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Potential Assessment of Spatial Correlation to
Improve Maximum Distributed PV Hosting

Capacity of Distribution Networks
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Abstract——Successful distributed photovoltaic (PV) planning
now requires a hosting capacity assessment process that ac‐
counts for an appropriate model of PV output and its uncertain‐
ty. This paper explores how the PV hosting capacity of distribu‐
tion networks can be increased by means of spatial correlation
among distributed PV outputs. To achieve this, a novel PV host‐
ing capacity assessment method is proposed to account for arbi‐
trary geographically dispersed distributed PVs. In this method,
the empirical relation between the spatial correlation coefficient
and distance is fitted by historical data in one place and then
applied to model the joint probability distribution of PV out‐
puts at a neighboring location. To derive the PV hosting capaci‐
ty at candidate locations, a stochastic PV hosting capacity as‐
sessment model that aims to maximize the PV hosting capacity
under thermal and voltage constraints is proposed. Benders de‐
composition algorithm is also employed to reduce the computa‐
tional cost associated with the numerous sampling scenarios. Fi‐
nally, a rural 59-bus distribution network in Suzhou, China, is
used to demonstrate the effectiveness of the proposed PV host‐
ing capacity assessment methodology and the significant bene‐
fits obtained by increasing geographical distance.

Index Terms——Copula, mixed-integer cone programming, PV
capacity assessment, spatial correlation, stochastic program.

I. INTRODUCTION

AS a kind of promising renewable energy sources to re‐
duce the consumption of traditional fossil energy, the

penetration of distributed photovoltaic (PV) has proliferated
rapidly in recent years [1]. However, ever-increasing penetra‐
tion of distributed PV raises the uncertainty of the distribu‐
tion network and causes many emerging technical problems
such as reverse power flow and overvoltage [2] - [5], which
poses severe challenges to distribution network planners.

Therefore, the PV hosting capacity assessment task is now
required to help distribution network planners understand the
maximum PV hosting capacity that can be absorbed by exist‐
ing distribution networks and ensure distribution networks
continue to operate reliably [6].

The aim of hosting capacity assessment task is to derive
the maximum hosting capacity (MHC) of a given distribu‐
tion network without violating operation constraints. For
now, various technologies have been developed to achieve
MHC. In [7] and [8], a Monte Carlo simulation is employed
to determine MHC. In [9] and [10], a sensitive analysis of
feeder characteristics, distributed generation (DG) locations,
and inverter features is presented. Besides simulation and
sensitivity analysis, optimization method is also a main‐
stream approach to obtain precise MHC results under actual
operation environment. In [11] and [12], an AC power flow
based non-linear programming is employed to acquire pre‐
cise MHC results. In [13], the robust optimization is em‐
ployed to tackle the uncertainty of daily PV forecasting.
Based on precise power flow functions and advanced optimi‐
zation methods, many active management schemes like net‐
work reconfiguration [14], voltage and reactive power con‐
trol [15], [16] have also been studied to access their impact
to hosting capacity. Since inflexible operation rules usually
lead to an uneconomic decision in planning, some works try
to balance the DG curtailment risk and investment cost. For
instance, [17] and [18] employ the conditional value at risk
(CVaR) and stochastic dominance technique to gain a more
efficient planning result.

Despite that the impact of network structure and manage‐
ment has been studied in determining MHC, a fundamental
phenomenon that relates to the aggregated PV outputs has
been ignored. Due to the variability of cloud patterns, solar
irradiance usually fluctuates over both space and time, which
leads to a correlation of solar irradiance probability distribu‐
tions among dispersed sites [9]. Thus, the geographical dis‐
persion of the PV stations may significantly affect the aggre‐
gated PV outputs [19]. Recently, this phenomenon has been
observed and verified by many references at transmission
level [20], [21]. In [20], a versatile probability model of mul‐
tiple PV farms is proposed for probabilistic power flow. In
[21], the impact of the smoothing effect on PV forecasting
error is modeled and simulated. However, the discussions in
[20] and [21] are all focused on operation problem, and the
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geographic scale in them is far larger than a distribution net‐
work. For distribution network, [22] and [23] study the joint
probability distribution of spatially distributed clear-sky in‐
dex and apply it in probabilistic load flow simulations. Ref‐
erences [22] and [23] demonstrate that the probability distri‐
butions of vital operation indexes, i. e., node voltages and
power losses, with spatial correlation differ substantially
from those with a non-spatial approach. Thus, the result of
distributed PV hosting capacity should also be impacted by
the spatial correlation. It will result in incorrect capacity as‐
sessment and inappropriate PV installation scheme without
consideration of this correlation [24]. However, there is few
quantitative methods that consider the spatial correlation in
present distributed PV hosting capacity assessment studies.
From the perspective of promoting PV accommodation, it is
urgent to build an efficient MHC assessment model that con‐
siders spatial correlation among adjacent distributed PV out‐
puts in distribution networks.

To this end, this paper proposes a novel PV hosting capac‐
ity assessment method considering spatial correlation among
adjacent distributed PV outputs. In this paper, the empirical
relation between the distance and correlation coefficient of
PV outputs is revealed by a set of real PV output data in
China. Then, the Gaussian Copula is employed to model the
joint probability distribution of distributed PV outputs at N
adjacent stations. Compared with the variance-covariance-
based method [25], the Copula-based joint probability distri‐
bution provides more information about the dependence rela‐
tions. After that, a novel PV hosting capacity assessment
model based on the mixed-integer second-order cone pro‐
gramming (MISOCP) is presented to compute the MHC
with correlated PV output data samples. In the proposed
model, the non-linear AC power flow is represented by a
convex second-order cone programming (SOCP) model to
ensure the accuracy of MHC results under thermal and volt‐
age constraints. Finally, an increasingly tight linear cut is uti‐
lized to shrink the relaxation gap of the second-order cone
relaxation (SOCR) [26], [27] of the power flow function,
and a Benders decomposition algorithm is employed to re‐
duce the whole computational cost. Major contributions of
this paper are summarized as follows.

