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Power Factor Estimation of Distributed Energy
Resources Using Voltage Magnitude Measurements

Samuel Talkington, Santiago Grijalva, and Matthew J. Reno

Abstract——This paper presents a new method for the estima‐
tion of the injection state and power factor of distributed ener‐
gy resources (DERs) using voltage magnitude measurements on‐
ly. A physics-based linear model is used to develop estimation
heuristics for net injections of real and reactive power at a set
of buses under study, allowing a distribution engineer to form a
robust estimate for the operating state and the power factor of
the DER at those buses. The method demonstrates and exploits
a mathematical distinction between the voltage sensitivity signa‐
tures of real and reactive power injections for a fixed power sys‐
tem model. Case studies on various test feeders for a model of
the distribution circuit and statistical analyses are presented to
demonstrate the validity of the estimation method. The results
of this paper can be used to improve the limited information
about inverter parameters and operating state during renew‐
able planning, which helps mitigate the uncertainty inherent in
their integration.

Index Terms——Decentralized power system control, detection
and estimation, power factor, sparse approximation.

I. INTRODUCTION

THE success of the ongoing global energy transition is
contingent upon the development of accurate models of

distributed energy resources (DERs) to be used for the plan‐
ning and operation of power systems. The rapid deployment
of these DERs consequently leads to the cases of limited da‐
ta availability and uncertainty regarding unobservable im‐

pacts to the distribution system.
One of the remaining limiting factors for high penetra‐

tions of DERs is the risk of unforeseen violations of engi‐
neering constraints due to unacceptable voltage rises from
volatile power injections inherent in DERs. Direct curtail‐
ment is typically one of the solutions to this issue. However,
this is unfavorable due to the loss of clean generation and
revenue for the DER owner.

Advanced inverter technologies have emerged as central
elements of the solution to these issues, and research works
on their impact on distribution networks have appeared swift‐
ly in [1]-[4]. Additionally, the IEEE 1547-2018 standard up‐
dates now require all inverters to have reactive power and
voltage regulation capabilities [5]. However, utilities and in‐
dependent system operators (ISOs) may have limited infor‐
mation about these inverters, and therefore may be unable to
accurately predict their effects on a distribution network. Fre‐
quently, these organizations may only have access to voltage
measurements from metering devices and may have limited
information about the overall operating conditions of invert‐
er-based resources, including the power factor, curtailment,
and voltage control parameters of the system. If utilities
have access to this information, it may be incorrect or out-of-
date due to the changes over time [6]. The inverters used in
grid-connected photovoltaic (PV) systems have the capabili‐
ty to curtail active power output as well as inject and absorb
reactive power, according to the behavior defined by a con‐
trol curve. Frequently, non-unity power factor control set‐
tings are applied to inverter installations to reduce voltage
problems that may be caused by the DER.

The primary contributions of this paper are the solutions
to the inverse problem of estimating an unknown fixed pow‐
er factor control setting for a DER. The methods presented
here have remarkably low data input requirements, in that
only voltage magnitude measurements are required. Al‐
though the deployment of advanced metering infrastructure
(AMI) continues to expand, most utilities only have access
to net energy measurements and do not have access to reac‐
tive power measurements, making the calculation of a DER
power factor setting impossible. Through the methods devel‐
oped in this paper, we show that it is possible to recover this
setting with highly incomplete measurement data. This is
achieved through a physics-based linearization of the AC
power flow manifold, through which we demonstrate a nov‐
el result that the voltage magnitude sensitivities to real and
reactive power injections are linearly independent for a fixed
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distribution network model. The result allows for a simulta‐
neous estimation of the real and reactive power injection
states at a set of DER interconnection points under study,
which is used to construct a robust estimate for the power
factor.

Furthermore, we enhance the predictive power and appli‐
cability of the method by deriving both a regularized regres‐
sion model and a sparse approximation model, recasting the
estimation as convex optimization problems. These reformu‐
lations improve the robustness of the estimation method in
cases of a poor or inaccurate distribution system model or
user uncertainty of the DER’s location, respectively.

Ⅱ. BACKGROUND

The theorem in [7] proves that for a fixed power network
with S slack buses, N PQ buses, and nodal admittance ma‐
trix Y, the complex voltage sensitivity coefficients at each
bus iÎN to real and reactive power injections PlQl at each
bus lÎN are unique solutions to the following two systems
of differential equations:

1{i = l}=
¶V̄i

¶Pl
∑

jÎS⋃N
Yij V̄

*
j + V̄i∑

jÎN
Yij

¶V̄ *
j

¶Pl

(1)

-j1{i = l}=
¶V̄i

¶Ql
∑

jÎS⋃N
Y *

ijV̄
*

j + V̄i∑
jÎN

Y *
ij

¶V̄ *
j

¶Ql

(2)

where V̄i and V̄j are the complex nodal voltages; and V̄ *
i and

V̄ *
j are the complex conjugate nodal voltages.
These equations and the research work in [7] use complex

voltage values, but this information is not available for a dis‐
tribution system without access to phasor measurement unit
(PMU) data. Our work exploits the use of voltage magnitude
sensitivities without angle measurements, which are more
common in realistic sensor data.

