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Abstract——Scenario forecasting methods have been widely
studied in recent years to cope with the wind power uncertainty
problem. The main difficulty of this problem is to accurately
and comprehensively reflect the time-series characteristics and
spatial-temporal correlation of wind power generation. In this
paper, the marginal distribution model and the dependence
structure are combined to describe these complex characteris‐
tics. On this basis, a scenario generation method for multiple
wind farms is proposed. For the marginal distribution model,
the autoregressive integrated moving average-generalized au‐
toregressive conditional heteroskedasticity-t (ARIMA-GARCH-
t) model is proposed to capture the time-series characteristics of
wind power generation. For the dependence structure, a time-
varying regular vine mixed Copula (TRVMC) model is estab‐
lished to capture the spatial-temporal correlation of multiple
wind farms. Based on the data from 8 wind farms in Northwest
China, sufficient scenarios are generated. The effectiveness of
the scenarios is evaluated in 3 aspects. The results show that
the generated scenarios have similar fluctuation characteristics,
autocorrelation, and crosscorrelation with the actual wind pow‐
er sequences.

Index Terms——Scenario generation, wind farm, regular vine
Copula, spatial-temporal correlation, time-series characteristics.

I. INTRODUCTION

TO achieve the clean and low-carbon energy supply,
wind power has attracted extensive attention worldwide

in the recent few decades. However, at present, the accurate
forecasting of wind power generation is not an easy goal to
achieve [1]. With the rapid growth of wind power capacity
integrated into the grid, the uncertainty of power supply

caused by the ineluctable forecasting error is becoming in‐
creasingly prominent. It will affect the reliability of the dis‐
patching plan, which may not only cause severe wind power
curtailment, but also bring potential risks for the safe opera‐
tion of the power grid [2]. Therefore, it is necessary to devel‐
op a forecasting method to reflect the uncertainty of wind
power generation.

On the other hand, wind farms are often clustered [3].
The site selection of wind farms is usually concentrated in
the areas with abundant wind energy. When making opera‐
tion plans, rather than a single wind farm, more attention is
usually paid to the uncertainty of the joint-output of multiple
wind farms in the region [4]. Besides, in order to avoid the
off-grid events caused by the increase of wind power pene‐
tration, it is also necessary to propose forecasting methods
applicable to regional wind farms [5].

In view of the uncertainty of wind power generation, the
scenario forecasting method, which is an important method
of probabilistic forecasting, has been extensively studied. Its
basic principle is to establish the probability density function
(PDF) of wind power or forecasting error by statistical meth‐
ods, and then generate the scenarios by sampling methods
[6]. Various scenario forecasting methods have been pro‐
posed in existing researches [7]-[12]. In [7] and [8], the fore‐
casting error is assumed to follow the Beta distribution and
the t location-scale distribution, respectively. In [9], the quan‐
tile regression method is used to establish the PDF. The em‐
pirical cumulative distribution function (ECDF) is studied in
[10]. And in [11] and [12], the kernel density estimation
(KDE) model is proposed.

The aforementioned works are proposed to reflect the
long-term frequency distribution of wind power generation.
Considering the autocorrelation of wind power over a period
of time, the studies in recent years begin to focus on the
time-series characteristics. In [13]-[16], the scenario genera‐
tion methods based on the time-series characteristics are put
forward. In [13], the Markov method is utilized to simulate
the time-varying process of wind power. In [14], the autore‐
gression (AR) model is studied. References [15] and [16]
further promote the work of [14] and the AR-moving aver‐
age (ARMA) model is established. The above researches
show that when the time-series characteristics are taken into
account, the excessive irregular fluctuations and noise com‐
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ponents in wind power will be significantly reduced.
On the other hand, however, with the increase in the num‐

ber and scale of wind farms, the traditional methods have
limitations when applied to regional multiple wind farms.
The key problem lies in that, the spatial-temporal correlation
should be fully described, while the advantages of the origi‐
nal method are retained. In this respect, a good method is to
adopt the Copula model, which can be decomposed into two
parts: the marginal distribution model and the dependence
structure. The first part is the independent PDF of each sin‐
gle wind power sequence, which ensures good continuity
with the existing works mentioned above. The second part
describes the spatial-temporal correlation of multiple wind
farms. In [17] and [18], the Gaussian Copula model is used
to model the PDF of high-dimensional wind power data. In
[19] and [20], the C-vine and D-vine Copula models are fur‐
ther proposed. The models have more flexible dependence
structures than the Gaussian Copula model and thus achieve
higher accuracy.

It can be observed from the literature review that, some
works have introduced the Copula model in analyzing the
correlation of multiple wind farms. However, the existing
works have three limitations: ① the time-series characteris‐
tics and spatial-temporal correlation are not effectively com‐
bined, resulting in frequent unreasonable fluctuations in the
scenarios; ② the models are reliable only when dealing with
low-dimensional data; for high-dimensional wind power da‐
ta, the dependence structures can not fully describe the spa‐
tial-temporal correlation; ③ the complexity of joint-distribu‐
tion between two arbitrary wind farms is underestimated.
Specifically, the pair Copulas, as the basic units of the high-
dimensional Copula model, are too simple to capture the tail
characteristics, thus reducing the accuracy of the whole model.

Therefore, this paper aims to propose a scenario genera‐
tion method that can effectively describe both the time-series
characteristics and the spatial-temporal correlation of the
power output of multiple wind farms. The contributions of
this work are briefly summarized as follows.

1) The time-varying regular vine mixed Copula (TRVMC)
model is established to fit the joint probability distribution
of the output of regional multiple wind farms. By making
the probability distribution capture the characteristics of the
joint-frequency distribution, the TRVMC model can reflect
the correlation between the wind farms. Compared with the
Gaussian, C-vine, and D-vine Copula models in the existing
research, the TRVMC model does not need to make strict as‐
sumptions about the correlation of input data, but fits the ap‐
propriate model structure for different input data. Conse‐
quently, the TRVMC model has higher fitting accuracy for
the joint-probability distribution.

