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Abstract——As distributed energy storage equipments, electric
vehicles (EVs) have great potential for applications in power
systems. Meanwhile, reasonable optimization of the charging
time of EVs can reduce the users’expense. Thus, the schedule
of the EV load requires multi-objective optimization. A diversi‐
ty-maximization non-dominated sorting genetic algorithm (DM-
NSGA)-II is developed to perform multi-objective optimization
by considering the power load profile, the users’charging cost,
and battery degradation. Furthermore, a real-time locally opti‐
mal schedule is adopted by utilizing a flexible time scale. The
case study illustrates that the proposed DM-NSGA-II can pre‐
vent being trapped in a relatively limited region so as to diversi‐
fy the optimal results and provide trade-off solutions to deci‐
sion makers. The simulation analysis shows that the variable
time scale can continuously involve the present EVs in the real-
time optimization rather than rely on the forecasting data. The
schedule of the EV load is more practical without the loss of ac‐
curacy.

Index Terms——Electric vehicle (EV), locally optimal schedule,
multi-objective optimization, diversity maximization, genetic al‐
gorithm.
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I. INTRODUCTION

TRANSPORTATION is being electrified significantly to
meet the goals of decarbonation and low emission. The

replacement of internal combustion vehicles with electric ve‐
hicles (EVs) plays an important role in electrification [1].
The increase in charging demand from the extensive EVs
poses new challenges to the existing distribution system [2]-
[4]. References [5] and [6] illustrate that the integration of
unordered EV into the power system can damage the grid
operation. However, vehicle-to-grid (V2G) technology has
been proposed as a cost-effective solution to make full use
of the existing network. In general, EVs with V2G are treat‐
ed as a distributed storage system to support the power grid
in terms of reducing the peak demand and compensating the
intermittent renewable energy sources [7].

In the application of V2G, reasonable charging or dis‐
charging of EVs can benefit multiple parties such as power
systems or EV users [8] - [13]. The dispatching of the EV
load can serve the power system such as frequency regula‐
tion [8]-[10], power load reservation [11], and the reduction
of financial expenditure for grid operators [12], [13]. Mean‐
while, the electricity-price-oriented charging strategy can re‐
duce the users’ charging costs [14], [15]. Cooperative opti‐
mization of the charging load can serve the power system
and users simultaneously [16]-[18]. Thus, multi-objective op‐
timization approaches deserve more attention because they
are concerned with the accuracy and diversity of the optimal
results. Some typical linear sum-weighted methods are used
to co-optimize multiple objectives. For instance, a weighted
sum model of four objectives concerned with grid operation
and the users’ satisfaction has been constructed by using the
particle swarm optimization (PSO) [19]. The adaptive
weighted-sum approach has also been utilized [20] to pres‐
ent a dynamic pricing framework for the EV load to co-opti‐
mize the power load profile and the profitability of the grid

operator. These approaches convert multiple objectives to a
single one by a linear weighted sum, which benefits convex
optimization but fails to deal with conflicting objectives
such as power load regulation versus the users’ charging
cost.

Unlike the above approaches which redesign the optimal
scheme, multi-objective evolutionary algorithms (MOEAs)
such as the nondominated sorting genetic algorithm (NS‐
GA), PSO [21], and the decomposition algorithm (DA) [16],
[22], can deal with complex constraints and conflicting ob‐
jectives. Accelerated PSO has been utilized to solve the
multi-objective optimization problem regarding EV user and
benefits of grid operator [23]. A stochastic EV model has
been introduced to simulate the traveling behavior and activi‐
ty pattern in real time. EV penetration for capacity expan‐
sion has been evaluated to guarantee a lower charging price,
traveling plan, and off-peak energy usage. Furthermore, in
[24], the electricity variation and stochastic user behavior are
analyzed based on real-time forecasting of the EV load.
Global optimization has been improved by utilizing a nonlin‐
ear autoregressive neural network with exogenous inputs and
a time-series-based forecasting approach. Multi-objective op‐
timization based on MOEAs cannot usually obtain a single
optimal solution, but it can obtain a set of trade-off solutions
that cannot dominate each other in the entire solution space,
i.e., the Pareto frontier. Therefore, the solutions to the Pareto
frontier reflect the degree of benefit between different objec‐
tives. Thus, the decision maker can specify one solution af‐
ter weighing the benefits and drawbacks. Specifically, the
augmented-constraint DA approach can be used to combine
the benefits from battery degradation, users’ charging cost,
and valley filling of the power system [22]. Weight aggrega‐
tion (WA) PSO has been used to optimize the power load de‐
mand and financial investment [25]. MOEAs based on the
game-theoretic algorithm have been used to optimize the en‐
ergy consumption and power load profile in an autonomous
and distributed incentive-based energy consumption strategy
[26]. MOEAs in the dispatching of EV load has laid the
groundwork for the research on how to find trade-off solu‐
tions to reshape the power load profile and minimize the us‐
ers’ charging cost simultaneously. Nevertheless, the applica‐
tion of the original MOEAs cannot reach an effective Pareto
frontier because the solutions are easily trapped in the local
optima in the iteration, especially when solving problems
with high-dimensional constraints [27]. To address the above
issues, a novel diversity maximization (DM) approach has
been embedded into the traditional NSGA-II algorithm to
schedule EV charging load in this paper.