Researchers have taken the interest in data-driven model‐
ing of advanced inverters, but little work has been done in
terms of the estimation of their operational parameters and
behaviors. Reference [2] develops both linear and nonlinear
state estimators for voltage magnitudes of the point of com‐
mon coupling (PCC) using a Kalman filter. Intermittent mea‐
surements and packet loss are considered as a source of mea‐
surement error, but their linear model relies on complete
knowledge of the power flow Jacobian, generation, and load
profiles. In practice, the availability of such data may be
challenging. Reference [8] attempts a similar problem using
limited load and PV profile data to form representative sce‐
narios [8].

Research works such as in [4] use a variation of the opti‐
mal power flow to estimate optimal control settings for ad‐
vanced inverters, while [9] and [10] develop a decentralized
control approach to estimate optimal smart inverter settings
based on volt-var, volt-watt, or power factor control. The
feeder is analyzed using time-series simulation and various
inverter control parameters, ranking their optimality based
on the number of violations of voltage constraints.

An interest has grown in analyzing how distributed invert‐
er-based systems behave with fixed control parameters [1],
[11], [12]. Reference [1] presents a fast quasi-static time-se‐

ries algorithm for computing the impacts of dynamic var
control, providing an estimate for the states of all controllers
with a candidate control curve. In [12], a robust estimate for
solar PV energy curtailment is provided for a distributed gen‐
eration system operating with a fixed volt-watt curve.

The literature has only recently explored inverse problems
in this domain. Approaches such as those in [13], [14] use
voltage sensitivities as training data to detect the presence of
a solar PV installation on a distribution system using voltage
sensitivities. Additional methods for the detection of PV loca‐
tions and size, and the estimation of the overall distribution
hosting capacity of system are developed using a Monte Car‐
lo approach in [15].

However, the literature lacks the exploration into the in‐
verse problems of estimating DER settings and operational
parameters such as the power factor using data-driven meth‐
ods.

ⅡI. METHODOLOGY

Throughout this paper, we consider a distribution network
with M nodes and L possible points of interconnection for
a DER system, where LÌM.

A. Definitions

1) Voltage Magnitude Sensitivities
The sensitivity matrix of node voltages to both real and re‐

active power injections is well understood [7], [13]. These
entries of the matrix are typically defined as the changes in
voltage at bus i with respect to a real or reactive power in‐
jection at bus l. In this paper, voltage sensitivities refer to
changes in voltage magnitude since distribution sensors do
not provide voltage angle measurements without highly time-
synchronized data like PMUs.

Assuming circuit parameters are fixed and injection magni‐
tudes are normalized, the voltage sensitivities to real and re‐
active power injections, while linearly related, are intrinsical‐
ly different functions. This distinction has been noted [7]
and is illustrated here as an example.

We define the voltage sensitivity matrix of a circuit as the
change in voltage magnitude at any node iÎM due to the
presence of a real or reactive power injection at another
“candidate” injection bus lÎL. The formulation we will use
in this paper alternates the columns between real and reac‐
tive injections, as shown in (3).

SPQ 
¶Vi

¶[PlQl]
"iÎ[1M]"lÎ[1L] (3)

where Vi is the voltage magnitude measurement. This gives
us an M´(2L) sensitivity matrix that appears as follows:
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ÎRM´(2L) (4)

This matrix effectively captures two linearly independent
signatures of the power system and describes the response of

860



TALKINGTON et al.: POWER FACTOR ESTIMATION OF DISTRIBUTED ENERGY RESOURCES USING VOLTAGE MAGNITUDE MEASUREMENTS

the node voltages to real and reactive power injections.
In practice, these matrices can be formed using perturb

and observe methods [7], [13], [14], our method is described
in Algorithm 1 in the subsequent section.

We will denote each column of the interleaved SPQ matrix
as s l, where l = 122L. Note that this matrix has full col‐
umn rank when formulated using a power system model
without any voltage regulation equipment, and that pairs of
columns for electrically identical buses such as those con‐
nected by switches or fuses are excluded. This verifies that
the columns are linearly independent, and implies that the
signatures of voltage sensitivities to real and reactive power
are inherently different from the perspective of signal pro‐
cessing.