2) The AR integrated moving average-generalized autore‐
gressive conditional heteroskedasticity-t (ARIMA-GARCH-t)
model is established to fit the marginal distribution model of
the output of each wind farm. The model can capture the
time-series characteristics of wind power output. Compared
with the commonly-used static models such as the KDE
model, the ECDF model, and the student-t model, the ARI‐
MA-GARCH-t model has higher fitting accuracy, which can
provide more reliable input data for the Copula model.

3) The time-varying mixed Copula (TMC) model is estab‐
lished as the pair Copulas, i. e., the basic units of the
TRVMC model. On one hand, the TMC model integrates the
advantages of multiple basic bivariate Copula models. On
the other hand, by introducing the dynamic correlation calcu‐
lation models (including the dynamic conditional correlation
(DCC) model and the Patton model) to fit the parameters of
the TMC model, the model can capture the time-varying
characteristics of the dependence structure of two-dimension‐
al wind power sequences, so as to improve the accuracy of
the entire model.

4) Based on the established ARIMA-GARCH-t model and
the TRVMC model, the forecasting scenario generation meth‐
od for the output of regional multiple wind farms is pro‐
posed. The scenarios present similar time-series characteris‐
tics and spatial-temporal correlation with the actual wind
power sequence. Compared with the methods which ignore
the above characteristics, the scenarios generated by the pro‐
posed method have a more reasonable fluctuation range and
frequency. Besides, the scenarios can better envelop the actu‐
al wind power output sequence.

The rest of the paper is organized as follows. In Sections
II and III, the ARIMA-GARCH-t model and the TRVMC
model are described in detail, respectively. The forecasting
scenario generation method is proposed in Section IV. Sec‐
tion V provides an overall description of the modeling and
scenario generation process. The evaluation framework is in‐
troduced in Section VI. In Section VII, the forecasting sce‐
narios are generated and evaluated based on the data from 8
wind farms. Finally, some concluding remarks are provided
in Section VIII.

II. ARIMA-GARCH-T MODEL AS MARGINAL DISTRIBUTION

MODEL

The marginal distribution model is the independent proba‐
bility distribution model of each wind power sequence. By
calculating the cumulative probability, the original wind pow‐
er sequence is transformed into a uniform sequence bounded
by [0, 1]. The converted sequence will be used as input data
for the Copula model.

The cumulative distribution function (CDF) of the power
output of each wind farm can be expressed as:

Fi (xi)= xfc
i +F err

i (xerr
i ) (1)

where xi, xfc
i , and xerr

i are the measured power, forecasting
power, and forecasting error of the ith wind farm, respective‐
ly; and Fi and F err

i are the CDFs of xi and xerr
i , respectively.

Then the forecasting error is taken as the input data of the
ARIMA-GARCH-t model. For convenience, denote xerr

i = {yt}.
The ARIMA model can be expressed as [21]:
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where yt is the forecasting error sequence; B denotes the lag

operator, namely Bj yt = yt - j; Ñd = (1-B) d
denotes the d-order

difference computation process, which transforms the input
data into a stationary sequence, and the augmented Dickey-
fuller (ADF) test can be used to evaluate the stationarity of
the sequences [22]; E and var are the expectation and vari‐
ance functions, respectively; ε t is the residual error; σ 2

ε is the
variance of ε t; and Φ (B) and Θ (B) are the AR polynomial
and moving average (MA) polynomial, respectively, which
can be expressed as [21]:
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(3)

where μAM, k rp
AR, and k rq

MA are the constant parameter, AR coef‐
ficient, and MA coefficient obtained by the fitting, respec‐
tively; PAR and QAR are the orders of the AR and MA coeffi‐
cients, respectively; and rp and rq are the count variables.

Through the ARIMA model, the estimation of the PDF/
CDF of {yt} is converted into that of the residual error se‐

quence {ε t}.
The function of the GARCH-t model is to fit the PDF/

CDF of {ε t}. According to the existing research [23], {ε t}
presents the conditional-heteroscedasticity characteristics. On
this basis, the GARCH-t can be established as [24]:
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where N is the normal distribution; It - 1 denotes all historical
information before time t - 1; ht is the conditional variance;
ν t is an independent and identically-distributed variable that
obeys the standard normal distribution N ( )01 ; μGA, k lq

AC, and
k lp

G are the fixed parameter, the autoregressive conditional
heteroskedasticity (ARCH) coefficient, and the GARCH coef‐
ficient obtained by the fitting, respectively; PG and QAC are
the orders of the GARCH and ARCH coefficients, respective‐
ly; and lp and lq are the count variables.

By combining the calculation results of the ARIMA model
and the GARCH-t model, the PDF of the original wind pow‐
er output sequence can be obtained as:

{yt = yARIMA
t + ε t | ε t  yGARCH

t

xit = xfc
it + yt

(5)

where yARIMA
t and yGARCH

t are the calculation results of the
ARIMA model and GARCH-t model, respectively; and xit

and xfc
it are the measured power and forecasting power of the

ith wind farm at time t, respectively.
Taking the historical output data of a wind farm for 1 day

as an example, the calculation results of ARIMA and
GARCH-t models are shown in Fig. 1.

The parameters of the ARIMA model and the GARCH-t
model can be estimated by optimizing the log-likelihood
function as:
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ARIMA

Ψ̂ *
GARCH = arg max ( )ln fGARCH ( ){ }ε t Ψ *
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(6)

where Ψ *
ARIMA and Ψ *

GARCH are the parameter sets of the ARI‐
MA model and the GARCH-t model, respectively; fARIMA and
fGARCH are the functions of the ARIMA model and the
GARCH-t model, respectively; and Ψ̂ *

ARIMA and Ψ̂ *
GARCH are

the estimation results, respectively.