Another key concern is the time scale of the optimization,
because it determines the accuracy of results and the avail‐
able EV dispatching capability. Normal optimization is exe‐
cuted in a day-ahead way in which the EV information is
stimulated based on the historical data or the Monte Carlo
approach [22], [28], [29]. However, the schedule of EV
charging in this way shows a low capacity to cope with the
random arrivals of EVs and a lower response to the power
load fluctuation. Thus, a real-time two-level fuzzy-logic con‐
trol strategy has been implemented to improve the load re‐
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sponse with the participation of V2G [29]. Similarly, the de‐
mand response has been considered in a real-time EV charg‐
ing program for parking stations [30]. These real-time sched‐
ules have a common feature, i.e., they all address the optimi‐
zation in the fixed 24-hour period, i. e., a globally optimal
schedule. However, the globally optimal schedule is impracti‐
cal because the accurate power load is required and the fu‐
ture charging information of EVs is unknown. A sliding win‐
dow has been applied to shorten the optimization period by
considering the users’ economic expenditure [31]. Thus, in
this paper, the time scale is adjustable, and the charging strat‐
egy is executed at every time slot, which provides the in‐
sight into the locally optimal schedule. An alterable time
scale used in multi-objective optimization is determined by
the final plug-out time of ongoing EVs at the current time.
Specifically, the defined time scale only covers the available
EVs, and EVs that arrive at the next time slot are not consid‐
ered at the current time slot. By continuously executing the
charging strategy at every time slot, the charging power of
EVs in an entire day can be obtained. The contributions of
this paper are as follows.

1) A multi-objective optimization for scheduling the charg‐
ing load of EVs with a V2G function is solved considering
the power load profile, users’ cost, and battery degradation.
To solve this nonconvex problem and prevent the solutions
from being trapped in local optima, a novel DM-NSGA-II al‐
gorithm is proposed. The diversity measure is utilized to ini‐
tialize the population group in NSGA for preprocessing the
initial data.

2) A locally optimal schedule with an alterable time scale
is utilized. By executing real-time dispatching at every time
slot, the strategy has the advantage of coping with a large
population of EVs and their random arrivals. The perfor‐

mance of the locally optimal schedule is fairly close to that
of the globally optimal schedule. However, this approach
shows more practical significance for the promotion of V2G
technology.

II. EV SCHEDULE ARCHITECTURE AND OPTIMIZATION PERIOD

Figure 1 shows an architecture of charging station and the
illustration of the proposed schedule, where F1 and F2 are
objectives 1 and 2, respectively. The control center receives
vehicle profile information and vehicle demand information,
which include the battery capacity, initial or target state of
charge (SOC), and plug-in and plug-out time, from the EV
supply equipment to form the EV-tuple. Meanwhile, it also
acquires the base load and real-time price (RTP) from the
power system to form the load-tuple. Afterward, the EV-tu‐
ple and load-tuple are transmitted to the optimizer. The opti‐
mizer identifies the objectives, i. e., power load profile and
users’ charging cost, defines the time scale of the optimiza‐
tion, and finally executes the multi-objective optimization to
obtain the optimal charging power of EVs. Finally, as the
dispatching command, the charging power is transferred into
every charging pipe in the EV supply equipment. Specifical‐
ly, the structure of the optimizer is expressed in the descrip‐
tion of the optimizer. EVs available at the current time slot
are used to define the time scale. Then, multi-objective opti‐
mization is processed to form the trade-off solutions. Deci‐
sion makers can select one solution from these optimal solu‐
tions by considering its impact on the power system and EV
users. The charging power of EVs is sent to EV supply
equipment. Customers are also informed of the charging cost
and the cost of battery degradation. In summary, the control
center takes responsibility for implementing the optimization
and dispatching of the EV load.

