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Data-driven Robust State Estimation Through
Off-line Learning and On-line Matching
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Abstract——To overcome the shortcomings of model-driven
state estimation methods, this paper proposes a data-driven ro‐
bust state estimation (DDSE) method through off-line learning
and on-line matching. At the off-line learning stage, a linear re‐
gression equation is presented by clustering historical data from
supervisory control and data acquisition (SCADA), which pro‐
vides a guarantee for solving the over-learning problem of the
existing DDSE methods; then a novel robust state estimation
method that can be transformed into quadratic programming
(QP) models is proposed to obtain the mapping relationship be‐
tween the measurements and the state variables (MRBMS). The
proposed QP models can well solve the problem of collinearity
in historical data. Furthermore, the off-line learning stage is
greatly accelerated from three aspects including reducing histor‐
ical categories, constructing tree retrieval structure for known
topologies, and using sensitivity analysis when solving QP mod‐
els. At the on-line matching stage, by quickly matching the cur‐
rent snapshot with the historical ones, the corresponding
MRBMS can be obtained, and then the estimation values of the
state variables can be obtained. Simulations demonstrate that
the proposed DDSE method has obvious advantages in terms of
suppressing over-learning problems, dealing with collinearity
problems, robustness, and computation efficiency.

Index Terms——Robust state estimation, historical snapshot, off-
line learning, on-line matching, collinearity.

I. INTRODUCTION

SMART grids make the huge amounts of system status da‐
ta available; however, at the same time, the requirements

for the data reliability are higher than ever before [1], [2].
Achieving a comprehensive, real-time, and accurate percep‐
tion of smart grids is a prerequisite for the intelligent dis‐
patch and control [3]. Therefore, the performance of the

state estimation (SE) is crucial in the development of smart
grid [4]-[6]. The traditional SE methods require the establish‐
ment of measurement equations based on the node admit‐
tance matrix, and then construct a mathematical optimal
model to estimate the state variables [7]. These methods are
called model-driven SE (MDSE) methods.

The performance of MDSE methods has been greatly im‐
proved during the past fifty years. However, in the emerging
smart grid environments, MDSE methods have the following
shortcomings [8].

1) MDSE methods usually use only the current measure‐
ment snapshot while ignoring the massive historical data col‐
lected in smart grids. When the gross errors and the parame‐
ter errors exist simultaneously, the identification ability of
MDSE methods drops [9], [10].

2) The grid parameters themselves have a certain degree
of uncertainty [11]. The grid parameters stored in the data‐
base of power dispatching control centers may differ from
their actual values, which will affect the performance of the
real-time MDSE.

3) In smart grids, the power generation and loads often be‐
come intermittent and much more uncertain [12], and the to‐
pology also changes frequently, resulting in the significant
state shifts. This will cause the widely-used weighted least
square (WLS) to converge to a local optimal solution with‐
out any physical meaning [13] - [16], as WLS usually uses
the estimation result of the last snapshot as the initial guess.

4) Using large amounts of historical data, the malicious at‐
tackers are more likely to accurately know the state of pow‐
er grids and launch a malicious data injection attack that can‐
not be identified by MDSE [17], [18].

Recently, data-driven SE (DDSE) methods have been pro‐
posed to address the above problems. In [19], a data-driven
scalable approach is proposed to monitor distribution sys‐
tems by using artificial neural networks (ANNs) for its SE.
Reference [16] proposes an architecture to clean historical
data and conduct supervised learning, and then the nonlinear
relationship between the current measurements and the state
vector are estimated by using the historical data. The robust
data-driven Kalman filter approaches are used to estimate
the rotor angles and the angular velocities in [20], [21]. In
[22], a“PaToPaEM”framework is proposed to estimate the
topology and parameters simultaneously with the historical
data. However, in some power grids, the number of phasor
measurement unit (PMU) measurements may not be suffi‐
cient to meet the observability requirement of this method.
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In [23], [24], data-driven methods are used to enhance the
observability of SE for distribution networks. In [25], Gauss-
Newton method is provided with a good initial value
through a shallow neural network by using the historical or
simulation-derived data.

In summary, compared with MDSE methods, the general
DDSE methods include the following characteristics.

1) A large amount of historical data is stored in the histori‐
cal database of SE, and these data include measurement vec‐
tors and the corresponding estimation values of state vectors
given by historical MDSE methods. DDSE methods try to
use the massive historical data to overcome the shortcom‐
ings of MDSE methods.

2) DDSE methods do not need to know the measurement
equations of the current snapshot exactly like MDSE meth‐
ods, nor do they need to build an optimal estimation model
of the state vector of the current snapshot based on the mea‐
surement equations like MDSE methods.

3) DDSE methods generally need to use a large amount
of historical data or simulation data as the sample data, and
construct a learning model (such as a regression model, etc.)
to find the internal mapping relationship between the mea‐
surements and the state variables (MRBMS); and then the
corresponding MRBMS is used to calculate the state vector
of the current snapshot.

Although the development of DDSE methods has been in
steady progress, the over-learning problem and the low-learn‐
ing efficiency are the main shortcomings or even big obsta‐
cles [19], which can be attributed to the use of nonlinear
MRBMS. Considering the fact that so far, measurements pro‐
vided by the supervisory control and data acquisition (SCA‐
DA) system still account for the absolute majority, if a linear
MRBMS can be constructed based on historical data of SE
and SCADA, it is expected to solve the over-learning prob‐
lem of the existing DDSE methods, and the computation effi‐
ciency will be greatly improved. This motivates us to pro‐
pose a DDSE method based on the linear regression equa‐
tion (LRE).

In addition to the above general characteristics, the pro‐
posed DDSE method also has the following unique character‐
istics.

1) It includes off-line learning stage and on-line matching
stage. The former performs off-line analysis and processing
of historical data, while the latter performs on-line calcula‐
tion based on the current measurement snapshot.

2) The off-line learning stage only needs to run once, but
it can be used multiple times; whereas the on-line matching
stage requires online real-time periodic operation.

3) At the off-line learning stage, an LRE suitable for
DDSE is formed by clustering the historical data; then based
on this LRE, a novel robust estimation method is proposed
to filter the historical data to obtain the MRBMS.

4) At the on-line matching stage, by quickly matching the
current snapshot with the historical data (QMCH), the corre‐
sponding MRBMS can be obtained quickly, and then the es‐
timated state variables of the current snapshot can be ob‐
tained quickly based on this MRBMS.

The contributions of this paper mainly include four as‐
pects.

1) By clustering historical data of SE, an LRE is present‐
ed, which provides a guarantee for solving the over-learning
problem of the existing DDSE methods.