1) The potential of spatial correlation among distributed

PVs to improve the MHC is investigated by a real case in
Suzhou, China. This provides a feasible option to increase
the ability of distribution networks to host distributed PVs.

2) In order to consider the spatial correlation of arbitrary
geographical speared distributed PVs in the MHC assess‐
ment progress, a novel MISOCP-based PV hosting capacity
assessment model and its solving algorithm are proposed.

The rest of the paper is organized as follows. In Section
II, the spatial correlation model of adjacent distributed PV
outputs is presented. Section III describes the stochastic and
chance-constrained PV hosting capacity assessment model
based on MISOCP. Section IV presents the Benders decom‐
position algorithm and the cutting plane method. Numerical
results are presented in Section V. Finally, conclusions are
drawn in Section VI.

II. SPATIAL CORRELATION MODEL OF ADJACENT

DISTRIBUTED PV OUTPUTS

In this section, the relation between the spatial correlation
coefficient of PV outputs and the distances is revealed by a
historical data set from a real case in Suzhou, China. Then,
the Gaussian Copula is applied to build the joint probability
distribution of arbitrary geographical speared distributed PVs
based on the empirical relation between the spatial correla‐
tion coefficient and distance. Finally, a sampling method is
presented to generate correlated PV output samples from the
joint probability distribution.

A. Data Source

The data for this study are collected from 18 grid-connect‐
ed distributed PV stations in Suzhou, China. Due to the sub‐
tropical monsoon climate, cumulus and broken clouds are of‐
ten occurrences in Suzhou, which results in significant and
frequent variations in the incoming PV outputs. The mea‐
sured PV arrays are located at two districts in Suzhou, i.e.,
Zhangjiagang and Wujiang, with the stations grouped around
31.86°N, 120.55°E and 31.80°N, 120.54°E. These distributed
PV stations spread over an area of approximately 10 km and
15 km and are numbered 1-10 and 11-18, respectively, as
shown in Fig. 1. Measurements of PV output were taken and
recorded at 5-min intervals at each station in the year 2018.
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Fig. 1. Location of measured PV stations. (a) Location of two districts in Suzhou, China. (b) PV stations in Zhangjiagang. (c) PV stations in Wujiang.
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In order to eliminate the useless zero PV outputs at night,
only the data from 9 a.m. to 3 p.m. are used for each day.
Furthermore, to avoid the impact of bad data, the time peri‐
ods with zero PV outputs in the daytime are omitted in the
test, which leads to a data set of 19149 data points for each
location. Since we focus on the correlation and fluctuation
of the PV outputs, the impact of the PV installation capacity
can be omitted by normalizing the PV outputs by their ca‐
pacities. Finally, the correlation matrix and distance matrix
are presented in Figs. 2 and 3, respectively.

By visual inspection, the correlation coefficient in Fig. 2
shows a strong relation to the distance in Fig. 3. That is, the
shorter the distance between neighboring locations is, the
higher the correlation will be.

B. Probabilistic Model and Definitions

The output at each PV station can be regarded as stochas‐
tic variables xi, with probability distribution function fxi

(xi)

and cumulative distribution function Fxi
(xi). Since the distri‐

bution network usually covers a small geographical area, the
PV stations are assumed to be affected by the same type of
cloud patterns and cloud movements. Accordingly, all sto‐
chastic variables x1, x2,, xN can be modeled by the same
probability distribution function.

Then, the Pearson correlation coefficient ρ ij is utilized to
represent the linear correlation between two PV stations:

ρ ij =
Cov(XiXj)

σ iσ j
(1)

where Xi and Xj are the sample sets of xi and xj, respective‐
ly; Cov(XiXj) is the covariance between Xi and Xj; and σ i

and σ j are the corresponding standard deviations. The rela‐
tion between the spatial correlation coefficient and distance
can be described by:

ρ ij = f (ξ ij) (2)

where ξ ij is the distance between two PV stations.
Equation (2) presents a general form of the relation be‐

tween the spatial correlation coefficient and distance. The
specific form of (2) should be determined by the historical
local PV outputs and the real distance among PV stations. In
this paper, we take the data set of Suzhou as an example
and present the fitting result in Fig. 4.

Figure 4 shows that there exists a relation between the
geographical distance and the correlation coefficient of PV

1 2 3 4 5 6 7 8 9 10
No. of PV station

(a)

1
2
3
4
5
6
7
8
9

10

N
o.

 o
f P

V
 st

at
io

n

No. of PV station
(b)

N
o.

 o
f P

V
 st

at
io

n

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.6

0.7

0.8

0.9

1.0

11 12 13 14 15 16 17 18
11
12
13
14
15
16
17
18

Correlation
coefficient

Correlation
coefficient

Fig. 2. Correlation coefficient matrix of PV outputs. (a) PV stations in
Zhangjiagang. (b) PV stations in Wujiang.
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Fig. 3. Distance matrix of PV outputs. (a) PV stations in Zhangjiagang.
(b) PV stations in Wujiang.
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Fig. 4. Empirical correlation coefficient of PV outputs versus distance for
all pairs of locations calculated from historical data in Suzhou, China.

outputs. The relation is similar to that between geographical
distance and the correlation coefficient of solar irradiance. In
our case, when the geographical distance comes to 5 km, the
correlation coefficient of PV outputs decreases to 0.75,
which may have a strong impact on the power flow of distri‐
bution network and the MHC.