The time scale of the optimization shows the importance
of the precision of solutions and the practical application. In
a globally optimal schedule, the time scale is normally given
in a fixed time scale of 24 hours based on the global knowl‐
edge of the forecasting base load and EV information. Thus,
the optimization provides global solutions in a day. Howev‐
er, the locally optimal schedule applies a variable time scale

to optimize the EV load at every time slot. Since the infor‐
mation about EVs in the future is unknown, the definition of
the time scale at the current time slot is established using on‐
ly the available EVs in the parking lot at the current time
slot, as shown in Fig. 2. The definitions of the time scale
W (i) and the set of available EVs M (i) are as follows. W (i) and
M (i) are updated at the beginning of time slot i.
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Power system
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Base load
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Fig. 1. Architecture of charging station and illustration of proposed schedule.
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If the charging period covers t cur
k , exactly satisfying both

t begin
k £ t cur

k and t end
k > t cur

k , the EV k belongs to the available EV
set M (i). However, the start-time of W (i) is always set to be t cur

k ,
and its end-time is determined by max(t end

k |k ÎM (i)). As shown
in Fig. 2, for the time slot i = 2, EV1 and EV2 are charged for
a while, and EV3 is starting to charge, so they all satisfy the
conditions t begin

k £ t cur
k and t end

k > t cur
k . And they are allocated into

the EV set M (2), denoting M (2) ={EV1 EV2 EV3}. In terms of
time scale W (2), among the ongoing EVs in M (2), EV3 charges
longer until 10 am. Accordingly, the time scale is given as
W (2) ={time slot 2:10}. For each time slot, W (i) and M (i) are up‐
dated consecutively. Therefore, the optimizer can perform the
real-time multi-objective optimization at the start of the time
slot i. With the optimization iteration, the EV load is optimized
in an orderly manner, and the command of charging power is
transmitted to the EV supply equipment. Thus, in an entire
day, the schedule of EV load can be achieved.

III. PROBLEM FORMULATION

A. Objective

In this sub-section, the multi-objective optimization of the
EV load is formulated, and two objective functions corre‐
sponding to the power load profile and the total costs of EV
users are constructed from the perspectives of power system
operators and users, respectively.

1) Power load profile: from the perspective of grid opera‐
tors, power load fluctuation in one day is the primary con‐
cern. Disordered charging of EVs drives up the peak load,
blocks the power source, and incurs network stress. There‐
fore, it is necessary to minimize the overall load variance
[32] so as to coordinate the EV charging load in a specified
time window. Normally, coordinated load schedule of EVs
can reduce the deviation between the instantaneous and the
average load and can act as a peak-shaving and valley-filling
in the global view. Thus, the first objective of reshaping the
power load profile is defined as:

arg
X

min F1 (x)=Φpwr
(1)

Φpwr = var(Ptotal)=∑
tÎW (i)

(P(x) t
sys -Pavg)2

(2)

P(x) t
sys =P t

res + ∑
k ÎM (i)

P t
kvehDt (3)

P t
kveh = xt

chk /ηch - xt
dchkηdch (4)

The objective function is programmed in W (i). However, to
fully flatten the total daily peak load, the average load Pavg

is obtained by traversing the entire time granularity in one
day.

2) Users’ cost and revenue model: from the users’ per‐
spective, charging cost is the most important concern. The
time-of-use (TOU) electricity tariff is widely used in most
utilities as an incentive to motivate users to charge at the
power load valley and discharge batteries back to the power
system at the load peak. V2G activities can help EV owners
earn the revenue to some extent, which also has great signifi‐
cance in reducing power peak demand for the power system.
RTP based on three-tier tariff is utilized to formulate the
charging costs as:

Φch
k =∑

tÎW (i)

P t
kvehDt ×RTP(t) (5)

Although the participation in the V2G can bring certain re‐
turns to users, cyclic charging and discharging of the battery
can degrade the battery lifetime adversely and also incur ex‐
tra costs. Generally, battery degradation is intensively distrib‐
uted in capacity fade, which is composed of two crucial
components [33], [34]: SOC-related degradation ΦSOC

kt and
depth of discharge (DOD) degradation ΦDOD

kt . The mathemati‐
cal formulation of the two components is defined as:

ΦSOC
kt =C bat

k (m × SOC avg
t - d)/(8760 ×CF × Lc) (6)

ΦDOD
kt = (C bat

k E cap
k +Clab)E dch

k /(Lc E cap
k ×DOD) (7)

The total cost incurred by battery degradation is therefore
expressed as:

Φbat
k =∑

tÎW (i)

(ΦSOC
kt +ΦDOD

kt ) k ÎM (i)

(8)

It has been proved [22] that battery degradation negatively
correlates to the users’ revenue during V2G. Thus, the objec‐
tive function from the users’ perspective is formulated with
a simple summation as:

arg
X

min F2 (x)= ∑
k ÎM (i)

(Φch
k +Φbat

k ) (9)

B. Constraint

This optimization problem is constrained by grid operators
and EV battery characteristics. Specifically, the objective
functions must be subjected to the charging power of the
charger, power load peak constraints, the energy require‐
ments of EV, and battery SOC constraints. For each k and
time slot i, the following constraints are shown as:

Pmin <P t
kveh <Pmax (10)

∑
k ÎM (i)

P t
kvehDt £Ppeak -P t

sys (11)

E ini
k +∑

tÎQ( j)

P t
kvehDt ³ γ1 E cap

k (12)

E ini
k +∑

tÎQ( j)

P t
kvehDt ³ γ2 E cap

k (13)

Constraints (10) and (11) define the charging or discharg‐
ing power limitation and total grid peak load constraints for
all EVs, respectively. Constraint (12) demonstrates the ener‐
gy requirement for one EV during one entire charging peri‐
od. Constraint (13) ensures that the battery is not over-
charged or over-discharged to maintain the battery lifetime.

EV5

0 1 2 3 4 5 6 7 8 9 24 t2322�10 11 12

EV4
EV2

EV3
EV1

Current time slot

W (1)

W (2)

W (3)

W (4)

Fig. 2. Varying charging and optimization window.
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IV. IMPLEMENTATION OF MULTI-OBJECTIVE OPTIMIZATION

Unlike single-objective optimization aiming to seek an op‐
timal solution, multi-objective optimization tries to find a set
of solutions that are called as Pareto frontier. NSGA-II algo‐
rithm is used to obtain Pareto frontier, which formulates a
set of particles for continuously nondominated sorting, cross‐
over, and mutation [35]. Furthermore, to address the defect
of local optima and poor convergence ability in traditional
NSGA-II algorithm, the DM approach is introduced to maxi‐
mize the solution diversity.

A. DM

DM approach seeks the optimal solution for multi-objec‐
tive optimization by pursuing all more diverse solutions.
With a subset EÌ Y, a solution diversity measure αE (y) of
one available particle is defined as:

αE (y)= max
yeÎE ( )min

1£ i £ k

y(i) - y(i)
e

Δie

(14)

Δie = max
yeÎE

y(i)
e - min

yeÎE
y(i)

e (15)

Δie is used to normalize different objectives. According to
the definition of solution diversity, the logic rule description
is presented in Table I.

As shown in Fig. 3, it is supposed that Δie = 1 and that Y =
{y1y2y3ye1ye2} is the objective set, E ={ye1ye2} is the sub‐
set of Y, and the Pareto frontier YPF ={y1y3ye1ye2}. Then,
the diversity measure of y1 and y2 is represented as:

αE (y1)=max ( )min ( )y(1)
1 - y(1)

e1y(2)
1 - y(2)

e1 min ( )y(1)
1 - y(1)

e2y(2)
1 - y(2)

e2

(16)

αE (y2)=max ( )min ( )y(1)
2 - y(1)

e1y(2)
2 - y(2)

e1 min ( )y(1)
2 - y(1)

e2y(2)
2 - y(2)

e2

(17)

According to (16), αE (y1)=max (y(2)
1 - y(2)

e1 y(1)
1 - y(1)

e2), both
y(2)

1 - y(2)
e1 < 0 and y(1)

1 - y(1)
e2 < 0 result in αE (y1)< 0, and the de‐

noting point y1 is not dominated by other points in subset E.
Similarly, αE (y2)=max (y(2)

2 - y(2)
e1  y(1)

2 - y(1)
e2)= y(1)

2 - y(1)
e2 > 0 means

that point y2 is dominated by at least one point in set E such
as point ye1.