2) A novel robust estimation method that can be trans‐
formed into QP models is proposed to obtain the MRBMS at
the off-line learning stage, and the proposed QP-based meth‐
od can solve the collinearity problem in historical data.

3) The computational efficiency of the off-line learning
stage is sped up by the reduction of historical categories
(RHC), the establishment of a tree search structure for
known historical topologies, and the usage of sensitivity al‐
gorithm for QP models.

4) A method of QMCH is proposed, thereby greatly im‐
proving the computation efficiency of the on-line matching
stage, which is beneficial to the on-line application of the
proposed DDSE method.

The remainder of this paper is organized as follows. The
LRE for the DDSE method is presented in Section II. To ob‐
tain the MRBMS, Section III proposes a robust estimation
method that can be transformed into QP models based on
the proposed LRE. In Section IV, the off-line learning stage
is sped up from three aspects. In Section V, the on-line
matching stage is presented. The performance of the pro‐
posed DDSE method is tested in Section VI. Conclusions
are presented in Section VII.

II. FORMULATION OF LRE FOR DDSE METHOD

A. Review of Exact Linear Measurement Equations (ELMEs)
for SE

Reference [26] proposes that the nonlinear measurement
equations in traditional SE can be exactly linearized by a co‐
ordinate transformation on the measurements and the state
variables, resulting in the ELMEs as:

z͂ = Jy +ω (1)

where z͂ =[uiPiQiPijQijI 2
ij ]TÎRm is the auxiliary measure‐

ment vector, i and j are the node numbers, ui = v2
i is the

square of the voltage amplitude measurement, Pi and Qi are
the measurements of active and reactive injection power at
node i, respectively, Pij and Qij are the measurements of ac‐
tive and reactive power flow from bus i to bus j, I 2

ij is the
square of the line current magnitude measurement from bus
i to bus j, m is the total number of measurements; y =
[uiRlilj

Klilj
]ÎRn is the auxiliary state vector, n=N + 2b, N

and b are the numbers of nodes and branches, respectively,
Rlilj

= vli
vlj

cos θ lilj
, Klilj

= vli
vlj

sin θ lilj
, li and lj are the terminal

buses of the branch l, vli
and vlj

are the voltage magnitudes

of buses li and lj, respectively, θ li
and θ lj

are the voltage an‐

gles of buses li and lj, respectively, θ lilj
= θ li

- θ lj
is the angle

difference between buses li and lj; ω is the m-dimensional
vector of measurement error with variance R͂ (an m´m diag‐
onal matrix); and J ÎRm´ n is a constant matrix, in which all
elements are determined by the network topology and net‐
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work parameters. As for the details of (1), please refer to
[26]. Equation (1) illustrates that the auxiliary measurement
vector is an exact linear function of the auxiliary state vector.

B. Clustering of Historical Data from SCADA

1) Problem Description
The general modeling method of DDSE is shown in Fig.

1. As shown in Fig. 1, to construct a DDSE learning model,
a large number of historical snapshots stored in the historical
database of SE need to be used as the sample data. These
historical snapshots include the historical measurement vec‐
tors and the corresponding estimation values of historical
state vectors given by the historical MDSE, of which the his‐
torical measurement vectors are the sample input, and the es‐
timation values of historical state vectors are the sample out‐
put.

A very important observation that can be made from (1) is
that the constant Jacobian matrix of the ELMEs changes on‐
ly with respect to the changes in topological structure. There‐
fore, the clustering of the historical snapshots can be based
on their topologies, and those snapshots with the same topol‐
ogy should be in the same category. Since the above process
only needs to be performed off-line, we call it off-line histor‐
ical data clustering (OHDC).

Note that when the DDSE learning model is built, the
available historical data generally include the historical mea‐
surement vectors and the corresponding estimation values of
historical state vectors given by historical MDSE. The corre‐
sponding historical topology may be known or unknown,
and correspondingly, different OHDC methods need to be
constructed, which are presented in the following subsec‐
tions.
2) OHDC When Historical Topologies Are Known

In general, the vast majority (almost all) of different opera‐
tion modes of the studied power grid are stored in the histor‐
ical database of SE, i. e., the historical data include almost
all the possible topologies with a high probability. As a re‐
sult, when the historical topologies are known, it is theoreti‐
cally possible to directly cluster the historical data according
to the topologies. However, the drawbacks of direct cluster‐
ing according to the original topologies are as follows.

1) Since each topology leads to a category, the direct clus‐
tering method will result in too many categories caused by
too many different topologies for the studied power grid,
which will affect the computation efficiency.

2) A large number of historical snapshots are needed to
form the datasets for the corresponding topologies, which af‐

fects the practicability of the algorithm.
3) In extreme cases, it may be difficult to find multiple

historical snapshots with the same topology as the current
snapshot in the historical database of SE. To this end, a span‐
ning tree method is proposed to solve the above problems
through the following seven steps.

Step 1: for the studied distribution network, assuming that
all the branches are put into operation, the network has N
nodes and b edges (here, multiple edges connected in paral‐
lel between two nodes are treated as one edge). The number
of all spanning trees of this network is assumed to be T, the
value of which can be determined by Kirchhoff’s matrix
tree theorem (KMTT) and will be reduced in Section IV.

Step 2: for each spanning tree, create a corresponding
structure including three fields. The first field Clinks stores all
the links corresponding to this spanning tree (in ascending
order according to link numbers), which is the flag of the
corresponding spanning tree. The number of elements in
each Clinks is lc = b-N + 1. The second field Csnapshots stores the
multiple historical snapshots (the measurement vectors and
the corresponding estimation values of state vectors) with
the same spanning tree. And the third field Cmapping is used to
store the corresponding two MRBMSs, which will be intro‐
duced in detail below. When each spanning tree is formed,
the corresponding links are determined, so the first field
Clinks in the corresponding structure is easy to be determined.
The formation of the second field Csnapshots requires process‐
ing large numbers of historical snapshots, and the processing
method is given in Steps 3-7. The formation of the third
field Cmapping corresponding to each spanning tree will be giv‐
en in Section III.

Step 3: assuming that there are S historical snapshots avail‐
able, take out the ith (the initial value of i is 1) historical
snapshot, including the topology, the measurement vector,
and the estimation value of state vector.