To further reveal the relation between the spatial correla‐
tion coefficient and distance and model correlations for arbi‐
trary network configurations, (2) is fitted to the PV output
data in Suzhou as:

ρ ij = 0.3241e-0.2647ξij + 0.6759 (3)

Equation (3) is an exponential decay formulation, which
is consistent with the empirical relation between the clear-
sky index and distance in [22] and [23]. However, the de‐
creasing rate of the curve is lower than that in [22] and [23],
which results from the climate differences and the efficiency
of PV modules.

C. Copula-based Correlation Modeling

The last subsection reveals the relation between the geo‐
graphical distance and correlation coefficient of PV outputs;
however, such relation cannot directly apply to the MHC
evaluation due to the stochastic nature of PV outputs. A com‐
mon approach to tackle the correlation is through sample-
based stochastic programming, which uses large-scale data
samples to represent the correlation among random variables.

When sampling correlated PV output data from N differ‐
ent sites, the joint probability distribution of all PV outputs
is required. A convenient and common approach to obtain
the joint probability distribution is through the Copula func‐
tion. Sklar’s theorem states that an N-dimensional joint prob‐
ability distribution function can be decomposed into several
marginal distribution functions and a Copula function, where
the Copula function describes the dependence relation
among variables. Therefore, the joint cumulative distribution
function F(x1x2...xN) is expressed by the marginal distribu‐
tion function Fxi

(xi) with a Copula function C(×) [28]:

F(x1x2...xN)=C(Fx1
(x1)Fx2

(x2)...FxN
(xN)) (4)

The Copula function C(×) is a multivariate probability dis‐
tribution function using uniform marginals of realizations of
Fx1

(x1)Fx2
(x2)FxN

(xN) as the input. To explain the Copu‐

la approach more specifically, we employ the inverse proba‐
bility integral transform, i.e., xi =F -1

xi
(ui), and reformulate (4)

as:

Fx1x2xN
(F -1

x1
(u1)F -1

x2
(u2)F -1

xN
(uN))=C(u1u2uN) (5)

where ui is the cumulative distribution value of variable xi.
When employing the widely used Gaussian Copula func‐

tion, the joint probability distribution function can be ex‐
pressed as:

C(u1u2uN)=ΦΣ (Φ-1 (u1)Φ-1 (u2)Φ-1 (uN)ρ ij) (6)

where ΦΣ (×) and Φ-1 (×) are the joint probability distribution
function and its inverse cumulative distribution function of
the N-dimensional standard Gaussian distribution with the ze‐
ro mean and correlation matrix Σ, respectively.

Sampling from the joint probability distribution is also

straightforward, and the procedure is as follows: ① draw
samples from N-dimensional Gaussian distribution with the
correlation matrix Σ given by the empirical spatial correla‐
tion model; ② feed the sampled values through Gaussian
distribution to obtain the probability value; ③ feed the prob‐
ability value to the inverse marginal distribution function
F -1

xi
(xi) and get the realizations of each PV output. Further

description of the sampling process can be found in [29]
and [30].

III. MATHEMATICAL FORMULATION OF PV HOSTING

CAPACITY ASSESSMENT MODEL

In order to consider the stochastic and correlated PV out‐
puts while deterring MHC, the PV hosting capacity assess‐
ment problem is formulated through the scenario-based sto‐
chastic programming, where a set of correlated discrete sce‐
narios sampled from the aforementioned Gaussian Copula
model are adopted to represent their uncertainties. In this
section, we present the stochastic PV hosting capacity assess‐
ment model based on the sampling results of the Copula
model, followed by its chance-constrained variant.

A. Stochastic PV Hosting Capacity Assessment Model

This stochastic model can find a proper PV hosting capaci‐
ty that satisfies all constraints in all possible scenarios,
which leads to a conservative hosting capacity result.
1) Objective Function

max∑
iÎΨPV

cPV
i (7)

where cPV
i is the installed PV capacity at bus i; and ΨPV is a

set of candidate buses that are potentially connected to PV
stations. In (7), the objective is to derive an optimal sizing
and location plan to maximize the total PV hosting capacity.
2) PV Capacity Constraints

0£ cPV
i £ cPVmax

i "iÎΨPV (8)

where cPVmax
i is the maximum PV installation capacity at

bus i.
Constraint (8) represents the limit of the maximum PV in‐

stallation capacity of candidate PV installation locations,
which is associated with the local environment. For simplici‐
ty, we assume the distribution network operator (DNO) has
sufficient information, e. g., the maximum available area of
the PV station, about the PV candidate location after a care‐
ful investigation. Thus, the maximum PV installation capaci‐
ty is defined ahead.
3) PV Output Constraints

P PV
is = ηPV

s cPV
i "sÎ S"iÎΨPV (9)

QPV
is =P PV

is tan φ i "sÎ S"iÎΨPV (10)

where P PV
is and QPV

is are the active and reactive PV outputs at
bus i in scenario s, respectively; S is the set of all scenarios;
ηPV

si is the predicted efficiency factor of PV output at bus i in
scenario s; and φ is is the power factor angle of PV output at
bus i in scenario s. Equations (9) and (10) represent the ex‐
pected PV output at bus i in scenario s.

Although the actual PV output can be impacted by the local
temperature, tilt angle, and azimuth of the PV panel, for high‐
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outputs. The relation is similar to that between geographical
distance and the correlation coefficient of solar irradiance. In
our case, when the geographical distance comes to 5 km, the
correlation coefficient of PV outputs decreases to 0.75,
which may have a strong impact on the power flow of distri‐
bution network and the MHC.