However, considering the diversity of points in set E,
αE (y1)= y(2)

1 - y(2)
e1 and αE (y3)= y(2)

3 - y(2)
e1, αE (y3)> αE (y1), since

y1 is far away from ye1 over y3. Therefore, point y1 is defined
as a more diverse solution than point y3. The DM approach
finds more diverse solutions such as point y1 so as to con‐
struct the entire initial population before implementing NS‐
GA-II. The DM approach starting with the empty E is pre‐
sented in (18)-(20).

min Z =∑
i = 1

K

ωi y
(i) (18)

min Z = min
X ( )αE (y)∑

i = 1

K

ωi y
(i) (19)

s.t.

αE (y)= max
yeÎE ( )min

1£ i £ k

y(i) - y(i)
e

Δie

(20)

Concretely, the DM approach is executed as follows.
Step 1: solve (18) with any ωi > 0 and obtain the optimal

solution ym. Set E ={ym} and select a small ξ ³ 0, where ξ is
used to decide the terminal condition of the iteration.

Step 2: solve the problem in (19) and continuously obtain
the optimal solution y*

m.
Step 3: execute the decision. If αE (y*

m)<-ξ, update E =
E y*

m, and go back to Step 1. Otherwise, stop the iteration.
Step 4: obtain the entire feasible set E with y*

m.
For every iteration, one feasible solution y*

m is added to
feasible set E and the absolute value of αE (y*

m) is smaller
than its value in the last iteration. Therefore, a small value ξ
is used to decide when to terminate the iteration after obtain‐
ing sufficient solutions in feasible set E.

B. DM-NSGA-II

In this sub-section, DM-NSGA-II and its flowchart are de‐
scribed. The main steps are as follows.
1) DM Approach

Obtain the base load, RTP, ongoing EV set M (i) and its
configuration information, and system constraints. Decide
the parameters in the genetic algorithm such as npop, nmax

gen ,
crossover, and mutation rate. Execute the DM algorithm to
generate initial particles and then transmit the parameters
and initial particles to NSGA-II.
2) Nondominated Sorting and Crowding Distance

Classify the particles and confirm their rank, which evalu‐
ates the distance of particles spreading along the fronts. Sort
the individuals according to the rank to which they belong.
Calculate the crowding distance among particles.
3) Iterative Process

Repeat the following loop before ngen reaches the maxi‐

TABLE I
RULES OF DIVERSITY RELATIONS

Constraint

αE (y)> 0

αE (y)< 0

αE (y)= 0

α1 (y)<αE (y)

Rule

ye is dominated by yeÎE

y is not dominated by yeÎE

ye £ y for some ye and y(i)
e = y(i) for some i

y is not dominated by y1 for some y1Î Y

(1) (1)

F2

F1

y2

ye2

ye1

ye1 (1)ye2

(2)ye2

(2)ye1
y3

y3 (1)y2

(2)y3

(1)y1

(2)y1

(2)y2

y1

Fig. 3. Illustration of solution diversity measure.
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mum number of generations nmax
gen .

1) Selection: a tournament game would select two parti‐
cles to participate in the crossover and mutation. A particle
with a high priority rank or a larger crowding distance of
the same rank would be selected to take part in the tourna‐
ment game.

2) Crossover and mutation: simulated binary crossover
and polynomial mutation are adopted to generate the tempo‐
rary offspring population.

3) Recombination: recombine the parent chromosome and
offspring chromosome to generate a temporary population
with 2npop particles.

4) Nondominated sorting and crowd distance: the particles
in the temporary population are classified again based on the
nondominated relationship and crowding distance.

5) Generation of a new population (elite selection): a new
population is obtained by selecting the best half particles with
high priority rank and diversity from the temporary population.
4) Results

The particles after iterations make up the entire Pareto
frontier, which contains particles with the highest priority
rank. Every particle denotes a specific decision variable set
containing the charging power of all ongoing EVs and cur‐
rent objective values.

V. RESULTS AND DISCUSSION

One typical base load of a parking lot in Beijing, China
and the RTP tariff in Table II are used to simulate and evalu‐
ate the proposed algorithm. Without the loss of generality,
time granularity is set to be 1 hour, and the entire schedul‐
ing time is 24 hours by consecutively performing local opti‐
mization. An EV with a time-space characteristic is regarded
as a distributed load, and its control focuses on the charging
or discharging power in the dispatching period.