III. TIME-VARYING R-VINE MIXED COPULA MODEL AS

DEPENDENCE STRUCTURE

A. R-vine Copula Model for Multiple Wind Farms

An R-vine Copula model R* = {T *
i | i = 12M} can be

defined as follows [25].
1) The R-vine Copula R* is a nested set of M - 1 layers of

tree structures. Each tree T *
i is composed of the node set N *

i

and the edge set E *
i . The nodes and edges are the input data

and pair Copulas, respectively.
2) For the first tree T *

1 , the node set N *
1 is the calculation

results of the marginal distribution models. For other trees,
N *

i =E *
i - 1, i.e., each edge in tree T *

i corresponds to a node in
tree T *

i + 1.
3) A constraint is that two edges in E *

i only share one
node in N *

i .
Except for the first tree, the nodes and edges are all com‐

posed of the conditioning and conditioned sets. For example,
suppose that an edge e is defined as α (e), β ( )e |ϒ ( )e , then
α (e) and β (e) are the conditioned sets, ϒ (e) is the condi‐
tioning set. Further, suppose e= (ab)ÎE *

i | abÎ N *
i , the edg‐

es (in tree T *
i - 1) corresponding to node a and node b are ea =

α (ea), β ( )ea |ϒ ( )ea and eb = α (eb), β ( )eb |ϒ ( )eb , respective‐

ly, then the correlation between the edges and the nodes can
be expressed as [25]:

ϒ (e)= {α (ea) β (ea) ϒ (ea)} {α (eb) β (eb) ϒ (eb)} (7)

{α (e) β (e)}= ({α (ea) β (ea) ϒ (ea)} ∖ϒ (e))
({α (eb) β (eb) ϒ (eb)} ∖ϒ (e)) (8)
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Fig. 1. Calculation results of ARIMA and GARCH-t models. (a) ARIMA
model. (b) GARCH-t model.
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where yt is the forecasting error sequence; B denotes the lag

operator, namely Bj yt = yt - j; Ñd = (1-B) d
denotes the d-order

difference computation process, which transforms the input
data into a stationary sequence, and the augmented Dickey-
fuller (ADF) test can be used to evaluate the stationarity of
the sequences [22]; E and var are the expectation and vari‐
ance functions, respectively; ε t is the residual error; σ 2

ε is the
variance of ε t; and Φ (B) and Θ (B) are the AR polynomial
and moving average (MA) polynomial, respectively, which
can be expressed as [21]:
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MA are the constant parameter, AR coef‐
ficient, and MA coefficient obtained by the fitting, respec‐
tively; PAR and QAR are the orders of the AR and MA coeffi‐
cients, respectively; and rp and rq are the count variables.
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where N is the normal distribution; It - 1 denotes all historical
information before time t - 1; ht is the conditional variance;
ν t is an independent and identically-distributed variable that
obeys the standard normal distribution N ( )01 ; μGA, k lq
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Based on (7) and (8), the pair Copula corresponds to edge
e can be written as C

α ( )e β ( )e |ϒ ( )e
. The input data for the pair

Copula are two conditional cumulative probability sequenc‐
es, which can be written as F

α ( )e |ϒ ( )e
and F

β ( )e |ϒ ( )e
. Then the

joint-PDF of an M-dimensional data set can be expressed
as [25]:

f jnt (x*)= é

ë
êê∏

j = 1

M - 1∏
k = 1

M - j

c |α ( )ej
k β ( )ej

k ϒ ( )ej
k
( )F

α ( )e |ϒ ( )e
F

β ( )e |ϒ ( )e

ù

û
úú∏

i = 1

M

fi ( )xi (9)

where x* = {xi | i = 12M}; f jnt is the joint-PDF of x*; fi is

the marginal distribution model of xi; and c |α ( )ej
k β ( )ej

k ϒ ( )ej
k

is the

k th pair Copula in the j th tree.
For convenience, the parentheses in the pair Copulas are

omitted in the rest of this paper.

B. Time-varying Mixed Copula Model as Pair Copulas

The pair Copulas are the basic units of the R-vine Copula
model. The function is to fit the joint-PDF of the binary data
sequences. In this paper, the TMC model is established as
the pair Copulas, which can be expressed as:
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i | iÎ [ ]1n

(10)

where u and v are the input data of the pair Copula model;
Cmix is the TMC model; Ci is the basic bivariate Copula mod‐
el selected to compose Cmix; n is the number of basic bivari‐
ate Copula models; ω i is the weight of Ci; and Ψ *

C and θ *
i

are the parameter sets of Cmix and Ci, respectively.
In this paper, the commonly-used t Copula model, Clayton

Copula model, and Gumbel Copula model are selected as Ci.
The expressions are as follows [26]:
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ù
û( )-ln u

ρG
t + ( )-ln v
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where C tc, CCl, and CG are the t Copula, Clayton Copula, and
Gumbel Copula models, respectively; ρ t, ρ

Cl
t , ρG

t , and kCT are
the model parameters; and t -1

k is the inverse function of the t
Copula model.

To track the time-varying process of the correlation be‐
tween the wind farms, the parameters of the above 3 models
need to be calculated dynamically. For this purpose, the
DCC model and the Patton model are introduced in this pa‐
per.

1) t Copula Model
For the t Copula model, the DCC model is used to calcu‐

late the parameters [27], which is presented as:

{ρ t = ( )1- αDCC - βDCC
-
Q

cor
+ αDCC ( )ε t - 1ε′t - 1 + βDCC ρ t - 1

|αDCC + βDCC < 1 αDCCβDCCÎ ( )01
(14)

where αDCC and βDCC are the parameters of the DCC model;
-
Q

cor
is the covariance coefficient of the input data; ε t - 1 is the

input data at time t - 1, i. e., ε t - 1 = [ ut - 1vt - 1 ]; and the sym‐

bol ' denotes the transposition.
2) Clayton and Gumbel Copula Models

For the Clayton Copula model and the Gumbel Copula
model, the Patton model is used to calculate the parameters
[28], which is presented as:

ì

í

î

ïï
ïï

Rt =ΛPtt ( )ωPtt + βPtt Rt - 1 + αPtt

1
PPtt
∑
p= 1

PPtt

|| ut - p - vt - p

ΛPtt ( )x = ( )1+ e-x -1

(15)

where ωPtt, αPtt, and βPtt are the parameters of the Patton mod‐
el; PPtt is the length of the historical data sequence used to
fit the correlation coefficient at time t, which is usually set
to be 10; and ΛPtt is the logistic function which keeps the cal‐
culation results of the Patton model within the required
range.