This distinction can also be motivated through a graphical
example using simulated results from the IEEE 13-bus test
feeder. If the submatrices of the SPQ matrix associated with
real and reactive power injections are compared graphically,
the functions have highly different behaviors. Submatrices of
SPQ containing the alternating sensitivity columns correspond‐
ing to real or reactive power is shown in Fig. 1. Each matrix
column s l captures the normalized changes in Vi to a real or
reactive power injection on bus l of the IEEE 13-bus test
feeder. The intrinsic difference in the signatures of the sys‐
tem response for different injection types becomes apparent.
For simplicity, the suffix(i) to denote phase i of each bus for
the remainder of this paper, where i = 1, 2, and 3 represents
phases A, B, and C, respectively.

The real and reactive power injection columns of SPQ,
while linearly independent, may still exhibit some multicol‐
linearity. We will later show how this contributes to the vari‐
ance of the least-squares estimator in some use cases.
2) Measurement Data

When working with time-series data, we assume that net‐
worked voltage meters will give the user access to voltage
profile data vi (t) at bus i for M nodes across time horizon
T. By taking the simple difference between the voltage sam‐
ples across time, we can form a difference matrix
D′ÎRM´(T - 1) as follows:

D′  (Dviτ) "tÎ[1T - 1]iÎ[1M] (5)

Dviτ = vi (t)- vi (t - 1) (6)

where Dviτ is the voltage deviation.

Furthermore, we define a measurement vector d̄ ÎRM as
a column vector containing samples of each row of the dif‐
ference matrix at a specific time differential point of inter‐
est τ*:

d̄  (Dv
iτ*) "iÎ[1M] (7)

Dv
iτ* = vi (t

*)- vi (t
* - 1) (8)

When considering solar PV, time intervals with low irradi‐
ance such as nighttime or cloudy days will have near-zero
changes in voltage due to the real and reactive power injec‐
tions of the PV and its corresponding inverter. Thus, it can
be challenging to select τ* in practice for each bus i.

One choice is to simply select τ* during midday, during
which the irradiance, power magnitude as well as the vari‐
ance of the injection between t* and t* - 1 are likely to be
the highest [13], [14]. This behavior is shown in Fig. 2. A
12-hour, 15-min granularity solution yields a total time hori‐
zon of T = 287. Voltage deviations due to volatile real or re‐
active power injections from the system are more likely to
occur during midday and are near-zero during the time of
low irradiance.
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Fig. 2. A subset of voltage deviation entries in D′ÎRM´ (T - 1) from 08:00
to 16:20 for 100 kW solar PV installation with power factor of 0.8 on
633(1) of the IEEE 13-bus feeder.
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Fig. 1. Submatrices of SPQ containing alternating sensitivity columns corre‐
sponding to real or reactive power. (a) Sensitivity of node voltage to real
power. (b) Sensitivity of node voltage to reactive power.
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approximate a linear combination of columns of SPQ during
times of maximum variance in the voltage profile between
time points. d̄ captures the change in voltage magnitude during
the time differential τ* due to a PV injection change at a loca‐
tion l. When the vector d̄ is normalized by the size of the PV
system, the contributions of the columns of SPQ corresponding
to real and reactive power injections from a PV and var-dis‐
patching inverter located at bus l can be estimated with linear
regression models.

Since sensor data noise will primarily be driven by addi‐
tive white Gaussian noise (AWGN), we assume that all mod‐
el errors are distributed according to a standard normal
ϵ N (0σ 2

ϵ ).

B. Estimation Methodology

1) Least-squares Regression
The measurements obtained from the sensors will contain

noise due to manufacturing errors, sensor class, or model in‐
accuracies. Hence, when projecting the d̄ vector on the sub‐
space of SPQ, we obtain close but not exactly equal injection
contributions. Using the measurement vector d̄ and the volt‐
age sensitivity matrix SPQ, we can form a multiple linear re‐
gression approximation to estimate the corresponding injec‐
tion type, location, and quantity as:

d̄ » x0

¶V
¶Pl

+ x1

¶V
¶Ql

++ x2L- 1

¶V
¶PL

+ x2L
¶V
¶QL

+ ϵ (9)

With many parameter estimation problems, we are estimat‐
ing a vector x̂ when we multiply by our design matrix. We
yield an approximation of the measurement targets as:

d̂ = SPQ x̂ (10)

where x̂ is the coefficient vector that results in the minimiza‐
tion of the sum of squared errors [16]. These problems are
known to have a unique least-squares solution as shown in
(11). Later, we will denote the least-squares solution as x̂ lsq

to differentiate the solution from the other methods that we
will discuss.

{min
xÎR2L

||d̄ - SPQ x||2
2

x̂ = ((SPQ)T SPQ)-1 (SPQ)T d̄
(11)

2) Shrinkage Methods
A properly formed SPQ matrix with M> 2L will be full

rank, allowing for simultaneous estimation of real and reac‐
tive power using voltage data only and the distinct real and
reactive power sensitivity signatures. However, there may be
multicollinearity between the columns of the interleaved SPQ.
Therefore, the least-squares estimator, while very unbiased,
may potentially have high variance [16]. Therefore, the least-
squares solution outlined above may not always be an ideal
solution in practice. Shrinkage estimators, which reduce the
variance in exchange for the introduction of more bias [17],
apply well to this problem in the following two scenarios:① an ill-posed estimation; ② a more realistic large feeder.

