ToU) and demand-based
(FlatD and ToUD), are described below.

1) LV residential anytime (Flat): includes a fixed daily
charge and a flat usage charge.

2) LV residential ToU: includes a fixed daily charge and a
ToU usage charge (peak period: 07:00 to 09:00, 17:00 to 20:
00; shoulder period: 09:00 to 17:00, 20:00 to 22:00; off-peak
period: 22:00 to 07:00).

3) Small residential opt-in demand anytime (FlatD): in‐
cludes a fixed daily charge, a flat usage charge, and a peak
demand charge.

4) Small residential opt-in demand ToU (ToUD): includes
a fixed daily charge, a ToU usage charge, and a peak de‐
mand charge.

C. Customer Demand and DER Data

We have sourced the demand and solar PV generation da‐
ta from the solar home electricity data of Ausgrid (DNSP in
New South Wales) [30]. This dataset comprises three years
of smart meter data with half-hourly resolution from July
2010 to June 2013, for 300 residential customers in the Syd‐
ney region of Australia. The most recent data (for financial
year, July 2012 to June 2013) is used in this study, because
it is complete and of higher quality compared with the previ‐
ous years in the dataset. Given that the solar home electrici‐
ty data do not contain electric hot water usage data of cus‐
tomers, we have selected 123 customers from the Ausgrid
SGSC [31] dataset with complete electric hot water usage,
solar PV, and uncontrolled demand data. Then, we randomly
allocate these electric hot water profiles to the selected 123
customers from the solar home electricity data.

Since the average PV size of the customers in the solar
home electricity data is roughly 1.5 kW, a heuristic is ap‐

plied to update the PV sizes to reflect the current PV uptake
rates and the average size of installed PV systems in Austra‐
lia. The updated average PV size of these customers is
roughly 4 kW, and the sizes range from 3 to 10 kWp de‐
pending on the needs of the household. For the customers
with solar PV and batteries installed, the battery size of the
customer depends on the size of the solar PV installed. In
Australia, typically, 1.5-3 kWh of storage is used per 1 kW
of PV installed [1]. This assumption is made in this paper.
The efficiency of PV inverter has already been accounted for
in the dataset, so the efficiency of PV inverter is assumed to
be 1 in the simulations. Table VI presents the PV-battery
size combinations for the selected 123 customers with updat‐
ed PV sizes.

VIII. RESULTS AND DISCUSSION

In this section, the results from the optimisation and net‐
work power flows are analysed and discussed. Firstly, we
show the economic implications of various network tariffs
by carrying out annual electricity cost calculations in Section
VIII-A. Therefore, 332 customers have been chosen from
the generated pool of customers, since the largest feeder

TABLE IV
NETWORK TARIFF DATA

Tariff type

Flat

ToU

FlatD

ToUD

Fixed charge
($/day)

0.8568

0.8568

0.8568

0.8568

Anytime energy
(cent/kWh)

11.0321

3.2169

Off-peak energy
(cent/kWh)

4.6287

2.1419

Shoulder energy
(cent/kWh)

12.6922

3.4771

Peak energy
(cent /kWh)

13.9934

4.0804

Demand charge
($/(kW ×month))

4.2112

4.2112

TABLE V
RETAIL TARIFF DATA

Tariff type

Flat

ToU

FlatD

ToUD

Fixed charge
($/day)

1.5511

1.5511

1.5511

1.5511

Anytime energy
(cent/kWh)

31.3170

23.5018

Off-peak energy
(cent/kWh)

21.3400

18.8532

Shoulder energy
(cent/kWh)

37.1470

27.9319

Peak energy
(cent/kWh)

38.5880

28.6750

Demand charge
($/(kW ×month))

9

9

9

9

TABLE VI
PV-BATTERY SIZE COMBINATIONS

Percentage of customers (%)

76.42

20.33

2.44

0.81

Solar PV size (kW)

3-4

5-6

7-8

9-10

Battery size (kWh)

6

8

10

12
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used as case study comprises 302 customers. Following this,
the impact of network tariffs on the daily and monthly peak
demand of customer is discussed in Section VIII-B. Finally,
the technical impacts on the network, of the different tariffs,
are analysed in Sections VIII-C and VIII-D.

A. Annual Electricity Cost

In this section, we analyse the annual electricity costs for
all scenarios using the results from Section V-D, as illustrat‐
ed in Fig. 4. Overall, customers pay less for electricity as
DER is progressively added. While the demand-based tariffs
result in a lower electricity cost compared with the energy-
based ones in Scenario 1, this slightly levels off in Scenarios
2 and 3. This is because when the power import of prosum‐
ers is clipped due to the demand charges, they compensate
for this by exporting more power to the grid (via FiT pay‐
ments). Nevertheless, the FiT rates are smaller compared
with the retail rates so the net savings are minimal. With PV
and batteries (Scenario 3), however, large power export pays
off with a ToU tariff, which results in the least annual elec‐
tricity cost for consumers. But this might not be most benefi‐
cial for DNSPs. Generally, we can conclude that customers
are likely to be indifferent between these tariff types, since
the annual cost values are quite close.