To further reveal the relation between the spatial correla‐
tion coefficient and distance and model correlations for arbi‐
trary network configurations, (2) is fitted to the PV output
data in Suzhou as:

ρ ij = 0.3241e-0.2647ξij + 0.6759 (3)

Equation (3) is an exponential decay formulation, which
is consistent with the empirical relation between the clear-
sky index and distance in [22] and [23]. However, the de‐
creasing rate of the curve is lower than that in [22] and [23],
which results from the climate differences and the efficiency
of PV modules.

C. Copula-based Correlation Modeling

The last subsection reveals the relation between the geo‐
graphical distance and correlation coefficient of PV outputs;
however, such relation cannot directly apply to the MHC
evaluation due to the stochastic nature of PV outputs. A com‐
mon approach to tackle the correlation is through sample-
based stochastic programming, which uses large-scale data
samples to represent the correlation among random variables.

When sampling correlated PV output data from N differ‐
ent sites, the joint probability distribution of all PV outputs
is required. A convenient and common approach to obtain
the joint probability distribution is through the Copula func‐
tion. Sklar’s theorem states that an N-dimensional joint prob‐
ability distribution function can be decomposed into several
marginal distribution functions and a Copula function, where
the Copula function describes the dependence relation
among variables. Therefore, the joint cumulative distribution
function F(x1x2...xN) is expressed by the marginal distribu‐
tion function Fxi

(xi) with a Copula function C(×) [28]:

F(x1x2...xN)=C(Fx1
(x1)Fx2

(x2)...FxN
(xN)) (4)

The Copula function C(×) is a multivariate probability dis‐
tribution function using uniform marginals of realizations of
Fx1

(x1)Fx2
(x2)FxN

(xN) as the input. To explain the Copu‐

la approach more specifically, we employ the inverse proba‐
bility integral transform, i.e., xi =F -1

xi
(ui), and reformulate (4)

as:

Fx1x2xN
(F -1

x1
(u1)F -1

x2
(u2)F -1

xN
(uN))=C(u1u2uN) (5)

where ui is the cumulative distribution value of variable xi.
When employing the widely used Gaussian Copula func‐

tion, the joint probability distribution function can be ex‐
pressed as:

C(u1u2uN)=ΦΣ (Φ-1 (u1)Φ-1 (u2)Φ-1 (uN)ρ ij) (6)

where ΦΣ (×) and Φ-1 (×) are the joint probability distribution
function and its inverse cumulative distribution function of
the N-dimensional standard Gaussian distribution with the ze‐
ro mean and correlation matrix Σ, respectively.

Sampling from the joint probability distribution is also

straightforward, and the procedure is as follows: ① draw
samples from N-dimensional Gaussian distribution with the
correlation matrix Σ given by the empirical spatial correla‐
tion model; ② feed the sampled values through Gaussian
distribution to obtain the probability value; ③ feed the prob‐
ability value to the inverse marginal distribution function
F -1

xi
(xi) and get the realizations of each PV output. Further

description of the sampling process can be found in [29]
and [30].

III. MATHEMATICAL FORMULATION OF PV HOSTING

CAPACITY ASSESSMENT MODEL

In order to consider the stochastic and correlated PV out‐
puts while deterring MHC, the PV hosting capacity assess‐
ment problem is formulated through the scenario-based sto‐
chastic programming, where a set of correlated discrete sce‐
narios sampled from the aforementioned Gaussian Copula
model are adopted to represent their uncertainties. In this
section, we present the stochastic PV hosting capacity assess‐
ment model based on the sampling results of the Copula
model, followed by its chance-constrained variant.

A. Stochastic PV Hosting Capacity Assessment Model

This stochastic model can find a proper PV hosting capaci‐
ty that satisfies all constraints in all possible scenarios,
which leads to a conservative hosting capacity result.
1) Objective Function

max∑
iÎΨPV

cPV
i (7)

where cPV
i is the installed PV capacity at bus i; and ΨPV is a

set of candidate buses that are potentially connected to PV
stations. In (7), the objective is to derive an optimal sizing
and location plan to maximize the total PV hosting capacity.
2) PV Capacity Constraints

0£ cPV
i £ cPVmax

i "iÎΨPV (8)

where cPVmax
i is the maximum PV installation capacity at

bus i.
Constraint (8) represents the limit of the maximum PV in‐

stallation capacity of candidate PV installation locations,
which is associated with the local environment. For simplici‐
ty, we assume the distribution network operator (DNO) has
sufficient information, e. g., the maximum available area of
the PV station, about the PV candidate location after a care‐
ful investigation. Thus, the maximum PV installation capaci‐
ty is defined ahead.
3) PV Output Constraints

P PV
is = ηPV

s cPV
i "sÎ S"iÎΨPV (9)

QPV
is =P PV

is tan φ i "sÎ S"iÎΨPV (10)

where P PV
is and QPV

is are the active and reactive PV outputs at
bus i in scenario s, respectively; S is the set of all scenarios;
ηPV

si is the predicted efficiency factor of PV output at bus i in
scenario s; and φ is is the power factor angle of PV output at
bus i in scenario s. Equations (9) and (10) represent the ex‐
pected PV output at bus i in scenario s.