A. Simulation Setting

The competing objective includes the minimization of the
users’ charging cost. Corresponding to the two objectives,
the cost functions are defined in (1) and (9), respectively. In
this paper, the battery capacity is 28 kWh, the EV charging
power is limited to 5 kW, and the EV battery should be at
least 90% of SOC to ensure the normal operation of EVs.
Furthermore, excessive discharging of the battery significant‐
ly affects the battery health and even reduces its life. There‐
fore, when the SOC value of the battery is lower than a cer‐
tain value, the self-protection program of the battery manage‐
ment system is initiated [36], [37]. Therefore, the batteries
discharge no less than 10% of SOC to avoid being over-dis‐
charged.

To encourage the orderly charging of EVs, charging sta‐
tions can sign a price stimulation agreement with EV users.

If the users participate in the schedule plan, they can enjoy
lower electricity prices and sell excess electricity to the pow‐
er system at higher prices, thus maximizing the revenue. Fur‐
thermore, according to different charging demands, a charg‐
ing priority mechanism is introduced to measure the urgency
of the charging process. The specific implementation is as
follows.

The charging demand is defined as:

Sdes = (1- SOC cur
t )E cap

k (21)

Considering that, after EV connection, if the battery is ful‐
ly charged with the maximum power, the consumed time is
the shortest.

tmin =
Sdes

Pmax

(22)

Then, the charging urgency coefficient of EV can be ex‐
pressed as:

K =
t end

k - t begin
k

tmin
(23)

If K > 1.5, EV has enough time to participate in V2G, and
the proposed EV scheduling strategy can be executed. If K £
1.5, EV needs to leave in a short period of time, so it is not
suitable to feedback extra electric energy to the power sys‐
tem, and the battery should be charged with the maximum
charging power. The implementation flowchart of charging
is shown in Fig. 4, and the specific charging priority criteria
are listed in Table III.

Y

Y

Y

N

N

N

Start

End

EV users arrive at parking-lot

Do users sign price
stimulation agreement?

K>1.5?

Charging priority
at lower level

Charging priority
at high level

Charging EV in
maximum power

Charging EV in
proposed approach

Is EV charging
finished?

Fig. 4. Implementation flowchart of charging.

TABLE II
TARIFF PRICE OF ELECTRICITY

Price ($)

0.2578

0.2136

0.1707

Time slot

10:00-15:00, 18:00-21:00

7:00-10:00, 15:00-18:00, 21:00-23:00

23:00-7:00

TABLE III
CHARGING PRIORITY CRITERIA

Charging
priority

1

0

Does EV participate
in schedule plan?

Yes

No

K > 1.5?

Yes

No

Charging effect

Executing proposed strategy

Charging in Pmax

Charging in Pmax
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ILOG CPLEX tool package is utilized to implement the sin‐
gle-objective optimization and initialize the particles. MAT‐
LAB is used to implement NSGA-II in an Intel i7 1.80 GHz
PC with 8 GB of RAM running Windows 10 and visual
C++ 6.0.

B. Performance Evaluation of Locally Optimal Schedule

The performance of the local schedule is shown in Fig. 5,
and the corresponding cases are defined as follows.

1) Case 0: uncoordinated EV charging. In this case, batter‐
ies are charged with rated charging power once the EV ar‐
rives, regardless of the EV departure information and the
ability of V2G.

2) Case 1: power system operator focused. Power load
fluctuation is minimized, and better peak-shaving and valley-
filling are achieved with the participation of EVs.

3) Case 2: user focused. Charging cost and battery degra‐
dation cost are minimized.

As shown in Fig. 5(a), uncoordinated charging drives up
the power load uniformly at any time slot, apparently result‐
ing in a sharp increase in the peak demand during the noon
(12:00-2:00 pm) and evening (6:00-9:00 pm). The curves of
case 1 show that, with the participation of ordinated charg‐
ing, the global and local optimal schedules can reshape the
load profile and efficiently decrease the peak-to-valley differ‐
ence. Compared with the global schedule, the fluctuation of
the load in the locally optimal schedule is more distinct.
However, experimental data show that this only accounts for
8.5% of deviation over the global schedule in power vari‐
ance. Considering the unknown information on the future base
load and EV arrivals, the local optimal schedule is more practi‐
cal for load dispatching without much loss of accuracy.

Figure 5(b) shows the power load curve when implement‐
ing the second objective optimization. The charging load
curve varies with RTP, but results in a severe peak around

midnight, especially at 11:00 pm. By viewing the time slot
from 4:00 pm to 8:00 pm, it can be seen that the deviation
of the power load profile is between the existing global and lo‐
cal schedules. In the local optimal schedule, the upcoming
EVs arriving later than the current time slot are not considered.