B. Daily and Monthly Peak Demand

The peak-demand charge has an effect of clipping a daily
and monthly power import of customer according to (20).
Figure 5 illustrates the daily peak demand reduction of Cus‐
tomer 3 (a randomly selected customer) using demand-based
tariffs (FlatD and ToUD). We also calculate the monthly
peak demand of the customer under the tariff types by find‐
ing the maximum grid import power for each month from
the optimisation results. Figure 6 shows the monthly peak
demand of 332 customers in Scenarios 1-3.

Figure 7 shows the percentage changes in the median
peak demand as PV alone (Scenario 2) and PV-batteries
(Scenario 3) are added. Generally, using demand-based tar‐
iffs results in a lower monthly peak demand compared with
energy-based tariffs due to the additional demand charge to
penalize the grid power import.

The results also show that among all tariff types, solar PV
alone (Scenario 2) is not sufficient to reduce the peak de‐
mand recorded in the base case significantly (Scenario 1). It
is shown in Fig. 7 that solar PV is more effective in reduc‐
ing the peak demand due to energy-based tariffs (up to 16%
with Flat tariff in January) than with demand-based tariffs
(up to 6% in October). However, with PV and batteries (Sce‐
nario 3), the monthly peak demand even increases nearly up
to 10% in June with ToU tariff, but is lowered to 40% in
February with demand-based tariffs compared with Scenario
1. The ToU-based tariffs perform the worst as DER is pro‐
gressively added compared with flat tariffs (Flat and FlatD).
This is due to the creation of the new peaks when all batter‐
ies are charged during off-peak times to minimise the elec‐
tricity costs of customers.
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C. Effects of Network Tariffs on Line Loading

In this sub-section, we analyse the feeder head loading for
the different penetration levels of PV-batteries, as shown in
Fig. 8(a). The black dashed lines separate the battery owner‐
ship levels (of 0, 40 and 80% in order from left to right) at
each penetration level of PV (25, 50 and 75%, separated by

red dashed lines). There is no battery ownership at 0% pene‐
tration level of PV-batteries. The loading levels are generally
high because we have shown the phases with the highest
loading for each feeder (other phases follow similar pattern).
Also, the maximum feeder head loading is examined over
the year for each MC simulation.

The results show that ToU tariff performs worst as the
penetration level of batteries increases, which is in conformi‐
ty with the results in [17]. This is due to the batteries’ re‐
sponse to ToU pricing by charging at off-peak times, thereby
creating new peaks. Furthermore, ToU-based tariffs (ToU
and ToUD) can adversely affect the line loading due to large
grid imports during off-peak times, and reverse power flows
resulting from power export. This can be mitigated by add‐
ing a demand charge (ToUD) to at least clip the grid import
levels with the aid of batteries. As observed in Fig. 8, the
line loading increases with higher penetration level of batter‐
ies with ToU tariff, while it is reduced with ToUD tariff.
Contrarily, Flat tariff results in lower line loading for all
feeders. By including a demand charge to the flat tariff
(FlatD), line loading is reduced even further as observed for
all three feeders. This works well with increasing penetration
of batteries in both fairly balanced (Feeders 1 and 2) and un‐
balanced LV distribution networks (Feeder 3), since there are

no incentives for large grid power exports as with ToU tar‐
iffs.

D. Effects of Network Tariffs at Customer Voltage Level

In terms of customer voltage profiles, Fig. 8(b) shows that
ToU tariff results in higher voltage problems in all three
feeders compared with other tariffs. This is particularly obvi‐
ous in the case of the unbalanced feeder (Feeder 3), but can
be mitigated by adding a demand charge to the ToU tariff
(ToUD). In this case, batteries are useful in reducing voltage
problems. The Flat tariff, on the other hand, performs better
than ToU-based tariffs in keeping customer voltage at the
right levels. And again, by adding a demand charge to the
flat tariff (FlatD), there is a slight improvement in the volt‐
age profiles of customer.

IX. CONCLUSION AND FURTHER WORK

In this paper, it is shown that in the presence of DER,
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adding a peak demand charge to either a Flat or ToU tariff
effectively reduces the peak demand, and subsequently, the
line loading.

To reduce the peak demand of customer, a computational‐
ly efficient optimisation formulation is proposed, which
avoids the computationally expensive min-max formulation
used in alternative approaches. It is demonstrated that the
novel formulation, which can be seamlessly integrated into
the HEMS of customer, can be used in conjunction with
DER-specific tariffs to achieve better management of net‐
work and cost-reflective network charges.

Generally, flat tariffs perform better than ToU tariffs for
mitigating voltage and alleviating line congestion problems.
It is concluded that in the context of reducing network
peaks, flat tariffs with a peak demand charge will be the
most beneficial for DNSPs. With respect to the economic
benefits of customer, the best tariff depends on the amount
of DER possessed by customer. However, the cost savings
achieved by switching to another tariff type is marginal.
Moreover, with reference to our previous work where all cus‐
tomers are without EWH [20], it is also concluded that the
EWH has equal impacts across all tariff types in terms of
line loading. However, with EWH, the line loading is gener‐
ally higher.

In this paper, we have not explicitly tested these tariffs for
cost-reflectivity, although this is implicit in the results. In
this regard, our next task will focus on the design of these
tariffs using the established principles in economic theory
rather than using the already published tariffs from DNSPs.
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