Although the actual PV output can be impacted by the local
temperature, tilt angle, and azimuth of the PV panel, for high‐
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lighting the impact of smoothing effect, we assume the PV out‐
puts in different scenarios can be represented by a product of
the efficiency coefficient of a PV panel ηPV

si and PV capacity.
4) Power Balance Constraints

∑
k Î δ( j)

Pjks -∑
iÎ π( j)

(Pijs - I͂ ijsrij)=P PV
js -P L

js "sÎ S"jÎΨn (11)

∑
k Î δ( j)

Qjks -∑
iÎ π( j)

(Qijs - I͂ ijs xij)+ bjV͂js =QPV
is -QL

is

"sÎ S"jÎΨn (12)

where Ψn is the set of all buses; δ( j) and π( j) are the sets of
upstream and downstream buses of bus j, respectively; Pijs

and Qijs are the active and reactive power flows of branch ij
in scenario s, respectively; I͂ ijs is the squared current of
branch ij in scenario s; rij and xij are the resistance and reac‐
tance of branch ij, respectively; P L

js and QL
js are the active

load demand at bus j and the reactive load demand at bus i
in scenario s, respectively; and V͂js is the squared voltage
magnitude at bus j in scenario s.

Equations (11) and (12) denote the active and reactive
power injections at each bus in scenario s. The left-hand
side of (11) and (12) represents the power flow from bus i
to its directly connected bus j, and the right-hand side repre‐
sents the power injection of bus i.
5) Power Flow Constraints

V͂js = V͂is - 2(Pijsrij +Qijs xij)+ I͂ ijs (r 2
ij + x2

ij) "sÎ S"ijÎΦb

(13)
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where Φb is the set of all branches.
Equation (13) describes the voltage drop along branch ij,

and (14) is the SOCR formula of the AC power flow model
of a radial distribution network.
6) Bus Voltage Constraints

V͂subs =V 2
sub "sÎ S (15)

(V min
j )2 £ V͂js £(V max

j )2 "sÎ S"jÎΨn (16)

I͂ ijs £(I max
ij )2 "sÎ S"ijÎΦb (17)

where I max
ij is the upper limit of the current of branch ij; V͂subs

is the squared voltage magnitude at substation bus in scenar‐
io s; Vsub is the voltage magnitude at substation bus; and
V min

j and V max
j are the lower and upper limits of the squared

voltage magnitude at bus j, respectively.
Equation (15) limits the voltage at the low-voltage level

of the substation. The security constraint of the distribution
network is represented by (16) and (17).

Comprising (7)-(17), the stochastic PV hosting capacity as‐
sessment model is in the formulation of SOCP. Note that in
the stochastic model, the constraint will be satisfied in all
the scenarios, i.e., no PV curtailment occurs in any circum‐
stances.

B. Chance-constrained SOCP Model

The stochastic PV hosting capacity assessment model rep‐

resents the correlated PV outputs by adopting a large num‐
ber of possible scenarios. Nevertheless, the assumption of
full accommodation in all scenarios leads to a conservative
and uneconomic PV integration. In fact, with the help of ad‐
vanced distribution automation and active distribution man‐
agement, DNO can control the PV output in the extreme sce‐
narios and curtail the PV output if necessary. Thus, the ex‐
treme scenario in the generated sample set can be ignored
for achieving economic PV hosting capacity. To simulate the
PV curtailment, we adopt the chance-constrained program‐
ming and build a chance-constrained PV hosting capacity as‐
sessment model by replacing the deterministic power bal‐
ance constraints (11) and (12) with the joint chance con‐
straint (18).
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Pjks-∑
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(Qijs - I͂ ijs xij)+ bjV͂js =QPV
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is ³ 1- δ

"sÎ S"iÎΨn

(18)

where δ is the curtailment probability. The joint chance con‐
straint (18) guarantees that the constraint violation probabili‐
ty is less than a predefined risk level, i.e., the power balance
constraints (11) and (12) will not exceed in (1- δ)´ 100%
scenarios. The risk level δ provides a natural and direct way
to reflect the risk preferences of the DNO. Generally, a high-
risk level leads to a high PV penetration level, vice versa.
Therefore, by adjusting the risk level, the DNO can obtain a
trade-off between the curtailment risk and PV penetration
level.

Although the chance-constrained programming naturally
represents the operation risk in the model, the introduction
of (18) also results in an obstacle in solving the capacity as‐
sessment problem [31]. Reference [29] suggests that by ex‐
tracting a finite set of scenarios from the original distribu‐
tion and then imposing chance constraints on those sampled
scenarios, the chance-constrained optimization can be solved
by an MISOCP solver. Specifically, a binary variable ws is
introduced for each scenario, then (18) can be reformulated
through Big-M algorithm as:
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ì

í

î

ï

ï
ïï

ï

ï
ïï

-Mws £ ∑
k Î δ( j)

Qjks-∑
iÎ π( j)

(Qijs - I͂ ijs xij)+ bjV͂js -QPV
is +QL

is

"sÎ S"ijÎΦb∑
k Î δ( j)

Qjks-∑
iÎ π( j)

(Qijs - I͂ ijs xij)+ bjV͂js -QPV
is +QL

is £Mws

"sÎ S"ijÎΦb

(20)
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∑
sÎ S

πsws£ δ wsÎ{01} (21)

where M is a sufficiently large number; and πs is the proba‐
bility of the scenario s. If ws is set to be 1, the associated
constraint in the scenario s is ignored due to the large
enough M in the Big-M algorithm. The total probability of
scenario omission is constrained by (21). By restricting the
number of ws being 1, (21) works as an equivalence of
chance constraint.

Remark: if δ= 0, we can obtain ws = 0 for all scenarios,
which reduces the chance-constrained PV hosting capacity
assessment model to the stochastic model.

As a result, the chance-constrained PV hosting capacity as‐
sessment problem is converted into a large-scale determinis‐
tic MISOCP problem. Although the MISOCP problem is
easy to understand and program, numerous sampling scenari‐
os are usually required to obtain an accurate approximation
of the multivariate distribution, which leads to a large num‐
ber of binary variables. Thus, the associated MISOCP prob‐
lem cannot be efficiently solved by the off-the-shelf
MISOCP solvers. It is necessary to develop an advanced al‐
gorithm to solve this problem.