There are several instances where an ill-posed estimation
could be faced. As the number of candidate injection col‐
umns in SPQ approaches the number of measurement buses,
i.e., 2L®M, we are exposed to a higher risk of overfitting
and multicollinearity in the sensitivities as SPQ. When L>

M 2, the estimation will become underdetermined.
If the distribution model used to derive the sensitivity ma‐

trix is significantly incorrect or out of date, some of the sen‐
sitivity signatures may be a poor basis for the model, and
there may be instability in the fit against the observed mea‐
surement data. In these instances, the high variance of the
least-square estimator can be combated by applying ridge re‐
gression, which allows the user to place a penalty to the L2

norm of the solution, thus biasing the model toward the solu‐
tions that are more regular. This may significantly improve
the predictive accuracy of the model.

Forming an underdetermined sensitivity matrix (more col‐
umns than rows) may also be necessary if the distribution en‐
gineer has the uncertainty about the DER location, but still
wishes to estimate the power factor settings. In this case, a
higher-dimensional underdetermined SPQ will result in few
coefficients of the injection estimation vector x̂ being rele‐
vant to the estimation of the DER’s power factor. This can
be cast as a sparse approximation problem. In this case, to
form our model, we apply an L1 norm penalty to the least-
squares model that we developed previously and optimize
for the weight of the penalty that yields the strongest predic‐
tive power. This technique is also known as the least abso‐
lute shrinkage and selection operator (LASSO) and has the
convenient ability to perform simultaneous model selection
and feature extraction [17], yielding a very sparse x̂. This
will help address the instability in the estimate as L ap‐
proaches M 2. In the case of uncertain DER location, we
propose the sparse approximation model (12), which is an
augmented form of the problem in (11):

x̂ lasso = argmin
xÎR2L

||d̄ - SPQ x||2
2 + λ||x||1 (12)

where λ> 0 is the Lagrangian penalty factor set by the user.
This method, also known as the basis pursuit, promotes spar‐
sity. This means that the resulting estimation vector x̂ will
have a small number of nonzero components. Unlike the
least-squares formulation, there is no closed-form solution
[17], and it consists of solving the following constrained op‐
timization problem:

ì

í

î

ïï
ïï

x̂ lasso = argmin
xÎR2L

||d̄ - SPQ x||2
2

s.t. ||x||1 £ λ
λ> 0

(13)

The equivalent Lagrangian form can also be expressed as:

x̂ lasso = argmin
xÎR2L

∑
m= 1

M
(d̄m - sT

m x)2 + λ∑
l = 1

2L
|xl| (14)

where d̄m is an element of the measurement vector observed;
and sT

m is a particular row of SPQ.
For cases where there is a high degree of multicollinearity

in the sensitivity matrix, e.g., a poor or inaccurate distribu‐
tion model, we propose the use of ridge regression [17], and
the estimation vector becomes the solution to:

x̂ridge = argmin
xÎR2L

||d̄ - SPQ x||2
2 + λ||x||2

2 (15)

This can be converted to the standard least-squares solu‐
tion in (11) by concatenating λ I to the bottom of SPQ and
zeros to the bottom of d̄, allowing for a closed-form solution.
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This technique smooths out singularities in the sensitivity
data. Similar to least-squares, it is assumed that the coeffi‐
cients of x̂ lsq and the residuals of this estimate will also be
normally distributed [18].

For both of the regularized regression models described in
(12) and (15), the norm penalty λ can easily be chosen in
practice using modern cross-validation algorithms such as
those in [19].

C. Statistical Analysis

1) Chi-squared Goodness-of-fit
A chi-squared goodness-of-fit test can be used for the

least-squares procedure by noting that the estimated voltage
magnitude deviations d̂ can be given by SPQ x̂. By the central
limit theorem, the normalized residuals of these voltage devi‐
ations are assumed to be distributed according to a standard
normal, i.e.,

ri =
d̂i - d̄i

σ i

N (01) "iÎ[1M] (16)

where d̂i is the element of d̂; and ri is the residual.
Voltage meters typically have an error of at most less than

one percent, so it is assumed that σ i = (0.01) i = 12M.
Note that this is a worst-case scenario, and most meters in
practice have errors of less than half a percent.