C. Comparison of DM-NSGA-II Versus Existing Approaches

In the genetic algorithm, a particle denotes one individual
decision variable set X = [ x1x2...xM ], and it has a dimen‐

sion of |Mi |´ |Wi |, where |Mi | is the EV count in the current

Wi. For this case, i = 19; |Mi |= 112; the population size is 85;

the iteration count is 1500; and the distribution indexes for
crossover and mutation are both 5. According to the result
of single-objective optimization, the minimal F m

1 and F m
2 are

624212.7 (kW)2 and $252.43, respectively, which are consid‐
ered as evaluation criteria for extremely optimal results.
1) Development of Initial Particles in DM

The development of initial particles is shown in Fig. 6, in
which the particle count and diversity measure α are present‐
ed. The figure presents six stages of the generation of the ini‐
tial particles in the DM approach. The representative points
are also presented, starting with two edges and the middle
point. There is one generation point in each iteration based
on the DM rules. Five points are generated in Fig. 6(b), and
the distance between particles is kept as large as possible ac‐
cording to the definition of the diversity measure. As the
number of particles increases, the absolute value of α de‐
creases relatively quickly to a small value close to zero in
Fig. 6(f), when all initial particles are generated. It means
that the solutions are very close to the final Pareto frontier.
Considering the development of initialization in DM, it can
be seen that the particles are generated continuously, keeping
each solution more diverse with α=-0.78 in Fig. 6(a) to the
final −0.004 in Fig. 6(f). Figure 6 shows that the acquired
particles are equitably distributed around the Pareto frontier.
2) Comparison with Existing Approaches

WA-NSGA-II [23] shows a good ability to obtain particles
close to the Pareto frontier. Therefore, it is used to make a
comparison with the proposed approach in this paper.

Figure 7(a) - (c) shows the initial positions before imple‐
menting NSGA-II, while Fig. 7(d)-(f) show the final Pareto
optimum. Figure 7(d) shows that, after a long-term iteration,
the original NSGA-II shows a Pareto-like behavior, but the
detailed values F m

1 = 682969 F m
2 = 300.64 are still far from

the Pareto frontier. Additionally, sophisticated constraints
and decision variables are severe obstacles for particles.

Compared with Fig. 7(a), the particles in Fig. 7(b) are
closer to the Pareto frontier, and the objective values are
close to the true optimal values. However, the particles in
Fig. 7(e) stop evolving before the population reaches a true
Pareto frontier as F m

1 = 636213 (kW)2 and F m
2 = 284.13 $. It

is evident that the particles are trapped in local optima. In
Fig. 7(b), superabundant particles gather in the restricted re‐
gion at the initial stage. Even if there are nondominated sort‐
ing, they are still easily trapped in a small area in the genet‐
ic process.
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Fig. 5. Comparison of global and local schedule for individual objective.
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3) Comparison of Accuracy and Computation
The accuracy of the optimal results for multi-objective op‐

timization is essential for decision makers. Furthermore, the
computation efforts should also be examined by the simula‐
tion. The inverted generational distance (IGD) [38] and con‐
vergency index (CI) are introduced to evaluate the perfor‐
mance of the optimization approach and computation efforts.
The formula of IGD is shown in (24) and (25).

IGD=
1

|P|
DISi (24)

DISi = min
|S|

i = 1 ( )F1 (pi)-F1 (si)

F M
1 -F m

1

2

+ ( )F2 (pi)-F2 (si)

F M
2 -F m

2

2

(25)

Equation (25) expresses the normalized distance from the
experimental point to its nearest reference point. IGD repre‐
sents how close the actual Pareto front is to its theoretical
values. For instance, the smaller the IGD, the closer the opti‐
mized Pareto front to its theoretical solutions.