Step 4: for the ith historical snapshot, select a spanning
tree in the distribution network. If the distribution network is
radial, the corresponding spanning tree is itself; if the distri‐
bution network is meshed, take one of its spanning trees that
has not been selected so far. Store the corresponding links of
this spanning tree into a collection (in ascending order ac‐
cording to link numbers) and mark it as Cimeas, and then
match Cimeas with all Clinks in Step 2. If Cimeas and one of Clinks

in Step 2 are identical, store the ith historical snapshot into
the corresponding collection Csnapshots in Step 2. The specific
storage method is illustrated as follows: ① take out all the
measurements and the corresponding estimation values of
the state vector in the ith historical snapshot; ② according to
the definition in (1), calculate the historical auxiliary mea‐
surement vector of all the measurements and the auxiliary
state vector associated with the spanning tree, then store
them into the corresponding field Csnapshots in Step 2.

Step 5: let i = i + 1. If i £ S, go to Step 4; else, go to Step 6.
Step 6: if all the second fields Csnapshots in Step 2 store at

least s historical snapshots (the value of s will be analyzed
and given in Section III), then go to Step 7; otherwise, take
new historical data and return to Step 3.

Step 7: for each spanning tree, there are s historical snap‐

Match MRBMS

Historical data Output historical
state vectors

Input historical
measurement

vectors
Historical MDSE

Off-line learning
model of DDSE Predictive value of

historical state vectors

Measurement vector
of current snapshot

On-line calculation
of DDSE

Estimation state vector
of current snapshot

Fig. 1. General modeling method of DDSE.
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shots in Csnapshots, which have the same unknown constant Ja‐
cobian matrix according to (1).

For each snapshot i (i = 12s), mark the historical auxil‐
iary measurement vectors in Csnapshots as z͂ iÎRm and the histor‐
ical auxiliary state vectors associated with the spanning tree
as y iÎRn, n=N + 2(N - 1)= 3N - 2 (for the spanning tree, b
is equal to N - 1). Further, the auxiliary measurement vec‐
tors and the auxiliary state vectors associated with the span‐
ning tree of all the s historical snapshots are aggregated into
the following matrix forms.

Y = [ y1 y2  ys ]ÎRn´ s (2)

Z = [ z͂1 z͂2  z͂s ]ÎRm´ s (3)

In most cases, multiple historical snapshots with the same
topology as the current snapshot are available in the histori‐
cal database of SE. These historical snapshots and the cur‐
rent snapshot have the same MRBMS. At this time, Z ÎRm´ s

and Y ÎRn´ s can be used as the sample input and the sam‐
ple output to construct the DDSE learning model, respective‐
ly. In this circumstance, all the measurements in each histori‐
cal measurement snapshot are used in the DDSE learning
model.

In a few extreme cases, historical snapshots with the same
topology as the current snapshot are not available in the his‐
torical database of SE. Therefore, there are no historical
snapshots with the same MRBMS as the current snapshot.
However, we can always find multiple historical snapshots
with the same spanning tree as the current snapshot; these
historical/current auxiliary measurement vectors associated
with the spanning tree have the same MRBMS. At this time,
the sample output is still Y ÎRn´ s, but the sample input of
the DDSE learning model should be historical auxiliary mea‐
surement vectors associated with the spanning tree, and the
matrix form is formulated as:

Zcut = [ z͂ -
1 z͂ -

2  z͂ -
s ] (4)

where z͂ -
i ÎRmcut (mcut £m) is the historical auxiliary measure‐

ment vector associated with the spanning tree for the ith snap‐
shot; and ZcutÎRmcut ´ s.

At the off-line learning stage, two MRBMSs should be
formed for each spanning tree. For the first MRBMS, the in‐
put and output of the corresponding DDSE learning model
are Z ÎRm´ s and Y ÎRn´ s, respectively, which are suitable
for most cases where the same topologies of historical snap‐
shots as the current snapshot are available. For the second
MRBMS, the input and output of the corresponding DDSE
learning model are ZcutÎRmcut ´ s and Y ÎRn´ s, respectively,
which are suitable for a few extreme cases where the same
topologies of historical snapshots as the current snapshot are
not available. For the convenience of expression, the follow‐
ing analysis only takes the formation of the first MRBMS as
an example. By using the same method, it is easy to get the
second MRBMS.

Note that these historical auxiliary measurement vectors
associated with the spanning tree for the second MRBMS in‐
clude the measurements of all node voltage amplitudes, pow‐
er flow measurements on the twigs of the spanning tree, and
injection power measurements of those nodes that are not

connected to any links.
When the historical topologies are known, the advantages

of the proposed OHDC method based on the spanning tree
include four aspects.

1) In theory, the number of spanning trees is less than that
of all possible original topologies of the studied power grid.
Therefore, the total number of modes that need to be pro‐
cessed at the off-line learning stage can be reduced by using
the spanning tree method.

2) Any operational topology of the studied power grid is
included in all T structures of the field Clinks, and the corre‐
sponding historical snapshots needed are stored in the field
Csnapshots, which lays the data foundation for DDSE.

3) The proposed spanning tree method has no special re‐
quirements for the distribution of historical measurements
and all the historical measurements can be used in the auxil‐
iary measurement vectors in most cases, whereas the number
of auxiliary state variables associated with the spanning tree
is n=N + 2(N - 1)= 3N - 2, which is smaller than the number
of auxiliary state variables corresponding to a mesh network
(N + 2b). The accuracy of the DDSE model is improved by
using the proposed spanning tree method.

4) It should be emphasized that the off-line learning stage
of the proposed DDSE method is to learn the MRBMSs
(i.e., the mapping matrix H) corresponding to all the differ‐
ent spanning trees when the historical topologies are known.
As a result, even if a new topology appears in the current
snapshot in extreme cases, that is to say, there are no histori‐
cal snapshots with the same topology as the current snap‐
shot, we can still find historical snapshots with the same
spanning tree as the current snapshot. These historical/cur‐
rent auxiliary measurement vectors associated with the span‐
ning tree have the same MRBMS, thus the proposed DDSE
method can still work.
3) OHDC When Historical Topologies Are Unknown

When the historical topologies are unknown, the corre‐
sponding topologies can only be inferred according to the
measurement vectors.

Taking out any two historical snapshots, the corresponding
auxiliary measurement vectors z͂1ÎRm and z͂2ÎRm can be
calculated according to (1). If z͂1 and z͂2 have a strong linear
correlation, they can be considered to have the same topolo‐
gy [16]. The Spearman’s rank correlation coefficient (RCC)
in statistics can be used to measure the correlation between
the two vectors. The RCC of z͂1 and z͂2 is calculated as:

RCC(z͂1z͂2)= 1-
6∑

i = 1

m

d 2
i

m(m2 - 1)
(5)

where di = rg(z͂1i)- rg(z͂2i) is the difference between the two
ranks of z͂1 and z͂2, rg(×) represents the consecutively ranking
number from small (starting from 1) to large, and z͂1i and z͂2i

are the ith elements of z͂1 and z͂2, respectively; and RCC(z͂1z͂2)
is the RCC of z͂1 and z͂2.