Moreover, the calculation results Rt of the Patton model
need to be further converted into the parameters of the Copu‐
la models. The calculation method is [26]:

ρCl
t =

2Rt

1-Rt
(16)

ρG
t = (1-Rt)

-1

(17)

Having adopted the DCC and Patton models, the parame‐
ter set θ *

i in (10) can be expressed as:

ì

í

î

ïï
ïï

θ *
tc = { }αDCCβDCCkCT

θ *
Cl = { }ωCl

PttαCl
PttβCl

Ptt

θ *
G = { }ωG

PttαG
PttβG

Ptt

(18)

where θ *
tc, θ

*
Cl, and θ *

G are the parameter sets of the t Copula,
Clayton Copula, and Gumbel Copula, respectively;
αDCC βDCC and kCT are the parameters of the t Copula;
ωCl

Ptt αCl
Ptt and βCl

Ptt are the parameters of the Clayton Copula;
and ωG

Ptt αG
Ptt and βG

Ptt are the parameters of the Gumble Cop‐
ula. And the parameters of the TMC model can be estimated
by optimizing the log-likelihood function as:

Ψ̂ *
C = arg max ( )ln Cmix ( )uvΨ *

C (19)

where Ψ *
C = {ω tcωClωGθ *

tcθ *
Clθ *

G}, and ω tc, ωCl, and ωG are

the weights of the t Copula, Clayton Copula, and Gumbel
Copula, respectively; and Ψ̂ *

C is the estimation result.

C. Sequential Generation Method of R-vine Structure

In this subsection, the structure generation method of the
TRVMC model is proposed based on the MST algorithm in
[29]. The specific calculation process is as follows.
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Step 1: establish the TMC model as the pair Copula mod‐
el.

Step 2: take the calculation results of the marginal distribu‐
tion models as the input data of the first tree. Fit the pair
Copulas of each two input data sequences with the TMC
model.

Step 3: evaluate the accuracy of the pair Copulas in Step
2 with the quantitative index. In this paper, the Akaike infor‐
mation criterion (AIC) is adopted [30].

IAIC = 2nml - 2ln Lm (20)

where IAIC is the AIC index; nml is the number of model pa‐
rameters; and Lm is the value of the maximum likelihood
function.

Step 4: generate the structure of each tree. This process is
an optimization problem, and the objective is to minimize
the sum of the AIC values of all pair Copulas in the tree.
For the first tree, the Prim algorithm in [25] is implemented
in this paper.

Step 5: when the structure of the k th tree is generated, cal‐
culate the input data of the ( )k + 1

th
tree as [25]:

F
α ( )e |{ }ϒ ( )e β ( )e

=
¶C

α ( )e β ( )e |ϒ ( )e

¶F
β ( )e |ϒ ( )e

(21)

Step 6: except for the first tree, the structure of each tree
is constrained by that of the previous tree, which limits the
number of possible structures. When the structure of the k th

tree is generated, list all possible structures of the (k + 1)th

tree. The validity of the structures can be judged as [25]:

"ek + 1
a ek + 1

b ÎE *
k + 1 ® # (ea  eb)£ 1 (22)

where ek + 1
a and ek + 1

b are the edges in the (k + 1)th tree; E *
k + 1 is

the set of all edges in the (k + 1)th tree; and # denotes the car‐
dinality of the set.

Step 7: for each possible structure in Step 6, fit the pair
Copulas with the TMC model.

Step 8: repeat Step 4 to Step 7 until the structures of all
trees are generated, which together make up the structure of
the R-vine Copula model.

D. Model Applicability Analysis

The TRVMC model mainly aims at the wind farms locat‐
ed in the same region. More specifically, the model is more
suitable for wind farms with a strong correlation. The rea‐
sons are as follows. The main function of the TRVMC mod‐
el is to establish the joint-probability distribution model of
the output of multiple wind farms. By making the probabili‐
ty distribution of the TRVMC model capture the characteris‐
tics of the statistical joint-frequency distribution of the wind
power output sequences, the model can reflect the correla‐
tion of multiple wind farms.

Take the power output of 2 wind farms in the same region
for example. The Kendall correlation coefficient is 0.761.
The joint-frequency distribution of the power output sequenc‐
es is shown in Fig. 2(a). The probability distribution of the
corresponding TRVMC model is shown in Fig. 2(b). As
shown in Fig. 2, the probability distribution can well capture
the characteristics of the statistical joint-frequency distribu‐
tion.

However, there is no clear boundary between strong corre‐
lation and weak correlation. Since the model is data driven,
the data of any wind farm can be selected as the input data.
If the wind farms are far away from each other and the pow‐
er output sequences are independent, according to the Bayes‐
ian formula, the joint-PDF can be expressed as [31]:

f jnt (x*)=∏
k = 1

M

fk ( )xk (23)

In (23), the joint-PDF is equal to the multiplication of
each independent PDF. In other words, the models consider‐
ing the correlation are the same as those ignoring the correla‐
tion. Therefore, the calculation results of the models will be‐
come the same. Due to the above reasons, the TRVMC mod‐
el is mainly applicable to regional wind farms.

IV. SCENARIO GENERATION METHOD FOR MULTIPLE WIND

FARMS

Suppose that Nsc scenarios are generated for Nwf wind
farms, and each scenario contains Npt sampling points. Hav‐
ing fitted parameters of the ARIMA-GARCH-t model and
the TRVMC model, the forecasting scenarios can be generat‐
ed through the following steps.

Step 1: generate an Nsc ´Npt ´Nwf random matrix Rnd, in
which all elements obey the uniform distribution U(0,1).

Step 2: decompose the joint-PDF and reorder the input da‐

ta sequences to {x′1x′2x′Nwf} according to the generated R-

vine structure, as shown in (9).
Step 3: assign the values in Rnd to the conditional cumula‐

tive probability values as:

ì

í

î

ï

ï
ïï

ï

ï
ïï

F jpt

1 ( )x′1 =Rnd [ ]iscjpt1

F jpt

2 | 1 ( )|x′2 x′1 =Rnd [ ]iscjpt2



F jpt

Nwf
|
| 12Nwf - 1 ( )|

|x′Nwf
x′1x′2x′Nwf - 1 =Rnd [ ]iscjptNwf

(24)

where isc is the i th
sc scenario; and jpt is the j th

pt sampling point.
Step 4: calculate the cumulative probability of the power

output of each wind farm at the j th
pt sampling point.

