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Frequency-constrained Co-planning of Generation
and Energy Storage with High-penetration
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Abstract——Large-scale renewable energy integration decreases
the system inertia and restricts frequency regulation. To main‐
tain the frequency stability, allocating adequate frequency-sup‐
port sources poses a critical challenge to planners. In this con‐
text, we propose a frequency-constrained coordination planning
model of thermal units, wind farms, and battery energy storage
systems (BESSs) to provide satisfactory frequency supports.
Firstly, a modified multi-machine system frequency response
(MSFR) model that accounts for the dynamic responses from
both synchronous generators and grid-connected inverters is
constructed with preset power-headroom. Secondly, the rate-of-
change-of-frequency (ROCOF) and frequency response power
are deduced to construct frequency constraints. A data-driven
piecewise linearization (DDPWL) method based on hyperplane
fitting and data classification is applied to linearize the highly
nonlinear frequency response power. Thirdly, frequency con‐
straints are inserted into our planning model, while the unit
commitment based on the coordinated operation of the thermal-
hydro-wind-BESS hybrid system is implemented. At last, the
proposed model is applied to the IEEE RTS-79 test system. The
results demonstrate the effectiveness of our co-planning model
to keep the frequency stability.

Index Terms——Battery energy storage system (BESS), data-
driven piecewise linearization, generation planning, multi-ma‐
chine system frequency response, unit commitment, wind farm.

I. INTRODUCTION

AS serious energy crisis spreads in the world, renewable
energy sources (RESs) are deemed as the best way to

achieve the sustainable development [1]. Besides the deploy‐
ment of large-scale power plants in the transmission net‐
work, RESs have also been efficiently utilized in the distribu‐
tion network, microgrid [2], and even ship system [3] nowa‐
days. However, RES-based power plants are connected to

the power grid through converters, which decouple the fre‐
quency from the speed of rotating machines. Thus, these
electronic devices neither provide inertia response nor partici‐
pate in the auxiliary service market. With high penetration of
renewable energy in the future, the extensive replacement of
synchronous generators (SGs) decreases the system inertia
and weakens the frequency regulation. Frequency stability
has recently attracted the interest of researchers.

Nowadays, massive frequency response modes are exca‐
vated to supply adequate system inertia and maintain fre‐
quency within the acceptable range. RES-based power plants
are studied to obtain virtual inertia and primary frequency re‐
sponse (PFR) by integrating frequency control loops. In this
respect, various control strategies such as deloading and
overproduction have been developed to facilitate the provi‐
sion of frequency support from variable speed wind turbines
(VSWTs) [4]-[7]. In addition, the battery energy storage sys‐
tem (BESS) can also respond to the power imbalance within
milliseconds through fast-dependent frequency responses [8].
In order to quickly stabilize the frequency of different areas,
the tie-line power is adopted as the additional input signal of
demand response [9]. However, the impacts of synthetical
frequency responses on both operation and planning prob‐
lems are not yet fully understood.

In recent years, frequency-constrained problems mainly
concentrate on optimal operation such as economic dispatch
(ED) and unit commitment (UC). For instance, [10] inserts
nonlinear frequency deviation constraints into AC optimal
power flow (ACOPF) to keep the frequency stability. Consid‐
ering credible generation outages, [11] takes full usage of
primary frequency reserves to satisfy the minimum frequen‐
cy deviation. However, unit states are totally neglected in
ED problems. In this vein, [12] proposes a mixed-integer lin‐
ear UC to co-optimize the energy production, inertia-depen‐
dent fast frequency responses, and PFR at the same time.
Virtual inertia and droop controls are adopted to reduce the
frequency support from SGs in [13]. Some researches [14],
[15] also design the frequency reserve market to provide an‐
cillary services and maximize benefits. However, dynamic
characteristics of PFR from SGs are omitted in such re‐
searches, which possibly overstates response speeds and
available amounts of PFR. Furthermore, a stochastic UC
model that incorporates both SGs and grid-connected invert‐
ers to obtain synthetical frequency responses is proposed in
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[16] to investigate the dynamic frequency in low-inertia pow‐
er systems. Considering the large-scale wind power partici‐
pating in frequency responses, [17] proposes a UC model
with respect to coordination of steady state and transient
state based on an inner-outer iterative optimization method.
However, frequency responses from hydro units are rarely
considered in existing studies, whereas a fast inertial re‐
sponse and PFR can be timely obtained through hydro tur‐
bines and governors [18].

With respect to planning problems, the frequency stability
has been included into the siting and sizing issues of BESS.
For instance, the contribution of inertia and droop controls
from BESS is analyzed in [19]. An operation-constrained
BESS planning model is presented to supply enough primary
frequency reserves in [20], [21], whereas the frequency sta‐
bility cannot be guaranteed due to the basic indices such as
frequency nadir, rate-of-change-of-frequency (ROCOF), and
quasi steady-state frequency deviation are totally omitted.
Furthermore, a frequency-constrained BESS expansion mod‐
el with respect to frequency nadir is proposed in [22], where
a linear ramp speed replaces the dynamic characteristics of
primary frequency feedbacks. Also, overlooking frequency
responses from RES-based power plants incurs unnecessary
BESS allocation. Besides, recent developments in generation
expansion planning (GEP) problem mainly highlight the
need for RES integration [23], [24], combination with short-
term operation [1], system reliability [25], and market design
[26]. In the future low-inertia power systems, traditional
GEP methods cannot make a trade-off between economy and
frequency stability, which possibly causes serious frequency
collapse ultimately.