The criterion is that, if Rthreshold £RCC(z͂1z͂2)£ 1, then it is
considered that z͂1 and z͂2 have a strong linear correlation,
and their corresponding topologies can be considered the
same. Obviously, the choice of the threshold Rthreshold is very
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important. In a large number of simulation experiments, we
have found that even if Rthreshold is 0.9, the above method can
still be used to correctly identify the historical measurement
snapshots with the exact same topology. It should be pointed
out that the reason why we use RCC instead of Pearson cor‐
relation coefficient (PCC) is that RCC does not require the
auxiliary measurement vectors to conform to the normal dis‐
tribution, and RCC is robust when gross errors exist in his‐
torical data.

As an analogue to the method proposed in Section II-B,
all historical snapshots can be clustered according to the
RCC between any two historical snapshots. Here, the three
fields stored in the structure corresponding to each topologi‐
cal structure should be RCC, Csnapshots, and Cmapping. With suffi‐
cient historical snapshots, theoretically, all the topologies of
the studied power grid can be obtained. For each topology,
assuming that there are s snapshots, the aggregation method
of the auxiliary measurement vectors and the auxiliary state
vectors is the same as (2)-(4).

C. LREs for DDSE

1) Expression for MRBMS
According to (1), the true value of y must be a linear func‐

tion of z͂, so we have

y =Hz͂ + v (6)

where H ÎRn´m is the unknown mapping matrix from the
true value of z͂ to the true value of y; and vÎRn is the error
vector.

According to (6), Y must also be a linear function of Z.

Y =HZ +V (7)

where V ÎRn´ s is the error matrix.
According to (1) and (6), as long as the local topologies

of different snapshots are the same, these local topologies
have the same matrix J and matrix H. This is the reason
why different topologies sharing the same spanning tree can
be clustered into one category.

Obviously, the unknown matrix H corresponds to the third
field Cmapping in OHDC. If H can be estimated according to
(7) by the given Y and Z, the MRBMS can be obtained. Fur‐
ther, when the current measurement snapshot is given, by
matching the current snapshot with the historical snapshots,
we can get the MRBMS corresponding to the current snap‐
shot, and then get the estimation value of the state variables,
thereby constructing a DDSE method.
2) Number of Required Historical Snapshots

The task of the off-line learning stage of the proposed
DDSE method is to estimate H based on (7). Obviously, the
most direct method is to use the WLS method. At this time,
a unique estimation value of H can be obtained only when
the matrix Z T is column full rank. Therefore, for each histori‐
cal category, it is preferable to ensure that s (s³m) historical
snapshots are available when the WLS method is used,
which is obviously a necessary condition. The necessary and
sufficient condition is ensuring that s auxiliary measurement
vectors are linearly independent.

In practical systems, we may not be able to obtain so
many historical snapshots, and worse, there may be collinear‐

ity problems among different historical snapshots, so it is
not ideal to use the WLS method to estimate H directly.
This issue will be addressed in Section III.
3) Vectorization of Mapping Relationships

Considering that the variables to be solved in mathemati‐
cal planning are often vectors, two methods can be adopted
to transform the matrix H into a vector.

The first method is to stack the elements of the matrix
variable H into a vector, then we have

Γ =Φβ +Ξ (8)

where Γ = vec(Y T) and Ξ = vec(V T) are the column vectors
with F elements, F = s´ n, and vec(×) represents the vectoriza‐
tion of the matrix by the column vectors; β = vec(H T) is the
column vector to be solved with M elements, M =m´ n; and
Φ= diag      {Z TZ TZ T}

n

is the block diagonal matrix com‐

posed of n matrices Z T, ΦÎRF ´M.
The estimation value of β can be obtained based on (8) by

using the historical data, and then β can be compressed into
the matrix H. However, in this method, Φ is a diagonal ma‐
trix with a very large order, and is highly sparse, thus the
memory required in the estimation process might be very
large, which may affect the practicability of the algorithm.

The second method is to use the historical snapshots to
solve each column of H T. The regression equation for solv‐
ing the ith (i=1, 2,, n) column of H T is as follows.

Θ=Ψα+Ω (9)

where Ψ =Z TÎRs´m; and Θ=Y T
i ÎRs, α=H T

i ÎRm, and Ω=
V T

i ÎRs are the ith columns of Y T, H T, and V T, respectively.
Solving n models based on (9) by using the historical

snapshots could give each column of H T. Obviously, the
computer memory required to solve each model is very
small. Although this method needs to solve (9) n times, the
total off-line calculation takes much less time than the first
method, which supports the practical application of the algo‐
rithm. Equation (8) or (9) is the LRE for the proposed
DDSE method.

Compared with the existing nonlinear regression equations
and the approximate LREs of existing DDSE methods, the
establishment of the LRE in this paper avoids the over-fit‐
ting and ill-conditioned problems in the existing DDSE meth‐
ods, and lays a foundation for the establishment of new
DDSE methods with good robustness.

III. OFF-LINE LEARNING OF MRBMS BY SOLVING QP MODEL

The most important task at the off-line learning stage of
the proposed DDSE method is to estimate H based on the
LRE, which will be given in this section.

A. Motivation

For each Cmapping, it is necessary to estimate the value of
α=H T

i (i = 12n) based on (9). An intuitive idea is using
WLS, which is very simple in principle. When the noise con‐
forms to the normal distribution, the WLS method is the op‐
timal estimation; however, it is not a robust method and can‐
not handle ill-conditioned situations (e.g., there is a collinear‐
ity problem in the historical snapshots).
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Considering that the least absolute value (LAV) estimation
has good robustness [13], and the ridge regression (RR) has
good adaptability to the ill-conditioned situations, a new ro‐
bust estimation method is proposed by combing linear least
squares (LS), LAV, and RR. In this paper, we call this new
robust method the LSAVRR method.

B. LSAVRR Model for Estimating MRBMSs

Based on (9), the estimation value of α, denoted as α̂, can
be obtained by solving the following LSAVRR model.

{min
αt ∑

i = 1

s

( )t 2
i + η1 || ti + η2∑

j = 1

m

α2
j

s.t. ti =Θ i -Ψ iα i = 12s
(10)

where Θ i is the ith element of Θ; Ψ i is the ith row of Ψ;
η1 ³ 0 and η2 ³ 0 are tuning parameters; and t ÎRs is residual
vector, ti is the ith element of t.