Supposing two variables F jpt

awf ( |
|x′awf
ϒ) and F jpt

bwf ( |
|x′bwf {ϒx′awf})
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Fig. 2. Joint-frequency distribution and probability distribution of power
output of wind farms. (a) Joint-frequency distribution. (b) Probability distri‐
bution.
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have been given by (24) or calculated by (25) in the last cir‐
cle, the two variables are connected by a pair Copula model
C |

|awfbwf ϒ
as:

F jpt

bwf ( |
|x′bwf {ϒx′awf})=

¶C |
|awfbwf ϒ

¶F jpt

awf ( )|
|x′awf
ϒ

(25)

For the pair Copula C |
|awfbwf ϒ
, F jpt

awf ( |
|x′awf
ϒ) and F jpt

bwf ( |
|x′bwf
ϒ)

are the corresponding input data. F jpt

bwf ( |
|x′bwf
ϒ) can be calculat‐

ed by the interpolation methods [25].
Step 5: repeat Step 4 until the cumulative probability of

the power output of all wind farms at the j th
pt sampling point

has been calculated, namely { }F jpt

1 ( )x′1 F jpt

2 ( )x′2 F jpt

Nwf ( )x′Nwf
.

Step 6: taking {F jpt

1 (x′1) F jpt

2 (x′2) F jpt

Nwf (x′Nwf)} as the input

data, calculate the power output of each wind farm through
the inverse function of the marginal distribution model:

P jpt

kwf
=Djpt

kwf ( )F jpt

kwf ( )x′kwf
(26)

where P jpt

kwf
is the power output of the k th

wf wind farm at the j th
pt

sampling point; and Djpt

kwf
is the inverse function of the mar‐

ginal distribution model.
Step 7: based on the ARIMA-GARCH-t model, calculate

the CDF of each wind power output sequence at the next
sampling point.

Step 8: repeat Step 3 to Step 7 until all sampling points in
the i th

sc scenario are generated.
Step 9: repeat Step 3 to Step 8 until all scenarios are gen‐

erated.

V. OVERALL DESCRIPTION OF MODELING AND SCENARIO

GENERATION PROCESS

The basic principle of the models in this paper is the Sk‐
alr theorem. According to the theorem, the joint-PDF of
high-dimensional data can be calculated by (9). And the cor‐
responding joint-CDF is [25]:

{ui =Fi ( )xi | i = 12M

F jnt ( )x1x2xM =C12M ( )u1u2uMΨ *
ent

(27)

where {x1x2xM} is the wind power output sequence;

{u1u2uM} is the cumulative probability of {x1x2xN};
F jnt is the joint-CDF; C12M is the Copula model; and Ψ *

ent is
the parameter set of C12M.

According to (27), the joint-CDF can be calculated by
combining the marginal distribution models with the Copula
model. To this end, the ARIMA-GARCH-t model and the
TRVMC model are established in this paper.

The modeling process is shown in part 1 of Fig. 3. The
historical data from the wind farms are taken as the input da‐
ta to fit the model parameters. Firstly, the ARIMA-GARCH-
t models are established. Then, the cumulative probability of
historical wind power output sequences is calculated and tak‐
en as the input data for the TRVMC model. After that, ac‐
cording to (27), the joint-CDF is established based on the

TRVMC model.

The scenario generation process is shown in part 2 of Fig.
3, which can be regarded as the inverse calculation process
of the established models. In this part, the random values ob‐
tained by sampling are taken as the input data. Firstly, the
cumulative probability of the output sequences is calculated
by the sampling method of the joint-CDF. Then, the calcula‐
tion results together with the point forecasting power of the
next day are taken as the input data. Through the sampling
method of the independent CDFs, the forecasting scenarios,
i. e., the possible output sequences of multiple wind farms
for the next day, are generated.

VI. FRAMEWORK OF EVALUATION

A. Evaluation of Marginal Distribution Models

The function of the marginal distribution model is to cal‐
culate the independent probability distribution of each wind
power sequence. The model can be evaluated by the follow‐
ing steps.

Step 1: calculate the model parameters based on the histor‐
ical output data of a wind farm.

Step 2: taking the wind power output of a period in the fu‐
ture as the test data, fit the probability distribution intervals
of the test data under the preset confidence levels with the
marginal distribution model.

Step 3: compare the fitted probability distribution intervals
with the statistical characteristics of the test data.

According to [32], the marginal distribution model can be
evaluated from two aspects: reliability and sharpness.

Input historical data:
measured power, point forecasting power, forecasting error

Cumulative probability of wind power output sequences

Input (fit parameters)

Input (fit parameters)

Output

Part 1: establish models with historical data

Input data: random values obtained by sampling,
 which obey the uniform distribution U(0, 1)

Cumulative probability sampling results
of wind power output sequences

Input

Output

Part 2: Generate scenarios by sampling method

ARIMA-GARCH-t model��independent CDF/PDF of each wind
power output sequence (marginal distribution)

Point forecasting power
for next day

Input Input

Forecasted scenarios: possible wind power output sequences of
multiple wind farms for next day

Inverse calculation process of TRVMC model:
sampling method of joint CDF/PDF

Inverse function of ARIMA-GARCH-t model:
sampling method of independent CDF/PDF

TRVMC model: joint CDF/PDF of wind power output sequences
from multiple wind farms

Fig. 3. Overall process of modeling and scenario generation.
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1) Reliability
The reliability index reflects the deviation between the

probability distribution fitted by the model and the frequen‐
cy distribution of the actual data sequence [32].

R( )λ
lb = | n in

nsp

- λ |´ 100% (28)

where R( )λ
lb is the reliability index; n in is the number of data

points in the interval; nsp is the length of the test data se‐
quence; and λ is the preset confidence level.
2) Sharpness

The sharpness index reflects the redundancy of the proba‐
bility distribution intervals [32].