The least-squares solution x̂ lsq minimizes the sum of
squares of the residuals ri according to the definitions in
(11). Hence, we can compute the chi-squared test statistic as:

||d̄ - SPQ x||2
2 = χ2 ³ ξ  ||d̄ - SPQ x̂||2

2 (17)

The value of ξ can be written succinctly as:

ξ(x̂)= (SPQ x̂ - d̄)TΩ-1 (SPQ x̂ - d̄) (18)

where Ω-1 is defined as:

Ω-1 
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1
σ i

0  0

0
1
σ i

 0

  

0 0 
1
σ i

(19)

Using the observations above, we can then perform a chi-
squared goodness-of-fit test with ν =M- (2L+ 1) degrees of
freedom:

P[χ2 ³ ξ]= 1-P[ξν] (20)

where P[χ2 ³ ξ] is the goodness-of-fit heuristic of the injec‐
tion estimates used as the basis for the power factor estima‐
tion given the sensitivity model.

However, the validity of (17) does not hold for the shrink‐
age estimates x̂ lasso and x̂ridge, as these estimates by definition
do not always reach the global minimum sum of squared er‐
rors. Goodness-of-fit tests for LASSO, ridge, and other regu‐
larized regression estimates are actually only a recent topic,
see [20], and the application of these tests to this problem
will be left for future work.

2) Confidence Intervals
Reference [16] also describes a 100´ (1- α)% confidence

interval for each of the multiple linear regression coeffi‐
cients x̂l:

x̂l ± tα/2M- (2L+ 1) Kll (21)

where Kll is the diagonal element of the variance-covariance
matrix K for the estimated regression coefficients, defined as:

K = σ̂ 2 ((SPQ)T SPQ)-1 (22)

where σ̂ 2 is the mean squared error (MSE) of the model.
Similar to the chi-squared goodness-of-fit test, this analyt‐

ic confidence interval can only be obtained for the least-
squares estimator. However, a well-known method for
achieving a confidence interval that is applicable to all of
the aforementioned methods, including least-squares, is the
bootstrap method [17].

Note that the entries of our parameter estimate
x̂ [x1x2x2L] are the projections of d̄ onto the subspace
SPQ, as described in (9). This interpretation of the model
holds for all estimators developed. To obtain confidence in‐
tervals for each injection coefficient, we can draw Q subsets
of a random N͂ rows of SPQ and d̄ entries, yielding augment‐
ed regression data denoted as S͂PQ and d͂. At each iteration,
we then estimate a new x͂ from projecting d͂ onto the N͂ rows
of SPQ. This method captures the variance in the estimate at‐
tributable to the data [17], [21].

We can obtain a maximum likelihood estimate of the ex‐
pected value for the injection estimates x͂̄ by finding the sam‐
ple mean of the bootstrapped statistic:

x͂̄ = Ê[x̂]=
∑
b= 1

Q

x͂b

Q
(23)

For least-squares regression models, it holds that bootstrap
confidence intervals are exactly equivalent to the analytic
confidence intervals described in (21) as Q®¥ [17]. There‐
fore, we use this method to compare the confidence of each
of the proposed estimation methods.

We propose the use of a nonparametric bootstrap confi‐
dence interval, specifically the percentile methodology,
which is frequently used for the estimators we have selected.
Through the resampling process described above, we can ob‐
tain an approximate distribution f (x͂l) for the x͂l coefficient of
interest using this method. Finally, a 100´ (1- α)% confi‐
dence interval for the coefficient can be obtained using the
percentiles. In symbols, this would be the (x͂α 2

l x͂1- α/2
l ) such

that:

(∫-¥x͂l
α 2

f (x͂l)dx͂l∫
-¥

x͂l
1- α/2

f (x͂l)dx͂l)= ( α2 1-
α
2 ) (24)

IV. ALGORITHM IMPLEMENTATION

The sensitivity matrix can be understood as a static, mod‐
el-based quantity fixed intertemporally for the power system
under analysis. The construction of this matrix is straightfor‐
ward and is outlined in Algorithm 1.
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Figure 3 shows the visualization of sensitivity columns in
SPQ formed with 100 kW or 100 kvar injections on IEEE 13-
bus test feeder.

As discussed previously, SPQ must be full rank to perform
the estimation. Depending on the power system modeled,
some columns may have linear dependencies, because the
nodes that they represent may be electrically identical. For
instance, the IEEE 13-bus best feeder has a switch between
buses 671 and 692 [22], [23], which is closed by default.
Thus, when constructing SPQ with static injections as in Algo‐
rithm 1, the columns associated with real and reactive power

injections for these two buses will be linearly dependent and
SPQ will become rank-deficient. A simple solution is to use a
distance metric e. g., the L1 norm of the residuals between
each column as shown in (25), as a method for measuring
the similarity between SPQ columns s l1

and s l2
"l1l2ÎL. The

user can then discard the rows and columns corresponding
to one of the indices from each pairwise comparison to
solve the rank deficiency.

dL1
(s l1

s l2
)= ||s l1

- s l2
||1 =∑

m= 1

M
|sl1m

- sl2m
| (25)

For the IEEE 13-bus test feeder, we discard the rows and
columns associated with bus 692, yielding a full rank ma‐
trix. We also use the similarity metric (25) for a hierarchical
clustering of the sensitivities, using the single linkage cluster‐
ing algorithm described in [24].