When both η1 and η2 are equal to 0, model (10) is the LS
method; when η1 is equal to 0, model (10) is the RR meth‐
od; when η1 is sufficiently large, model (10) approaches the
LAV method. Based on the extensive simulations, we recom‐
mend taking η1 = 1 and η2 = 1´ 10-6, respectively. Note that
the proposed model (10) is different from the elastic net re‐
gression method [27].

C. Equivalent Model of LSAVRR and Solution Method

1) Equivalent Model of LSAVRR
Note that the objective function of the proposed model

(10) is non-differentiable, so model (10) cannot be solved di‐
rectly using the gradient-based method. According to the
same method in [14], model (10) can be rewritten as:

ì

í

î

ïï
ïï

min
αuv∑

i = 1

s
é
ë

ù
û( )ui + vi

2

+ η1 ( )ui + vi + η2∑
j = 1

m

α2
j

s.t. Θ-Ψα- u+ v = 0
u³ 0v ³ 0

(11)

where uÎRs and vÎRs are two auxiliary vectors, and ui

and vi are the ith elements of u and v, respectively.
2) Solution Method

Model (11) can be further transformed into a standard
form of QP model as:

ì

í

î

ïï
ïï

X̂(α̂)= arg min ( 1
2

X TQX +X Tc)
s.t. AX =Θ

CX ³ 0

(12)

where X =[u1v1u2v2usvsα1α2αm]T is a column
vector with 2s+m elements; X̂(α̂) is the estimation value of
X; Q= diag(     q1q1q1

s

q2) is the semi-definite block diago‐

nal matrix, q1 =
é
ë
ê

ù
û
ú

2 2
2 2

, q2 represents the identity matrix (or‐

der is m) multiplied by 2η2; cT =[12s0m], 12s is the 2s-dimen‐
sional row vector, whose elements are all η1, 0m is the 0-di‐
mensional row vector, whose elements are all 0; A i =[D iΨ i]
is the ith row of the matrix A with s rows and 2s+m col‐
umns, D i is a row vector with 2s elements, of which the (2i -
1)th element is 1, the (2i)th element is -1, other elements are

all 0; C = [ I2s0 ] is a matrix with 2s rows and 2s+m col‐
umns, I2s is the identity matrix (order is 2s), the other ele‐
ments in C are all 0.

The standard QP model (12) can be solved by mature
commercial software, such as GROUBI to obtain the estima‐
tion value α̂. Z T and Y T

i (i = 12n) are respectively intro‐
duced into model (11), then the estimation values of each
column of H can be obtained, thereby obtaining the
MRBMS corresponding to each historical category. That is,
the third field Cmapping is obtained.

IV. SPEEDING UP OFF-LINE LEARNING STAGE OF DDSE
METHOD

The complete off-line learning stage of the proposed
DDSE method has been given above. Further research re‐
veals that the off-line learning stage can be accelerated
through the following three aspects.

A. RHC

1) When Historical Topologies Are Known
As shown in Section II, when the historical topologies are

known, all possible spanning trees of the studied power net‐
work have been stored in T fields Clinks, so the spanning tree
of the current snapshot needs to be matched with T fields
Clinks. This may cause the following problems.

1) Although some topologies exist in theory, the probabili‐
ty that they appear in the actual operation of the power net‐
work is very low. Considering all possible spanning trees
will cause the value of T too large (for example, T is 3909
for IEEE 14-bus system), leading to a very heavy computa‐
tional load for off-line learning.

2) Likewise, it will also cause too much calculation by
considering all spanning trees at the on-line matching stage.

To this end, we propose a specific method for the RHC:
① calculate the probability of each spanning tree in the actu‐
al operation of the power grid; ② consider only those span‐
ning trees with a relatively high probability of occurrence,
so the value of T can be greatly reduced, and the reduced
value is set to be Tcut.
2) When Historical Topologies Are Unknown

When the historical topologies are unknown, we propose
to consider only Tcut categories by the RHC, i. e., the RCC
values of all categories from large to small are sorted, and
then only the first Tcut categories are retained.

B. Tree Retrieval Structure for Known Historical Topologies

When historical topologies are known, for Tcut spanning
trees, a tree retrieval structure is established based on the fol‐
lowing steps to improve the efficiency of the on-line match‐
ing stage.

Step 1: for each Clinks, establish a tree retrieval structure by
taking lc = b-N + 1 elements (link numbers) in Clinks as the lc

nodes, where the smallest number in Clinks is the root node,
and each node in the tree structure (TS) corresponds to a
link number in Clinks. Since the elements in Clinks have been
arranged in the ascending order, the child node is always
larger than its parent node. At this time, each node has only
one child node (except for the leaf node); the number of lay‐
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ers in the TS is lc. A total of Tcut TSs can be obtained corre‐
sponding to all the Clinks; let i = 1.

Step 2: if there are TSs with the same value of the ith lay‐
ers, the ith nodes of these TSs are merged into one node and
the number of TSs is reduced.

Step 3: i = i + 1; if i £ lc, go to Step 2; otherwise, go to
Step 4.

Step 4: denote Tmerge as the number of TSs; let j = 1.
Step 5: for the jth TS, let k = 2.
Step 6: sort the kth layer of the jth TS in the ascending or‐

der according to the value of the kth node.
Step 7: k = k + 1; if k £ lc, go to Step 6; otherwise, go to

Step 8.
Step 8: j = j + 1; if j £ Tmerge, go to Step 5; otherwise, go to

Step 9.
Step 9: end.

C. Sensitivity Algorithm for QP Models

To get MRBMSs, the estimation values of the columns of
H can be obtained by solving QP models n times. It is appar‐
ent that only the values of Θ=Y T

i are different in these n QP
models; therefore, the sensitivity algorithm for QP models in
[28] can be used to improve the efficiency of obtaining H.
By adopting the above sensitivity algorithm, the calculation
efficiency of the off-line learning stage can be further im‐
proved.

V. ON-LINE MATCHING STAGE OF DDSE METHOD

The task of the on-line matching stage of the proposed
DDSE method is the QMCH to obtain the corresponding H
matrix. That is to say, if the current snapshot and historical
snapshots have the same spanning tree (when historical to‐
pologies are known) or the same original topology (when
historical topologies are unknown), then the current snapshot
and historical snapshots have the same H matrix; and fur‐
ther, the original state variables of the current snapshot can
be estimated based on H.

A. On-line Matching When Current Topology Is Known

When the current topology is known, the method of
QMCH is as follows.

Step 1: choose a spanning tree arbitrarily in the network
of the current snapshot; store all links in a collection Cc with
an ascending order by link numbers. Note that the open or
overhauled branches in the current snapshot should also be
considered as links. When selecting the spanning tree, avoid
selecting branches that appear in one tree retrieval structure
as twigs at the same time.