IV. SOLUTION METHOD

Benders decomposition algorithm, which is a master-sub‐
problem structured method, has been widely used in comput‐
ing the scenario-based stochastic mixed-integer linear prob‐
lem [32]-[34]. Herein, we extend the basic Benders decom‐
position algorithm to compute the stochastic MISOCP formu‐
lation and its chance-constrained variant. Furthermore, to im‐
prove the exactness of the SOCR, the cutting plane method
[26] is introduced subsequently.

A. Benders Decomposition for Chance-constrained PV Host‐
ing Capacity Assessment Problem

1) Subproblem
The role of subproblem in the Benders decomposition is

to check the feasibility of planning results determined by the
master problem in each scenario and feed the feasibility cut
to the master problem at the next iteration.
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(22)

where Θk
s is the objective of the subproblem in scenario s at

iteration k; ε+is, ε
-
is, τ

+
is, τ

-
is are the non-negative slack vari‐

ables of power balance constraints at bus i in scenario s;
ĉPVk

i is the fixed value of first-stage variables cPV
i at iteration

k; and μk
is is the dual variables for (25) at iteration k.

By introducing non-negative slack variables ε+is, ε
-
is, τ

+
is,

and τ -is to the power balance constraints (12) and (13), the
feasibility of the subproblem is ensured. The objective of the
subproblem is to minimize the sum of all slack variables. If
the objective Θk

s is larger than a preset threshold, e.g., 0 in
this paper, then the feasibility cut (23) will be generated and
added into the master problem.

-Mws £ Θ̂k
s +∑

iÎΨPV

μk
is (cPV

i - ĉPVk
i )£Mws

(23)

where Θ̂k
s is the optimal objective of the feasibility check

subproblem in scenario s at iteration k. The binary variable
ws indicates the inclusion or omission of the feedback from
the feasibility check subproblem in scenario s. If ws is set to
be 1, the Benders cut of scenario s will be ignored. Note
that since the objective function (7) only contains the in‐
stalled PV capacity, there is no need to return optimality
cuts from subproblems to the master problem. We only
check the feasibility of the subproblem in each scenario and
feed the feasibility cut.
2) Master Problem

The master problem aims to maximize the total PV host‐
ing capacity, concerning constraints (8) - (10), (21), and the
feasibility cut (23). The bilinear master problem of iteration
k is described as:

{max∑
iÎΨPV

cPV
i

s.t. (8)-(10)(21)(23)
(24)

B. Iterative Correction of SOCR Based on Cutting Planes

The power flow constraint (14) is an SOCR formula,
while the SOCR may not be bounded under some circum‐
stances. To address this issue, we look back to the original
power flow formulation before SOCR as in (25).

I͂ ijs =
P 2

ijs +Q2
ijs

V͂is

"sÎ S"ijÎΦb (25)

References [35], [36] demonstrate that in a radial network,
when the objective function is convex and monotonically in‐
creasing in each active power injection and the initial opti‐
mal power flow is feasible, (25) can be replaced by (26),
known as SOCR, and further reformulated as constraint (14).

I͂ ijs ³
P 2

ijs +Q2
ijs

V͂is

"sÎ S"ijÎΦb (26)

However, due to the reversed power flow resulted from
high PV penetration level, the objective function in the host‐
ing capacity assessment problem is not monotonically in‐
creasing with the power injection [37], [38], but leads to
over voltage, which obstructs the application of SOCR.
Therefore, a cutting plane method is introduced to guarantee
the exactness of SOCR [26].

The key idea of cutting plane method is to keep the
branch currents at the minimum value when the objective
function reaches the optimal. Thus, the branch current would
not exceed its theoretical value, and the SOCR (26) will be
tight and exact. To this end, linear inequalities are iteratively
added to the relaxation and thus the gap between the optimal
solution of the non-relaxed problem and the relaxed problem
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is eliminated. The cutting plane at iteration k + 1 is ex‐
pressed as [26]:

∑
ijÎΦB

rij I͂
k + 1
ijs £∑

ijÎΦB

rij

(P k
ijs)

2 + (Qk
ijs)

2

V͂ k
is

"sÎ S (27)

C. Overall Procedure for Solving Capacity Assessment Model

The whole procedure to solve the stochastic and chance-
constrained PV hosting capacity assessment problem is sum‐
marized as follows.

1) Initialization
Set the iteration counter k = 0, the lower bound LB = 0, the

upper bound UB = +∞, and the optimality tolerance ζ = 0.01.
2) Iteration
Step 1: compute the master problem. Derive its optimal ca‐

pacity solution ĉPVk
i , and the scenario indicator wk

s by an
MISOCP solver. Update the upper bound UB=∑

iÎΨPV

ĉPVk
i .

Step 2: for all scenarios, solve the feasibility check sub‐
problem with cutting planes integrated by MISOCP solver,
and derive the optimal value Θ̂k

s . If Θ̂k
s is larger than zero,

i. e., the original problem is infeasible, then generate the
Benders feasibility cut (23) and feedback to the master prob‐
lem.

Step 3: construct an MISOCP problem for deriving the
LB. This problem is composed of the objective function (7)
and constraints (8)-(10), (13)-(17), (19), (20) with fixed bina‐
ry variable ŵs from the master problem and the cutting
planes. Then, solve this problem and obtain its optimal ob‐
jective. Finally, update LB.

3) Stop criteria
If |UB- LB|/LB£ ζ, terminate with the PV capacity solu‐

tion associated with the latest lower bound LB. Otherwise,
update the iteration k = k + 1 and return to Step 1.