S ( )λ
hp =

1
nsp
∑

i = 1

nsp

( )Dup
i -D lw

i (29)

where S ( )λ
hp is the sharpness index; and Dup

i and D lw
i are the up‐

per and lower boundaries of the interval of the ith data point,
respectively.

The marginal distribution model with smaller reliability
and sharpness values has better effectiveness.

B. Evaluation of Copula Models

The AIC and the Bayesian information criterion (BIC) are
commonly used to evaluate the accuracy of the Copula mod‐
els. The expression of the AIC index has been given in (20).
The BIC index can be expressed as [33]:

IBIC = nml ln np - 2ln Lm (30)

where IBIC is the BIC index; nml is the number of model pa‐
rameters; np is the number of sample points; and Lm is the
value of the maximum likelihood function.

Both the AIC and the BIC are based on the maximum
likelihood function. The AIC introduces a penalty factor for
the complexity of the model. And the BIC further takes into
account the influence of the sample size. The Copula model
with smaller AIC and BIC has better effectiveness.

C. Evaluation of Generated Scenarios

In this paper, the generated scenarios are evaluated from
the following 3 aspects.
1) Energy Score (ES)

The ES index evaluates the difference between the actual
wind power sequence and the generated scenarios [34]. The
scenarios with smaller ES values have better effectiveness.

IES =
1

Nsc
∑

i = 1

Nsc

 xAc
sc - xi

sc -
1

2N 2
sc
∑

i = 1

Nsc∑
j = 1

Nsc

 xi
sc - xj

sc (31)

where IES is the ES index; Nsc is the number of generated
scenarios; xAc

sc is the actual wind power sequence; and xi
sc is

the ith scenario.
2) Time-series Characteristics

In this paper, the time-series characteristics are evaluated
from 2 aspects: the fluctuation characteristics and the auto‐
correlation function (ACF) [35].

The fluctuation is defined as the first-order difference se‐
quence of wind power output, as shown in (32). The quan‐
tile-quantile (Q-Q) diagram and the cumulative probability
curve are introduced to compare the fluctuation characteris‐
tics of the generated scenarios and the actual wind power se‐

quence.

xfluc
t =Ñ1 xt (32)

where xt and xfluc
t are the wind power output sequence and

the corresponding fluctuation sequence, respectively; and Ñ1

denotes the first-order difference computation.
The ACF index is the correlation between wind power se‐

quences x t and x t + k. It intuitively reflects the time-series char‐
acteristics of wind power output. The expression is [35]:

IACF (k)=
E ( )( )xt - μy

t ( )xt + k - μy
t + k

σ y
t σ

y
t + k

(33)

where IACF is the ACF index; μy
t and μy

t + k are the mean values
of xt and xt + k, respectively; σ y

t and σ y
t + k are the standard devi‐

ations; and k is the delay time. When the delay time k = 0,
IACF (0)= 1.

The scenarios with ACF values closer to the actual wind
power sequence have better effectiveness.
3) Spatial-temporal Correlation

In [36], the cross-correlation function (CCF) is introduced
to evaluate the spatial-temporal correlation between different
wind farms. The expression is:

ICCF (k)=
E ( )( )xs1

t - μys1
t ( )xs2

t + k - μys2
t + k

σ ys1
t σ ys2

t + k

(34)

where ICCF is the CCF index; xs1
t and xs2

t + k are the output se‐
quences of 2 wind farms; μys1

t and μys2
t + k are the mean values

of xs1
t and xs2

t + k, respectively; and σ ys1
t and σ ys2

t + k are the stan‐
dard deviations of xs1

t and xs2
t + k, respectively.

When the delay time k = 0, the CCF is the commonly-used
Pearson correlation coefficient, which reflects the overall cor‐
relation of the 2 wind farms. With the change of delay time,
the CCF reflects the correlation with time-series characteris‐
tics.

The scenarios with CCF values closer to the actual power
sequence have better effectiveness.

VII. CASE STUDY

A. Description of Case Study

In this subsection, the historical data from 8 wind farms
in Northwest China is used for analysis. The sampling time
is 3 months (from January 1st to March 31rd), and the sam‐
pling frequency is 96 points per day.

For the power output of the 8 wind farms, the average
Kendall correlation coefficient of each wind farm to other
wind farms is shown in Table I. As shown in Table I, the
correlation of the wind farms is relatively strong.

TABLE I
AVERAGE KENDALL CORRELATION COEFFICIENT OF EACH WIND FARM TO

OTHER WIND FARMS

Wind farm

1

2

3

4

Average correlation

0.78

0.71

0.74

0.69

Wind farm

5

6

7

8

Average correlation

0.74

0.80

0.78

0.68
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To better verify the superiority of the proposed model in
this paper, the simulation work is divided into three parts. In
Section VI-B and VI-C, the comparisons between different
marginal distribution models and different Copula models
are conducted. In Section VI-D, the effectiveness of the gen‐
erated scenarios is evaluated from 3 aspects.

In addition, to verify the efficacy of the proposed method,
based on the data from the 2012 Global Energy Forecasting
Competition (GEFCom 2012) [37], the scenarios are generat‐
ed and evaluated as in Section VI-D. The simulation results
are shown in Supplementary Material Part A.

B. Comparison Between Different Marginal Distribution
Models

Four marginal distribution models are selected for compar‐
ison: ① the ARIMA-GARCH-t model; ② the student-t mod‐
el [8]; ③ the ECDF model [10]; ④ the KDE model [12].

The historical output data of 1 wind farm is taken to carry
out the simulation. The data of the first 85 days are used to
fit the model parameters, while the data of the last 5 days
are used as test data. The reliability and the sharpness index‐
es are used for evaluation.

Figure 4 shows the reliability of the four models. A group
of 5 confidence levels is selected: {55%, 65%, 75%, 85%,
95%}. At each confidence level, the reliability values of the
4 models are plotted in the corresponding direction, and the
distance from the center point intuitively shows the reliabili‐
ty values. The simulation results based on the data of the 3rd

day and all 5 days are shown in Fig. 4(a) and Fig. 4(b),
respectively.