Step 2: take the first element in Cc, and denote it as Cc (1);
find the TS whose root node equals Cc (1), and denote it as
TSc.

Step 3: according to the depth-first search (DFS) algo‐
rithm, find a path from the root node to the leaf node in TSc,
and the nodes on this path need to be the same as all the ele‐
ments in Cc. The Clinks corresponding to this path stores the
historical topology that matches the current topology. If the
original topologies and the spanning tree of the historical
snapshots are the same as those of the current snapshot, the

first MRBMS in the corresponding Cmapping stores the target
matrix H; if only the spanning tree of the historical snap‐
shots is the same as that of the current snapshot, and their
original topologies are not the same, the second MRBMS in
the corresponding Cmapping stores the target matrix H.

B. On-line Matching When Current Topology Is Unknown

When the current topology is unknown, the auxiliary mea‐
surement vector of the current snapshot can be used to
match historical snapshots based on (5). Once the RCC be‐
tween the historical measurement vectors and the current
measurement vector satisfies 0.9£RCC £ 1, the correspond‐
ing MRBMS, i.e., the target matrix H, is obtained.

C. Estimation Value of State Variables

After H is obtained, the estimation value of the auxiliary
state vector for the current snapshot, ŷc, can be obtained by:

ŷc =Hz͂c (13)

where z͂c is the auxiliary measurement vector of the current
snapshot.

If the current topology is unknown, the power flow can
be further obtained and the estimation process ends; if the
current topology is known, the estimation value of the origi‐
nal state variables x̂c (the voltage amplitudes and angles of
all nodes) of the current snapshot can be further obtained
[26], [29] - [31]. The structural framework of the proposed
DDSE method is shown in Fig. 2.

The advantages of the proposed DDSE method are as fol‐
lows: ① the MRBMSs are obtained based on the LRE,
which avoids the over-learning problems; ② the proposed
LSAVRR method can well solve the problem of collinearity
in historical data, and it also has good robustness; ③ the
proposed DDSE method does not require nonlinear itera‐
tions, and therefore does not require an initial guess, so that
the proposed method has a strong adaptability to the uncer‐
tainty of power generation and load in smart grids; ④ the
proposed DDSE method does not need to know any network
parameters, so the uncertainty of network parameters does
not have any impacts on the proposed method; meanwhile,
the problems of convergence and leverage gross errors
caused by the network parameters also have no effects on
the proposed method; ⑤ the proposed DDSE method can be
implemented with both known and unknown topologies, so
it is adaptive to the frequent changes in the topology of
smart grids; ⑥ in extreme cases, it may be difficult to find
multiple historical snapshots with the same topology as the
current snapshot in the historical database of SE, but the pro‐
posed DDSE method can still work by using the spanning
tree method.

VI. CASE STUDIES

This section tests the performance of the proposed DDSE
method on IEEE benchmark systems. In the tests, the load
used in the simulation gradually changes from 90% to 110%
of the base case. One measurement snapshot is generated ev‐
ery 10 s to mimic the sampling period of SCADA and
MDSE runs every 3 minutes to generate the sample data.
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The generation method of historical sample data is as fol‐
lows: first calculate the power flow, and then superimpose
the normal distribution random errors (the standard deviation
is 10-3) on the result of the power flow to simulate the mea‐
surements. For the historical SE, the widely-used WLS meth‐
od is used to obtain estimation values of the state variables,
and the largest normal residual (LNR) method is used to
identify gross errors. The generated historical data are stored
for testing. The tests are performed on an Intel® CoreTM i5 PC,
with 2.20 GHz processor and 8 GB RAM.

A. Tests on IEEE 4-bus System

The IEEE 4-bus system is firstly used to show the calcula‐
tion process of the proposed DDSE method in detail.
1) When Current Topology Is Known

The topology and measurement configuration of the IEEE
4-bus system are shown in Fig. 3, where 1-4 represent the
node numbers and ①-⑤ represent the branch numbers. The
numbers of nodes, branches and links are N = 4, b = 5 and
lc = 2, respectively. Here it is assumed that only the measure‐
ment vectors and estimation values of state vectors corre‐
sponding to this topology are available in the historical data‐
base of SE.

1) Off-line learning stage
According to the KMTT, T = 8 can be obtained. According

to the proposed OHDC method, all the Clinks can be obtained
as: {③ , ⑤}, {③ , ④},{① , ③}, {① , ④},{① , ⑤}, {② ,
③}, {②, ④}, and {②, ⑤}. The corresponding tree retriev‐

al structures before the RHC are shown as Fig. 4(a). Accord‐
ing to the RHC method, there are three categories (Tcut = 3)
for the most common topologies of this grid, and the corre‐
sponding Clinks are {③, ④}, {①, ③}, and {②, ④}. The cor‐
responding tree retrieval structures after the RHC are shown
as Fig. 4(b), and they correspond to three spanning trees,
and the three Cmapping (i. e., six H matrices) corresponding to
these three spanning trees need to be solved based on the
historical data. Here, we take the number of historical snap‐
shots as 12, i.e., s = 12.

For the first MRBMS, the numbers of auxiliary measure‐
ments and auxiliary state variables in this test system are m =
12 and n = 10, respectively. Then, the first three H ÎR10´ 12

matrices corresponding to Fig. 4(b) can be obtained based
on the LSAVRR method by solving (12).

For the second MRBMS, the number of auxiliary state
variables in this test system are n = 10; whereas the number
of auxiliary measurements corresponding to TS1, TS2, and
TS3 in Fig. 4(b) are m = 6, m = 8, and m = 8, respectively.
Therefore, the three mapping matrixes corresponding to TS1,
TS2, and TS3 in Fig. 4(b) are H ÎR10´ 6, H ÎR10´ 8, and
H ÎR10´ 8, respectively. Then, the second three mapping ma‐
trices corresponding to Fig. 4(b) can also be obtained based
on the LSAVRR method by solving (12).

2) On-line matching stage
Suppose there are two topologies of the current snapshot,

as shown in Fig. 3 (Topology A) and Fig. 5 (Topology B),
respectively. We will show how to use the on-line matching
stage of the proposed DDSE method to estimate the state
vector.
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When the topology of the current snapshot is the same as
Fig. 3 (Topology A), select a spanning tree arbitrary, sup‐
pose the twigs of the selected spanning tree are ②, ④, and
⑤ , and the corresponding Cc is {① , ③}. After quickly
matching with the tree retrieval structures in Fig. 4(b), it can
be found that it corresponds to TS1, and then the first
H ÎR10´ 12 matrix corresponding to TS1 is the target matrix.
All the 12 measurements of the current snapshot can be used
at the on-line matching stage. The estimation values of the
original state variables (voltage amplitudes and phase angles
of all nodes) of the current snapshot can be further obtained
easily, as shown in Table I. For comparison, Table I also
gives the true values of the original state variables as well as
the estimation values given by WLS. It can be seen from Ta‐
ble I that the estimation values obtained by the proposed
DDSE method is in good agreement with the true values,
thus proving the correctness of the proposed DDSE method.