V. CASE STUDIES

In this section, the impact of spatial correlation of PV out‐
puts on the MHC of distribution networks is demonstrated
by the numerical tests based on the proposed PV hosting ca‐
pacity assessment model and algorithm. First, the Gaussian
Copula-based PV output sampling method is demonstrated.
Then, a 59-bus 10 kV rural distribution network near Su‐
zhou is used to show the difference before and after the cor‐
relation is considered in the capacity assessment scheme.
The effectiveness of the proposed PV hosting capacity as‐
sessment model and algorithm is also demonstrated.

All the algorithms are executed on an HP Z840 worksta‐
tion with Intel Xeon E5-2650v4 CPU running at 2.20 GHz
with 16 GB RAM. The proposed model is programmed in
MATLAB 2018b. The hosting capacity assessment model,
along with the Benders decomposition algorithm, and the
cutting plane method are programmed and solved using the
General Algebraic Modeling System (GAMS) [39] software
with commercial solver CPLEX 12.10.

A. Correlation Model Fitting and Performance

The Gaussian Copula-based joint probability distribution
modeling method is tested based on the empirical correlation

of the 18 PV stations in Suzhou.
The quantile-quantile (Q-Q) plot and scatter plot for two

arbitrary locations (PV1 and PV2) are given in Fig. 5 to vi‐
sualize the fitting result. Since it is difficult to visualize
more dimensions, only one location pair (PV1 and PV2) is
presented in Fig. 5. Figure 5(a) and (b) demonstrates that the
marginal distributions generated from the Copula-based
method are the same as the measured data. The scatter plots
in Fig. 5(c) and (d) show that the sampled result of the Cop‐
ula-based method is consistent with the shape of measured
result of the joint probability distributions. In summary, it is
clear that the Copula-based method is able to tackle the cor‐
relation and fit the general shape of the joint probability dis‐
tribution.

B. Hosting Capacity Assessment of a Real Distribution
Network

The hosting capacity assessment test is twofold. First, the
impact of the spatial correlation of PV outputs on the MHC
based on the fixed and varied PV allocation cases is present‐
ed. Then, four plans with varied mean station separation dis‐
tances are tested to demonstrate the impact of station separa‐
tion distances on the MHC.

The tested distribution network is a typical 59-bus 10 kV
rural distribution network in Suzhou. The single-line geo‐
graphic diagram of the distribution network is depicted in
Fig. 6. The voltage range of all nodes is set to be [0.931.07]
p.u. and the voltage of the substation node is set to be 1.0
p.u.. In this distribution network, there are 15 PV stations, lo‐
cated at buses 8, 14, 15, 19, 22, 24, 29, 35, 40, 41, 46, 50,
54, 55, and 59, respectively. The distance matrix and the cor‐
responding correlation matrix of PV outputs of these candi‐
date buses are shown in Fig. 7. The loading level has a sig‐
nificant impact on the hosting capacity, herein, the average
load [40] at daytime (9 a.m. to 3 p.m.) is employed to ob‐

(a) 

0 0.2 0.4 0.6 0.8 1.0
Measured data

(b) 

0 0.2 0.4 0.6 0.8 1.0
Measured data

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
ed

 d
at

a

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
ed

 d
at

a
(c) 

0 0.2 0.4 0.6 0.8 1.0
Measured data of PV1

(d) 

0 0.2 0.4 0.6 0.8 1.0
Measured data of PV1

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
ed

 d
at

a 
of

 P
V

2

0.2
0.4
0.6
0.8
1.0

Sa
m

pl
ed

 d
at

a 
of

 P
V

2
Fig. 5. Q-Q plot and scatter plot for PV1 and PV2. (a) Q-Q plot of mea‐
sured data and sampled data of PV1. (b) Q-Q plot of measured data and
sampled data of PV2. (c) Scatter plot of sampled data of PV1 and PV2. (d)
Scatter plot of measured data of PV1 and PV2.
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tain the most common PV hosting capacity. The line appar‐
ent power is set to be 5.03 MW, and other line parameters
can be found in [37].

1) Impact of Spatial Correlation of PV Outputs on MHC
Two cases, i.e., fixed and varied, are tested in this part to

show the impact of spatial correlation on the MHC.
1) Fixed case: one arbitrarily chosen PV output is used as

a representative for the whole network.

2) Varied case: the Gaussian Copula with the correlation
value from the spatial correlation model in (3) is applied to
model the PV output at each PV station.

In the fixed case, the PV outputs are sampled directly
from an arbitrary chosen marginal distribution and applied to
all sites. In the varied case, correlated values are sampled
from the joint N-dimensional distribution, using the Gauss‐
ian Copula. The fixed case is a benchmark, which shows the
assessment result of the PV hosting capacity without consid‐
ering the spatial correlation, i.e., the correlation coefficient is
regarded to be 1, while the varied case shows the PV host‐
ing capacity assessment result considering the spatial correla‐
tion (correlation declines with the distance). The stochastic
PV hosting capacity assessment model is tested first to show
the impact of PV correlation on stochastic capacity assess‐
ment result. Then, the chance-constrained PV hosting capaci‐
ty assessment model is tested to show the impact of curtail‐
ment risk level on the chance-constrained capacity assess‐
ment result. For each case, one thousand scenarios are gener‐
ated to achieve the final MHC result.

The hosting capacity assessment results of the two cases
are given in Table I. It can be observed from Table I that the
total hosting capacities in the fixed case are highly underesti‐
mated than that in the varied case. It is because the high spa‐
tial correlation will aggravate the fluctuation of the total PV
outputs and leads to more extreme scenarios. The results giv‐
en by full correlation assumption will waste branch capacity
of the existing distribution network and result in higher in‐
vestment cost than actual cases. Therefore, it is important to
take spatial correlation into consideration when assessing the
PV hosting capacity of the distribution network.