Figure 5 shows the sharpness of the four models. The sim‐
ulation results at the 75% and 95% confidence levels are
shown in Fig. 5(a) and Fig. 5(b), respectively.

As shown in Figs. 4 and 5, both the reliability values and
the sharpness values of the ARIMA-GARCH-t model are
smaller than those of the other 3 models. When the reliabili‐
ty values are small, the probability distribution fitted by the
model is close to the statistical frequency distribution of the
actual wind power sequence. When the sharpness values are
small, the width of the probability distribution intervals is
narrow with low redundancy. The simulation results show
that the ARIMA-GARCH-t model achieves high accuracy as
the marginal distribution model of wind power data. There‐
fore, it can provide more reliable input data for the Copula
model.

Through theoretical analysis, for the student-t, KDE, and
ECDF models, the basic principle is to simulate the long-
term frequency distribution of historical samples and take it
as the PDF of the test data. However, due to the time-vary‐
ing characteristics, the short-term probability distribution of
wind power might be significantly different from the long-
term probability distribution, which may lead to reliability
defects in the other 3 models.

Compared with the other 3 models, the ARIMA-GARCH-
t model has two advantages. First, it can track the time-vary‐
ing process of the probability distribution of wind power. On
this basis, it can provide an accurate PDF for wind power at
each moment, as shown in Fig. 1(b), which contributes to re‐
ducing the reliability values. Second, the model can reflect
the time-series characteristics of wind power output, as
shown in Fig. 1(a). A simple example of the characteristics
is that when the wind power is large at this moment, it is
less likely that the wind power is small at the next moment.
The width of the fitted probability distribution intervals is ef‐
fectively reduced. As a consequence, the sharpness values be‐
come small.

C. Comparison Between Different Copula Models

In this part, 4 high-dimensional Copula models are select‐
ed for comparison: ① the TRVMC model in this paper; ②
the static C-vine Copula model [19]; ③ the static D-vine
Copula model [20]; ④ the high-dimensional Gaussian Copu‐
la model [18].

Taking the AIC and the BIC as the evaluation indexes, the
simulation results are as follows.

As shown in Table II, the TRVMC model has the smallest
AIC and BIC values. The simulation results show that, on
one hand, the TRVMC model has the best accuracy in fitting
the dependence structure of multiple wind farms. On the oth‐
er hand, the complexity of the TRVMC is not much higher
than the other 3 models.

Through theoretical analysis, the TRVMC model is superi‐
or to the other 3 Copula models from 3 aspects.

1) The model does not need to make assumptions on the
correlation between multiple wind farms. The flexible depen‐
dence structure enables the TRVMC model to capture the
spatial-temporal correlation of multiple wind farms effective‐
ly.
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Fig. 5. Comparison of sharpness index of different marginal distribution
models. (a) Comparison under 75% confidence level. (b) Comparison under
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2) The TMC model is used as the pair Copulas, which has
higher accuracy than the classic bivariate Copula models in
describing the complex joint distribution of every 2 wind
farms.

3) The dynamic calculation method of the model parame‐
ters is introduced into the TRVMC model.

Therefore, the model can track the time-varying process
of the correlation between the wind farms. The above factors
greatly enhance the applicability of the TRVMC to wind
farms in different regions and different periods.

D. Evaluation of Output Scenarios of Multiple Wind Farms

In this part, 4 scenario generation models are selected for
comparison: ① model 1, the proposed model in this paper;
② model 2, the independent ARIMA-GARCH-t model; ③
model 3, the static D-vine Copula model [20]; ④ model 4,
the independent KDE model [12]. In models 2 and 4, the
correlations of multiple wind farms are ignored.

The typical characteristics of the 4 models are compared
as in Table III.

Take the wind power data on March 28th as the test data.
A total of 100 scenarios are generated for evaluation. First,
the output scenarios of each wind farm are generated. Then,
the joint-output scenarios of 8 wind farms are obtained
through superposition calculation.

The evaluation work consists of the following 3 parts.
1) Overall Evaluation of Scenarios

In Fig. 6, the generated scenarios of the joint-output of 8
wind farms are shown. The effectiveness of the scenarios is
evaluated by the SE index, as shown in Fig. 7.

As shown in Fig. 7, for each single wind farm, the scenar‐
ios generated by model 1 and model 2 have smaller SE val‐
ues than those of model 3 and model 4. In the case of the
joint-output of 8 wind farms, the scenarios generated by
model 1 have the smallest SE index value. The simulation re‐
sults verify the effectiveness and superiority of the proposed
model in this paper.

Through theoretical analysis, model 2 is the marginal dis‐
tribution of model 1. Therefore, the SE values of the two
models are similar when generating scenarios for a single
wind farm. For the same reason, the SE values of model 3
and model 4 are also similar. The scenarios of 2 random
wind farms are provided in Supplementary Material Part B.

When generating scenarios for the joint-output of 8 wind
farms, the fitting results of the 4 models are quite different.
The comparison can be divided into 2 aspects.

On one hand, compared with model 1 and model 2, model
3 and model 4 ignore the time-series characteristics, i. e.,
the auto-correlation of wind power in the temporal dimen‐
sion. As a result, the scenarios generated by model 3 and
model 4 fluctuate more frequently and sharply. Theoretically,
over a short period of time, the wind power output at the
next moment is correlated with that in the previous period.
For example, when the current wind power is large, the
wind power is unlikely to be quite small at the next mo‐
ment. If the temporal-dimensional correlation of wind power
output is ignored, the adjacent data points in the generated

TABLE III
COMPARISON OF TYPICAL CHARACTERISTICS OF SCENARIO GENEEATION

MODELS

Model

1

2

3

4

Time-series characteristic

√
√

Spatial-temporal correlation

√

√

Fig. 6. Generated scenarios of joint-output of 8 wind farms. (a) Model 1.
(b) Model 2. (c) Model 3. (d) Model 4.

No. of wind farm
1 2 3 4 5 6 7 8 joint

Model 1; Model 2; Model 3; Model 4

0

0.04

0.08

0.12

0.16

SE
 in

de
x

Fig. 7. SE index comparison of each wind farm.