The true Pareto frontier is not readily available. Therefore,
two black lines are constructed where 100 reference dots are
evenly selected along the horizontal and vertical segments
starting from points A and B, as shown in Fig. 8. To fully
eliminate the randomness of the trial, each genetic algorithm
runs 10 times, and the statistical results of IGD are shown in
Table IV. DM-NSGA-II has the lowest mean IGD, implying
that the closest distance to the true Pareto frontier and solu‐
tions are more diverse. At the same time, the standard devia‐
tion indicates that DM-NSGA-II is more stable in searching
for an optimal solution.
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Fig. 6. Development of initial particles using DM approach. (a) 3 solu‐
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TABLE IV
IGD RESULTS FOR THREE ALGORITHMS

Item

Mean

Standard

Maximum

Minimum

IGD

NSGA-II

0.6562

0.0413

0.7214

0.6001

WA-NSGA-II

0.4426

0.0345

0.4938

0.4066

DM-NSGA-II

0.2486

0.0292

0.2715

0.2048
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Fig. 7. Experimental results. (a) Random initialization. (b) WA initializa‐
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Finally, the minimum cost function in the iteration process
is exhibited in Table V to describe the iteration characteris‐
tics. Specifically, CI denotes the iteration speed and repre‐
sents the degree to which the data points converge to the fi‐
nal values. The mathematical form is defined as:

CI =
||F m

icur -F m
iini

||F m
iini -F m

iend

(26)

The genetic algorithm after WA and DM processes can ob‐
viously accelerate the iteration compared with the original
NSGA-II. After preprocessing WA or DM, the particles can
directly start evolving, while the particles with random ini‐
tialization must be repeatedly sorted and selected before con‐
tinuing to evolve.

D. Analysis of Optimal Results for Different Objectives

In Section III, the users’ charging costs and battery degra‐
dations are merged to account for the total charging costs of
EV users. In this sub-section, the power load profile in (1),
EV charging cost in (5), and the battery degradation in (8)
are separated to discuss their contradictions. Figure 9 illus‐
trates the Pareto frontier with the proposed DM-NSGA-II.

1) Battery degradation versus users’ charging cost: Fig.
9(a) shows that there is an apparent Pareto relation between
battery health and users’ charging cost, which means that
they are in conflict with each other. To minimize the charg‐
ing cost and earn extra profit, it is necessary for EV users to
sell extra electricity to the power system under high-price
conditions. However, (7) presents that frequent charging and
discharging will damage the battery life.

2) Power load profile versus users’ charging cost: since
the curve of minimizing the charging cost distinctly fluctu‐
ates following the real-time TOU price, and the objective of
the power profile system is to balance the load fluctuation,
they are in conflict with each other at some key time slots.
Therefore, a certain Pareto relationship is shown in Fig. 9(b).

3) Power load profile versus battery degradation: Fig. 9(c)
shows a Pareto behavior between the power load and battery
degradation. Meanwhile, they can reach a mutual consisten‐
cy according to a certain selection criterion.

VI. CONCLUSION

A real-time locally optimal schedule for EV charging load
is established by considering the peak-shaving and valley-fill‐
ing for the power system, user’s charging expenditure, and
the battery degradation. In the locally optimal schedule, a
flexible time scale based on the available EVs at the current
time slot is adopted to address the random arrivals of EVs.
With continuous optimization at every time slot, the charg‐
ing power of EVs in an entire day can be obtained. The opti‐
mal result of power variance in the locally optimal schedule
shows approximately 8.5% of deviation compared with the
globally optimal schedule, which is acceptable since the lo‐
cal optimal load schedule would not excessively rely on the
EV travel information. However, to solve the problem in the
original genetic algorithms where the solutions on the Pareto
frontier are not diverse, the proposed DM-NSGA-II is uti‐
lized to execute multi-objective optimization. The DM ap‐
proach can change the initial state of particles and reduce
the iteration time. Compared with the original NSGA-II and
WA-NSGA-II, the proposed algorithm can effectively reduce
at least 43.8% of the inverted generational distance, which
reflects a more accurate fitting to the true Pareto frontier.
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TABLE V
CI RESULTS

Iteration

50

100

200

300

500

700

900

1200

NSGA-II

F1 (%)

8.5

16.2

54.3

74.4

87.2

92.4

96.6

100.0

F2 (%)

6.9

15.4

49.7

72.2

88.7

93.7

97.4

100.0

WA-NSGA-II

F1 (%)

27.2

45.1

69.2

86.0

94.9

99.2

100.0

100.0

F2 (%)

25.5

48.2

74.3

87.5

94.6

97.5

100.0

100.0

DM-NSGA-II

F1 (%)

25.7

44.8

68.3

85.5

93.5

98.1

100.0

100.0

F2 (%)

29.8

49.5

76.4

89.2

95.2

99.1

100.0

100.0
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The diverse solutions using the proposed strategy can pro‐
vide a more practical and accurate choice for decision mak‐
ers.
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