The visualization of sensitivity columns in an example
SPQ matrix formed with 100 kW or 100 kvar injections on
the IEEE 13-bus test feeder is shown in Fig. 3. The columns
are clustered according to their L1 distances, as described in
(25). The columns corresponding to real and reactive power
sensitivities are labeled as green and purple, respectively.
The numbers of clusters are increased iteratively until they
are equal to the 2L injection candidates. If six clusters are
chosen, the clusters correspond to common injection type
and injection phase. This further verifies the result that the
voltage magnitude sensitivity signatures are distinct.

Using the injection estimation methods, we form Algo‐
rithm 2 to estimate the power factor of the nodes LÌM of
interest. Many real-world inverter systems are three-phase.
Thus, generality for three-phase estimations is included.
With any of the estimation methods described in the paper,
the basic relationships between the complex apparent power
and power factor are used to form an estimate for the power
factor from the estimated injections.

Algorithm 1: sensitivity matrix construction

Result: returns the SPQ matrix for the model

Initialization

Lock voltage regulating devices

Solve base case powerflow

Retrieve Vbase = (vi), "iÎM
Define counter k = 0

for lÎL do

if mod(k,2)¹ 0 then

Place reactive power injection

Solve power flow

Retrieve V =(vi)"iÎM
S PQ

l =V -Vbase

else

Place real power injection

Solve power flow

Retrieve V =(vi)"iÎM
S PQ

l = V -Vbase

end

k=k+1

end

2 clusters
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2L clusters
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Fig. 3. Visualization of sensitivity columns in SPQ formed with 100 kW or 100 kvar injections on IEEE 13-bus test feeder.
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V. CASE STUDIES AND NUMERICAL RESULTS

In this section, we present the results for two case studies
using a small (IEEE 13-bus) feeder and a larger (IEEE 123-
bus) feeder to demonstrate the performance of the algo‐
rithms. The sensitivity matrix models for the feeders are con‐
structed according to (1) and Algorithm 1. As described pre‐
viously, identical points are identified and filtered using
(25), with an L1 tolerance of 1´ 10-12, and the removal deci‐
sions are verified by referencing [23], [25]. We then estimate
the power factor control settings using the process described
in Algorithm 2.

Typically, a DER system outputs a mixture of real and re‐
active power at the interconnection point. Thus, we will
show the results obtained when static injections of real and
reactive power are placed on the buses of interest. This mod‐
el represents a particular measurement instance where a grid-
connected PV system simultaneously generates real power,
and the PCC voltage is being regulated by a reactive power
injection or absorption by its advanced inverter system.

A. Small Feeder and Ridge

For this experiment, we consider two static three-phase in‐
jections on buses 633 and 671 of the IEEE 13-bus feeder, as
shown in Fig. 4.

By using Algorithm 1, the sensitivity matrix is constructed
and preprocessed as described previously using (25). Using
the first control flow of Algorithm 2, the estimation vector x̂
can be formed, and the estimated injection states derived
from the x̂ coefficients can easily be used to compute an esti‐
mate for the power factor of the PV systems according to
the third control flow of Algorithm 2.

When the estimation problem is well posed, i. e., M>>>L,
least-squares regression can be used without issue, yielding
accurate estimates for the injections and power factor shown
in Figs. 5 and 6. In Fig. 5, P̂1 and Q̂1 are the entries of x̂

that corresponding to real and reactive power injections, re‐
spectively. The inherent difference in the voltage sensitivity
signatures is realized, and accurate numerical results and
mean errors from the theoretical values are shown in Table
I. χ2 goodness-of-fit statistics also show favorable results for
the accuracy, as shown in Table Ⅱ.

The least-squares injection estimate is highly unbiased, as
is the case with all least-squares estimators. However, these
estimators typically have a high variance.

M
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Fig. 5. Well-posed (M= 26> 2L= 16) least-squares injection estimate for
three-phase injections.