When the topology of the current snapshot is the same as
Fig. 5 (Topology B), there is no historical snapshot with the
same topology as the current snapshot. According to the pro‐
posed QMCH method, a spanning tree can be selected for
the current snapshot. Suppose the twigs of the selected span‐
ning tree are ① , ② , and ⑤ , and the corresponding Cc is
{③, ④}. After quickly matching with the tree retrieval struc‐
tures in Fig. 4(b), it can be found that it corresponds to TS3,
and then the second H ÎR10´ 8 matrix corresponding to TS3

is the target matrix. The estimation values of the auxiliary
state variables of the current snapshot (denoted as ŷc) are giv‐
en by:

ŷc =Hz͂cut (14)

where z͂cut =[u1 u4 P12 P43 Q12 Q43 P1 Q1 ]T includes the
auxiliary measurements associated with the selected span‐
ning tree.

Since the twigs of the selected spanning tree (①, ②, and
⑤) do not include ④, P4 and Q4 are not associated with this
spanning tree, and therefore, P4 and Q4 are not included
in z͂cut.

As shown in Table II, the estimation values of the original
state variables of the current snapshot can be further ob‐
tained. For comparison, Table II also gives the true values of
the original state variables as well as and the estimation val‐
ues given by WLS. It can be observed from Table II that
even if there is no historical snapshot with the same topolo‐
gy as the current snapshot, the proposed DDSE method can
still obtain high-precision SE results. Note that for this case,
the existing DDSE methods [16], [19] cannot work.

2) When Current Topology Is Unknown
When the historical topologies of the IEEE 4-bus system

are unknown, the performance of the proposed DDSE meth‐
od is also tested. It is assumed that the measurement vectors
and the estimation values of state vectors given by historical
MDSE in the historical database of SE correspond to the
three topological operation modes of the IEEE 4-bus system.
In the test, 1000 historical measurement snapshots are taken
out. The RCCs are calculated and the results show that these
historical measurement snapshots can be clustered into 3 cat‐
egories, and the intra-cluster RCC values for these 3 catego‐
ries are all between 0.9975 and 1; while the average values
of inter-cluster RCC are less than 0.8.

Take ten of the historical auxiliary measurement vectors,
and the RCCs among them are shown in Fig. 6. It can be ob‐
served from Fig. 6 that ten historical measurement snapshots
can be clustered into 3 categories, i.e., z͂1, z͂7, z͂8, and z͂10 be‐
long to the first category; z͂2, z͂4, and z͂9 belong to the second
category; and z͂3, z͂5, and z͂6 belong to the third category. The
identification results are completely consistent with the actu‐
al topologies, thereby proving the correctness of the cluster‐
ing using RCC. After using the RCC for on-line matching,
the estimation values of the auxiliary state variables and the
power flow of the current snapshot can be further obtained,
and the error between the estimation results given by the pro‐
posed DDSE method and those given by WLS is less than
10-4, thereby proving the correctness of the proposed DDSE
method when the historical topologies are unknown.

B. Tests on Other IEEE Benchmark Systems

1) When Historical Topologies Are Known
1) The number of spanning trees before and after RHC
Before and after the RHC, the number of spanning trees

in each IEEE benchmark system is shown in Table III. It
can be known from Table III that, before the RHC, although
the spanning trees can include all possible topological opera‐
tion states of the power grid, the number of spanning trees
is too large, which substantially increases the time of off-
line learning and on-line matching. After the RHC, the most

3 4

1 2�

� �

G

G
�

Voltage amplitude measurement; Injection power measurement
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Fig. 5. Topology B of current snapshot.

TABLE I
TURE AND ESTIMATION VALUES OF STATE VARIABLES FOR TOPOLOGY A

Node

1

2

3

4

True value of state
variable

1Ð0

0.9797Ð- 0.0223

0.9739Ð- 0.0292

1.0200Ð0.0245

Estimation value of state variable

WLS

1Ð0

0.9797Ð- 0.0223

0.9739Ð- 0.0292

1.0200Ð0.0245

Proposed DDSE

1Ð0

0.9797Ð- 0.0223

0.9739Ð- 0.0292

1.0200Ð0.0245

TABLE II
TRUE AND ESTIMATION VALUES OF STATE VARIABLES FOR TOPOLOGY B

Node

1

2

3

4

True value of state
variables

1Ð0

0.9824Ð- 0.0170

0.9690Ð- 0.0327

1.0200Ð0.0266

Estimation value of state variable

WLS

1Ð0

0.9824Ð- 0.0170

0.9690Ð- 0.0327

1.0200Ð0.0266

Proposed DDSE

1Ð0

0.9823Ð- 0.0171

0.9689Ð- 0.0328

1.0199Ð0.0266
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common topological operation modes of the power grid is re‐
tained, which can greatly improve the computation efficien‐
cy of the proposed DDSE method.

2) Estimation accuracy with different numbers of histori‐
cal snapshots

Obviously, the number of historical snapshots s will affect
the estimation accuracy of the matrix H at the off-line learn‐
ing stage, which, in turn, will affect the estimation accuracy
of the proposed DDSE method.

To test the influence of the number of historical snapshots
on the estimation accuracy of the proposed DDSE method,
we denote Ratio= s/m. Here, the measurement redundancy is
taken to be 2.5 for each test system. With different Ratio
(from 0.1 to 1.2), the mean absolute error of voltage magni‐
tude (denoted as |dv|m) and the mean absolute error of phase
angle (denoted as |dθ|m) between the true values and the esti‐
mation values of the proposed DDSE method are given in
Figs. 7 and 8, respectively. It can be observed from Figs. 7
and 8 that as Ratio increases, both |dv|m and |dθ|m gradually
decrease; when Ratio= 1, both |dv|m and |dθ|m obtained by
the proposed DDSE method are smaller than 10-4 for all the

test systems, thereby proving the correctness of the proposed
DDSE method. Note that even when s is less than m (i. e.,
Ratio < 1), the estimation accuracy obtained by the proposed
DDSE method is still acceptable; whereas at this time, the
insufficient observability prevents from using WLS for esti‐
mating H, which demonstrates the good performance of the
proposed LSAVRR method.