TABLE II
COMPARISON OF AIC AND BIC OF COPULA MODELS

Copula model

TRVMC

C-vine

D-vine

Gaussian

AIC

-40397.3

-27548.0

-29533.4

-24375.6

BIC

-38023.7

-25174.4

-27159.8

-22002.0
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scenarios are more independent. When generating the output
scenario at the next moment, the trend of the previous se‐
quence is ignored, and the randomness of the calculation re‐
sult is stronger. As a result, the generated scenarios fluctuate
more frequently with greater amplitude. In some cases, the
fluctuation range might be much larger than the actual wind
power output sequence, as shown in Fig. 6(c).

On the other hand, compared with model 1 and model 3,
model 2 and model 4 ignore the spatial-temporal correlation
between multiple wind farms. As a result, the scenarios of
different wind farms are more independent. After superposi‐
tion calculation, the fluctuation range of the joint-output sce‐
narios is largely reduced. Theoretically, since the wind farms
are located in the same region, the environmental factors are
similar. Therefore, the output of the wind farms is correlat‐
ed. And the changing process of the output sequences tends
to follow similar trends. If the spatial-temporal correlation is
ignored, in the generated scenarios, when the output of one
wind farm is large, the output of the other wind farms may
be small. In the superposition calculation, the peak output of
one wind farm may be added with the valley output of the
other wind farms. As a result, the fluctuation range of the
joint-output scenarios is largely reduced. In some cases, the
scenarios might not be able to envelop the actual joint-out‐
put sequence, as shown in Fig. 6(b).
2) Evaluation of Time-series Characteristics

In this part, the scenarios of the joint-output of 8 wind
farms are used for simulation.

The fluctuation characteristics of the scenarios are evaluat‐
ed by the Q-Q diagram shown in Fig. 8(a) and the cumula‐
tive probability curve as shown in Fig. 8(b). In the ideal
case, the Q-Q curve is a 45-degree line. Besides, for better
demonstration, only a part of the cumulative probability
curve is shown. The ACF values are shown in Fig. 9.

As shown in Figs. 8 and 9, the fluctuation characteristics
and the ACF of the scenarios generated by model 1 are the
closest to those of the actual joint-output sequence. The sim‐
ulation results prove that the proposed model can effectively
describe the time-series characteristics of wind power output.

Through theoretical analysis, since model 3 and model 4
ignore the time-series characteristics, the adjacent data points
in the generated scenarios are relatively independent. More
specifically, when the wind power is large at this moment,
the wind power might be rather small at the next moment.
As a result, the overall fluctuation range of the scenarios
largely exceeds that of the actual joint-output sequence,
which is directly reflected in the generated scenario, as
shown in Fig. 6. Therefore, the ACF values are always low‐
er than the actual values.

Compared with model 1, model 2 ignores the correlation
of multiple wind farms. Therefore, the fluctuation range of
the joint-output scenarios generated by model 2 is greatly re‐
duced after the superposition calculation. As the direct per‐
formances, in Fig. 6, the scenarios are unreasonably smooth.
In Fig. 8(a) and Fig. 8(b), the Q-Q curve and the cumulative
probability curve of model 2 are almost always higher than
those of the actual joint-output sequence.

3) Evaluation of Spatial-temporal Correlation
In this part, the generated scenarios of 2 wind farms are

used for simulation. The effectiveness of the scenarios is
evaluated by the CCF index. The simulation results are
shown in Fig. 10.

As shown in Fig. 10, the CCF values of scenarios generat‐
ed by model 1 are the closest to the actual values. The simu‐
lation results prove that the proposed model can effectively
describe the spatial-temporal correlation of different wind
farms.

Through theoretical analysis, since model 2 and model 4
ignore the correlation between the wind farms, the CCF val‐
ues are almost always smaller than the actual values. Be‐
sides, the distribution of the CCF curves is relatively dis‐
persed, which indicates that the correlation between the wind
farms in different scenarios is quite different. This is not con‐
sistent with the actual situation.
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Fig. 8. Comparison of probability distribution of fluctuations. (a) Q-Q dia‐
gram of fluctuations. (b) Cumulative probability curve of fluctuations.

Fig. 9. ACF comparison of scenarios generated by different models. (a)
Model 1. (b) Model 2. (c) Model 3. (d) Model 4.
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Although model 1 and model 3 both fit the correlation of
the multiple wind farms by the Copula model, model 1 fur‐
ther considers the time-series characteristics of wind power
output and the time-varying characteristics of the correla‐
tions. As a result, the CCF values of all scenarios generated
by model 1 are close to the actual values. On the contrary,
model 3 only considers the overall correlation of the wind
farms, more specifically, the Kendall correlation coefficient.
Consequently, the CCF values of the scenarios generated by
model 3 are close to the actual values only when the delay
time is 0 and still smaller than the actual value.

VIII. CONCLUSION

In this paper, a scenario generation method for the output
of multiple wind farms considering the time-series character‐
istics and spatial-temporal correlation is proposed. The main
conclusions are as follows.

1) The ARIMA-GARCH-t model can accurately fit the
marginal distribution of wind power output, i.e., the indepen‐
dent CDF. For 1-day wind power output data, the reliability
index value is within 10%, and the sharpness index value is
within 0.1. Therefore, it can provide reliable input data for
the Copula model.

2) Compared with the Copula models in the existing re‐
search, the TRVMC model has higher fitting accuracy for
the joint-distribution of the output of multiple wind farms,
which has smaller AIC and BIC values.

3) The ARIMA-GARCH-t model and the TRVMC model
are combined to generate the output scenarios of multiple
wind farms. The generated scenarios have similar time-series
characteristics and spatial-temporal correlation with the actu‐

al wind power sequences. Specifically, the scenarios have
good SE index performance, and the fluctuation characteris‐
tics, the ACF, and the CCF are similar to the actual wind
power sequence.

Moreover, the proposed scenario generation method in
this paper can be further applied to decision-making prob‐
lems such as dispatch planning and optimization for trading
strategies. Further studies are planned and will be reported.
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