Algorithm 2: power factor estimation procedure

Result: returns an estimation of the power factor of DER systems operat‐
ing on nodes LÌM

Initialization

Load network model

Retrieve Vbase =(vi)"iÎM
Compute SPQ (Algorithm 1)

Define injection buses LÌM
Load historical voltage measurements

Retrieve V =(vi)"iÎM
Compute d̄ ((7) and (8))

Compute x̂ ((11), (12), or (15))

Define P, QÎR1× 2L

if system is three phase then

for each x̂l, each phase do

if injection type is real then

Pl = x̂l

else

Ql = x̂l

end

end

else

for each x̂l do

if injection type is real then

Pl = x̂l

else

Ql = x̂l

end

end

end

for each PlQlÎ[PQ] do

Sl= P 2
l +Q2

l

pf
l
=

|Pl|

Sl

end
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645

646

Substation

Fig. 4. Graph plot of IEEE 13-bus feeder showing interconnection loca‐
tions for static systems.
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To illustrate this tradeoff, Fig. 7 shows bootstrap sampling
distributions for a subset of least-squares injection estimate
coefficients of the IEEE 13-bus model: x̂0 (633(1), real pow‐
er), x̂1 (633(1), reactive power), x̂6 (671(1), real power), and
x̂7 (671(1), reactive power). In Fig. 7, f ̂ (x̂) is the sample fre‐
quency. Dashed lines indicate the means of the distributions,
which are equivalent to the estimates in Fig. 4. High accura‐
cy is observed, but the estimator has high variance.

With least-squares, while the mean of the coefficient distri‐
bution in principle represents a highly accurate estimate of
the true parameter, the precision, clearly, may be low for
small feeders. This is because for small feeder models such
as the IEEE 13-bus case, the SPQ matrix has limited samples
(M= 26), which can be attributed to the variance in the coef‐
ficient distribution.

As we expand the number of candidate injections in SPQ,
the problem becomes ill-posed, and the risk of overfitting to
the sensitivities increases dramatically. In our experiments, a
large amount of instability in the least-squares solution x̂ lsq is
observed when candidate injection columns 2L= 25 are used
in SPQ. However, using the shrinkage estimator x̂ridge, a much
more accurate solution is obtained.

Figure 8 shows the ill-posed ridge regression estimation
vector for three-phase injections. If we use least-squares, the
estimate would be highly unstable, and we would effectively
fit to the noise of the sensitivity data because M is close to
2L. By applying ridge regression, we can consider more can‐
didate buses in exchange for more bias in the estimate.

L

645(2)
671(3)

671(2)
671(1)

633(3)
633(2) 675(2)

675(1)
646(3)

646(2)
645(3)

633(1)

150

100

50

0

150

100

50

0

P1A

P 1
 (k

W
)

A Q
1 (

kv
ar

)
A

Q1A

Fig. 8. Ill-posed ridge regression injection estimation vector for three-
phase injections.

B. Large Feeder and LASSO

Distribution engineers may be interested in a wider range
of candidate buses when considering feeder models such as
the IEEE 123-bus case. Furthermore, in large feeder models,
it may be more difficult to preprocess the SPQ matrix so that
electrically identical rows and columns are removed due to
incomplete information regarding the state of the switches.
Figure 9 shows the results of LASSO estimation methods
outlined in (12). In this experiment, a 10-fold cross-valida‐
tion is used to select the Lagrange multiplier λ.

Figure 9 demonstrates the simultaneous feature selection
and model fitting capabilities of the method. The LASSO es‐
timate is biased toward sparse estimates in favor of lowering
the variance of the estimator. Since this example exhibits sin‐
gle-phase injections, this model is ideal. LASSO is useful
when the distribution engineer knows with high confidence

TABLE I
WELL-POSED LEAST-SQUARES ESTIMATION RESULTS

Senario

Actual

Estimated

Mean error (%)

Node (phase)

633(1)

633(2)

633(3)

671(1)

671(2)

671(3)

633(1)

633(2)

633(3)

671(1)

671(2)

671(3)

Injection (kVA)

150+ j100

150+ j100

150+ j100

25+ j45

25+ j45

25+ j45

150.66+ j100.43

148.24+ j101.07

150.36+ j99.15

25.15+ j44.57

25.95+ j44.66

25.38+ j45.10

0.0156

Power factor

0.83205

0.83205

0.83205

0.48564

0.48564

0.48564

0.83207

0.82621

0.83484

0.49137

0.50234

0.49082

0.8870
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Fig. 6. Well-posed least-squares power factor estimation for three-phase in‐
jections.

TABLE II
χ2 GOODNESS-OF-FIT STATISTICS FOR IEEE 13-BUS LEAST-SQUARES

ESTIMATES

PCC

633

671

670

632

ξ

2.57×10-22

3.71×10-21

5.69×10-18

3.56×10-19

P[χ2 ³ ξ]
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Fig. 7. Bootstrap sampling distributions for a subset of least-squares injec‐
tion estimate coefficients of IEEE 13-bus model.
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that there are few distributed generators on the candidate
buses measured, meaning that few corresponding columns of
SPQ are relevant. The penalty on the L1 norm of x̂ favors
sparsity for the solution and improves the interpretability of
the model in these application scenarios.