3) Estimation accuracy with different measurement redun‐
dancy

As we all know, the measurement redundancy affects the
estimation accuracy of SE.

To test the influence of the measurement redundancy on
the estimation accuracy of the proposed DDSE method, let
s = m. With different measurement redundancy from 1.5 to 3,
|dv|m and |dθ|m between the true values and the estimation
values of the proposed DDSE method are given in Figs. 9
and 10, respectively. It can be seen from Figs. 9 and 10 that
as the measurement redundancy increases, both |dv|m and
|dθ|m gradually decrease; when the measurement redundancy
is larger than 2, both |dv|m and |dθ|m obtained by the pro‐
posed DDSE method are smaller than 10-4 for all the test
systems. The above test results prove the practicability of
the proposed DDSE method considering the measurement re‐
dundancy of the actual systems.
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Fig. 6. RCC correlation matrix of ten historical measurement snapshots.

TABLE III
NUMBER OF SPANNING TREES OF EACH IEEE BENCHMARK SYSTEM

BEFORE AND AFTER RHC

System

IEEE 9-bus

IEEE 14-bus

IEEE 30-bus

IEEE 39-bus

IEEE 57-bus

IEEE 118-bus

IEEE 300-bus

IEEE 2746-bus

Number of spanning trees

Before RHC

6

3909

7824000

421380

61946380490028

9223372036854775807

1020

1030

After RHC

3

5

10

10

12

20

25

100

0.4
0
Ratio

0.8 914

Number of buses
3039571.2 1183002746

10-4

|d
v| m

10-5

10-6

10-7

Fig. 7. |dv|m with different Ratio for each IEEE benchmark system.
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Fig. 8. |dθ|m with different Ratio for each IEEE benchmark system.
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Fig. 9. |dv|m with different redundancy for each IEEE benchmark system.
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4) Comparison of estimation accuracy with other SE meth‐
ods

When s is equal to m (Ratio= 1) and the measurement re‐
dundancy is 2.5, the estimation accuracies of WLS, the exist‐
ing DDSE method in [16], and the proposed DDSE method
are compared in Table IV. As can be observed from Table
IV, among the above three SE methods, the estimation accu‐
racy of WLS is the highest, followed by the proposed DDSE
method. The estimation accuracy of the proposed DDSE
method can meet the requirements of engineering applica‐
tions.

5) Robustness of proposed DDSE method
The robustness of the proposed DDSE method is also test‐

ed. For each IEEE benchmark system, the percentage of bad
data (PBD) from 0% to 10% in each snapshot is randomly
selected, and then added with 10% relative error. At this
time, the number of the selected historical measurement
snapshots meets s = 1.1m (Ratio= 1.1). In 100 tests, the
changes of the average values of |dv|m and |dθ|m with the
changes of PBD obtained by the proposed DDSE method
are shown in Figs. 11 and 12, respectively. As can be ob‐
served from Figs. 11 and 12, with the gradual increase of
PBD, the estimation accuracy of the proposed DDSE meth‐
od decreases slowly; when the PBD in historical data is as
high as 10%, the proposed DDSE method still suppresses
the gross errors well and obtains highly accurate estimation
results.

6) Computation efficiency test
The computation efficiency of the on-line matching stage

of the proposed DDSE method directly determines its engi‐
neering usability.

In order to measure the efficiency of the proposed DDSE
method, the on-line calculation time of the proposed DDSE
method is compared with that of WLS, as shown in Fig. 13.
It can be observed from Fig. 13 that the on-line computation
efficiency of the proposed DDSE method is much higher
than that of WLS, so the proposed DDSE method is very
suitable for online applications of large-scale systems.

2) When Historical Topologies Are Unknown

For the IEEE benchmark systems, when historical topolo‐
gies are unknown, a large number of historical measurement
snapshots are clustered based on the RCC. The clustering re‐
sults show that the historical measurement snapshots have
obvious clustering phenomena, and most of the measurement
snapshots belong to the most common topological catego‐
ries. And even if there are gross errors in the current snap‐
shot, the matching method based on the proposed RCC also
achieves the correct matching results. This proves the ratio‐
nality of clustering using the RCC and the necessity of
RHC. The final estimation error is less than 10-4, which
proves the correctness of the proposed DDSE method. Due
to page limitations, the specific results of tests are omitted
here.
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Fig. 10. |dθ|m with different redundancy for each IEEE benchmark system.

TABLE IV
COMPARISON OF ESTIMATION ACCURACY WITH DIFFERENT SE METHODS

System

IEEE 9-bus

IEEE 14-bus

IEEE 30-bus

IEEE 39-bus

IEEE 57-bus

IEEE 118-bus

IEEE 300-bus

IEEE 2746-bus

WLS

|dv|m

2×10-8

2×10-8

4×10-8

7×10-8

6×10-8

4×10-8

1×10-8

1×10-8

|dθ|m

1×10-8

1×10-8

1×10-8

2×10-8

6×10-8

2×10-7

3×10-8

1×10-8

DDSE in [16]

|dv|m

4×10-5

3×10-5

7×10-5

9×10-5

9×10-5

6×10-5

2×10-6

1×10-6

|dθ|m

1×10-5

6×10-5

9×10-5

9×10-5

8×10-5

4×10-5

4×10-6

2×10-6

Proposed DDSE

|dv|m

9×10-6

4×10-6

3×10-5

5×10-5

6×10-5

3×10-6

2×10-7

1×10-7

|dθ|m

3×10-5

1×10-5

3×10-5

6×10-5

4×10-5

2×10-6

6×10-7

4×10-7
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Fig. 11. |dv|m with different PBD for each IEEE benchmark system.
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VII. CONCLUSION

Aiming at resolving the shortcomings of the traditional
MDSE methods, this paper proposes a DDSE method which
includes off-line learning stage and on-line matching stage.
The off-line learning stage targets to cluster historical data
and develop the linear MRBMS; while the on-line matching
stage obtains the current MRBMS by QMCH, and further
quickly obtains the estimation values of the state variables
of the current snapshot. The proposed DDSE method does
not need to know the parameters of the network, and has
good robustness and very high computation efficiency, mak‐
ing it very suitable for the on-line applications of large-scale
systems.

In low-voltage distribution networks, the number of mea‐
surements is very limited (often not enough to ensure observ‐
ability), and the topology information is difficult to obtain
accurately. Next, we will study the DDSE method for low-
voltage distribution networks. Also, the proposed DDSE
method can be extended to the integrated energy systems
(IESs) so as to realize the comprehensive, real-time and ac‐
curate perception of IES in uncertainty circumstances.
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