Then, the impact of chance constraints is explored by solv‐
ing the chance-constrained PV hosting capacity assessment
model with Benders decomposition. The MHCs at each can‐
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TABLE I
HOSTING CAPACITY ASSESSMENT RESULTS OF 59-BUS DISTRIBUTION

NETWORK WITH AND WITHOUT SPATIAL CORRELATION

Bus No.

8

14

15

19

22

24

29

35

40

41

46

50

54

55

59

Total

Hosting capacity assessment result (MW)

Fixed case

2.857

1.207

0

0.740

0.143

2.636

0

0

0

0

0

0.672

0

0

0

8.255

Varied case

0.259

0

2.438

4.037

0

2.257

0

0

0

0

0

0

0

4.971

0

13.962
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didate bus with curtailment risk levels of 95%, 90%, 85%,
and 80% are presented in Fig. 8(a). Note that the chance-
constrained PV hosting capacity assessment model reduces
to the stochastic model when the risk level δ is set to be 0.
Figure 8(b) shows the total hosting capacity increases mono‐
tonically with the curtailment risk level, and the impact of
correlation is even more pronounced in cases where the
chance constraints are considered. Hence, by adjusting the
curtailment risk level, the DNO can have a balance between
the cost of the expansion plan which results in a high-capaci‐
ty system and the desired level of security against risks.

2) Impact of Station Separation Distance on MHC
In order to test the impact of increasing station separation

distances on the MHC of PV outputs, four different alloca‐
tion plans for eight PV stations, shown as Fig. 9, are tested
in this case study. The mean station separation distance is
used to represent the degree of separation, and a larger mean
station separation distance means a larger separation. In this
case study, the mean station separation distances for alloca‐
tion plans A, B, C, and D are set to be 0.87, 2.16, 3.05, and
4.26 km, respectively. The exponential correlation function
in (3) is also employed to calculate the spatial correlation
among stations in the network.

Similar to the fixed and varied cases in the last part, we
also consider the fixed and varied cases in each plan.

Hosting capacity assessment results of the two cases with
different mean station separation distances are given in Table
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II. Similar to the hosting capacity assessment result in the
last part, it can be seen from Table II that the total hosting
capacity will be underestimated if the varied spatial correla‐
tion is not considered. Furthermore, by comparing the hosting
capacity assessment results of plans A to D, we find that the re‐
sults have a monotonically increasing relation with the mean
station separation distance. That is because PV can be installed
in different feeders when the geography room is not limited.

Such separation significantly enhances the hosting capaci‐
ty of the distribution network. Comparing the fixed and var‐
ied cases with different separation distances, we can also
find that the increase of hosting capacity is even more pro‐
nounced when considering the distance-induced correlation,
specifically, the hosting capacity increases about 10%-27% if
the correlation is related to the geographical distance. And a
higher separation distance leads to a higher increase.
3) Computational Performance

Table III provides the computational time of the Big-M
and Benders decomposition algorithms with different curtail‐
ment risk levels.

From Table III, it can be observed that the Benders de‐
composition algorithm significantly accelerates the overall
computation progress. Specifically, the Benders decomposi‐
tion algorithm is about twice as fast as the traditional Big-M
algorithm in both fixed and varied cases. Compared with the
full accommodation scenario (1- δ = 100%), the introduction
of chance constraints significantly increases the computation‐
al time. However, the variation of the curtailment risk level
has little impact on the computational time of the traditional
Big-M algorithm. On the contrary, the Benders decomposi‐
tion algorithm is more sensitive to the curtailment risk level.
A larger risk level leads to a heavier computational burden.
It is understandable because a larger risk level brings more
integer variables and thus increases computational costs. Al‐

though the computational time is longer than an hour in
most cases, the proposed model and algorithm are still us‐
able for a distribution network planning problem.

The Gaussian Copula fitting and sampling are employed
on the same platform. According to our experience, the run‐
ning time of the fitting and sampling program is less than 1
min, which is negligible in the whole hosting capacity as‐
sessment process.

VI. CONCLUSION

This paper investigates the potential of spatial correlation
to improve the MHC of PV in the distribution network. At
first, an exponential model is fitted to the empirical correla‐
tion of PV output samples in Suzhou, China. Then, the
Gaussian Copula is employed to build the joint probability
distribution of PV outputs. After that, a stochastic and
chance-constrained PV hosting capacity assessment model is
proposed to evaluate the impact of the spatial correlation on
the PV hosting capacity, and the Benders decomposition al‐
gorithm is applied to reduce the computational cost.

Numerical results on a 59-bus rural distribution network
in Suzhou, China, verify the effectiveness of the proposed
model. The testing results give us four useful insights: ① it
demonstrates that the correlation of PV outputs in a medium
geographical size (10 km) has an exponential decay relation
with the distance between two PV sites; ② it demonstrates
that the correlation of PV outputs has a strong impact on the
PV hosting capacity for the distribution network, specifical‐
ly, the hosting capacity would be much higher when consid‐
ering the relation of spatial correlation and geographical dis‐
tance; ③ the curtailment risk level of PV outputs also has a
significant impact on the hosting capacity; ④ the proposed
hosting capacity assessment algorithm can consider the corre‐
lation among distributed PVs and figure out the hosting ca‐
pacity effectively and efficiently.

Future studies include considering the temporal correlation
of PV outputs, taking active distribution management and in‐
tegrated energy system into account, discussing the impact
of energy storage on the hosting capacity, etc.
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