Like ridge, LASSO coefficients also exhibit significantly
less variance, as shown in Fig. 10 and Table III. When using
regularized estimates in the right context, significantly better
precision and interpretability of the power factor estimation
can be achieved.

Further details of the behavior of the optimization algo‐
rithm are shown in Fig. 11, showing the effect of the La‐
grangian penalty factor λ on the model coefficients and the
MSE with each fold of the cross-validation procedure, where
a new λ value is selected.

In Fig. 11, we also show one solution for selecting the hy‐
perparameters of the regularized estimators. Figure 11(a)
shows the values of the parameters in the estimation vector
x̂ lasso, and Fig. 11(b) shows the MSE of the estimate, both as
functions of the negative natural logarithm of the penalty fac‐
tor λ.

To generate the trace in Fig. 11(a), we used 10-fold grid-
search CV [17], [19], which iteratively splits the rows of SPQ

into nine test groups and seeks to find the value of λ that
generates the lowest MSE values for predicting the remain‐
ing fold. The range of -log(λ) values considered is shown on
the x-axis. In Fig. 11(b), we show the MSE at each fold.
The final value of -log(λ) is indicated by the dashed vertical
line.

VI. DISCUSSION

There are several key limitations to the results in this pa‐
per. The preprocessing of time-series data in forming the d̄
vector has not yet been fully solved. If the user only has ac‐
cess to this type of data, determining which subset of D′ to
sample as d̄ may be challenging. Figure 2 illustrates this
challenge by showing the values of D′ as defined in (5), for
all values of iÎM and tÎ T for an injection scenario with
power factor of 0.8.

A practical solution is to select a window of d̄ values in
the midday period of the time-series. Recent developments
in the field of statistical learning could be used to perform
feature extraction or selection to identify the timepoints of
interest [26], [27]. In time-series modeling, the estimation be‐
comes less accurate when there is less difference in the volt‐
age from power injections during nighttime and cloudy days.

As for many physics-based inverse problems, the estima‐
tion methods provided in this paper may have a high degree
of variance. Additional improvements could be studied to de‐
termine the proper amount of bias to add to the estimators to
enable more interpretable models, particularly when working
with non-midday time-series data.

An additional limitation of these methods is that the rough
location of the distributed generator is assumed to be
known. However, [13], [14], [28] could be used in tandem
with this method to first estimate the location of an un‐
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TABLE III
CONFIDENCE INTERVALS FOR IEEE 123-BUS LASSO ESTIMATES

α

0.050 (95%)

0.320 (68%)

x̂7

x͂α 2
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47.262

x͂1- α/2
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Fig. 9. LASSO regression coefficients for single-phase injections.

867



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 9, NO. 4, July 2021

known distributed generator, and then the algorithms pro‐
posed in this paper could be applied to a constrained set of
candidate injection locations to estimate the power factor of
the DER. Another potential solution to this problem would
be statistical methods such as best subset selection [17] or
other regularization methods such as the LASSO method pre‐
sented in this paper. If the user does not have confidence
that the selected candidate injection locations contain a gen‐
erator, it cannot be guaranteed that the observed voltage
magnitude deviations in the data will be attributable to a dis‐
tributed generator. In these instances, the estimation may be
less interpretable.

Future works will include a more robust time-series fea‐
ture extraction method as well as the extension of these
methods to the estimation of other inverter parameters such
as control settings and curtailment.

VII. CONCLUSION

This research has presented a novel physics-based and da‐
ta-driven method to estimate the injection state and power
factor of inverter-based DERs. Based purely on voltage mag‐
nitude measurements and model-derived sensitivities, flexi‐
ble estimation approaches have been developed for various
realistic use cases.

Firstly, we have shown that for a fixed power system mod‐
el with a properly constructed SPQ sensitivity matrix, the real
and reactive power voltage sensitivity signatures for a set of
candidate buses under study are linearly independent, in
which case, SPQ is full rank. Notably, we have also shown
that there exists a significant enough difference between
these signatures to estimate the real and reactive power injec‐
tion states of inverter-based DERs using purely voltage mea‐
surements and linear parameter estimation models.

Additionally, we have shown that regularization methods
are highly effective at improving the precision of the linear
models in certain use case scenarios. Often, the least squares
model may not be a viable option from a practical stand‐
point. For models with poor goodness of fit as derived in
Section II, or when the model characteristics meet those de‐
scribed in Section III, the regularized methods will often be
necessary, and will improve the estimation performance.

As the demand and need for solar PV and other inverter-
based DERs increase, it is vital to access the information
that characterizes these oftentimes unobservable distributed
systems for ensuring a smooth transition to a decarbonized
grid. These algorithms can be used in power system plan‐
ning, operation, and control applications to give utilities and
ISOs with the ability to estimate important control parame‐
ters and the operating point of these distributed generation
systems. This can be of service in bolstering sustainable
power system planning and decarbonization efforts.
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