In this paper, we mainly focus on RES planning that in‐
stalls wind farms to facilitate renewable consumption. RES
planners should impose frequency limits to secure frequency
stability and avoid system collapse. In practice, few existing
studies and projects have considered the frequency stability
when making RES planning decisions. Without such consid‐
erations, a system planner tends to overinvest in RES, while
the total delivery of inertial and PFR may be reduced in real
time, leading to serious frequency deviations or renewable
production curtailment. Therefore, a frequency-constrained
planning model of generation and BESS has been coordinat‐
ed to simultaneously satisfy the frequency stability and pow‐
er consumption requirements. In general, the main contribu‐
tions are threefold.

1) A novel multi-machine system frequency response (MS‐
FR) model that incorporates thermal units, hydro units, wind
farms, and BESS is proposed to analyze the dynamic fre‐
quency trajectory. On this basis, the multi-machine aggrega‐
tion method is utilized to aggregate the MSFR model into an
equivalent single-generator by converting all control loops to
a thermal form. Meanwhile, the available frequency response
power and power-headroom constraints are both constructed
to activate sufficient PFR.

2) Two frequency constraints, namely the limitation on
ROCOF and frequency nadir, are deduced from aggregated
MSFR (AMSFR) model. The frequency nadir is further trans‐
formed into a system frequency response power constraint

(FRPC). Furthermore, a data-driven piecewise linearization
(DDPWL) method based on hyperplane fitting and data clas‐
sification is proposed to linearize the highly nonlinear FRPC
by solving a mixed-integer second-order cone problem.

3) A frequency-constrained coordination model of genera‐
tion expansion planning and energy storage installation
(GEP&ESI) is presented to supply enough system inertia
and activate PFR. The short-term UC is inserted into a long-
term planning procedure considering renewable portfolio
standards (RPSs) to obtain high-penetration renewable inte‐
gration. Meanwhile, a hybrid thermal-hydro-wind-BESS op‐
eration model is proposed to promote renewable consump‐
tion, which constructs extra water constraints for cascading
hydro units. Afterwards, linearization methods comprising
the big-M method, reformulation linearization technique
(RLT), and McCormick envelopes are adopted to deal with
bilinear constraints, which ultimately forms a mixed-integer
linear optimization problem. Primary frequency reserves are
also confined to satisfy the power-headroom requirement in
the proposed MSFR model.

The remainder of this paper is organized as follows. The
MSFR model is introduced in Section II. A DDPWL method
is proposed and discussed in Section III. Then the GEP&ESI
model that incorporates frequency limitations is presented in
Section IV. The case studies are conducted and explained in
Section V. Section VI concludes this paper.

II. MSFR MODEL

A. Frequency Responses from Wind Farms

RES-based inverters are always used to supply both iner‐
tial and droop controls through virtual synchronous machine
(VSM) technique. In brief, the virtual inertia mimics syn‐
chronous inertia and releases over-generated power within
milliseconds [6]. However, the maximum power point track‐
ing (MPPT) mode designed for wind farms cannot supply
PFR since no power-headroom exists in the face of power
imbalance. In this vein, the de-loading operation should be
adopted instead, which ensures sufficient spaces to regulate
output power based on the rotor speed adjustment.

The frequency response power from wind farms can be ex‐
pressed as (1) in the time domain. Meanwhile, the time de‐
lay is inserted into the transfer function in the frequency do‐
main, as shown in (2). Since the frequency response power
depends on de-loading operation, the maximum amounts of
PFR are limited by renewable curtailment in constraint (3),
which relates to the droop constant and the maximum fre‐
quency deviation at the same time.

Dpw (t)=-2Hw

dDf (t)
dt

-DwDf (t) (1)

Dpw (s)

Df (s)
=
-2Hw s-Dw

1+ Tw s
(2)

pc
wt ³Dw pf

wtλwDfmax (3)

where Df (t) and Df (s) are the frequency deviations in the
time domain and frequency domain, respectively; Dpw (t) and
Dpw (s) are the total frequency response power in the time do‐
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main and frequency domain, respectively; pf
wt and pc

wt are
the forecasted output power and curtailment power for wind
farm w at time t, respectively; Dfmax is the maximum frequen‐
cy deviation; Hw, Dw, and Tw are the inertia constant, droop
constant, and response time of wind farm w, respectively;
and λw is the reserve coefficient, which can be used to regu‐
late the preset power-headroom for PFR.

B. Frequency Responses from BESS

In this paper, Lithium-ion batteries are selected as BESS
devices, which activate quick PFR within 40 ms and keep
the duration time from few minutes to hours [1]. In general,
the dynamic characteristics of exchanging power between
BESS and the power grid can be represented by the first-or‐
der transfer function as shown in (4).

DPe (s)

Df (s)
=

Ke

Re (1+ Te s)
(4)

where DPe (s) is the frequency response power of BESS e in
the frequency domain; and Ke, Re, and Te are the gain coeffi‐
cient, droop constant, and response time of BESS e, respec‐
tively.

Since the droop control is adopted to supply PFR, the
timely frequency response power should be limited within
the preset power-headroom. Similarly, the power-headroom
depicted in Fig. 1 can guarantee sufficient responses. The
left block refers to normal operation, while the right one re‐
lates to the frequency regulation. It can be found that BESS
charges (point A) or discharges (point B) at the preset power
in normal operation. With respect to the positive power im‐
balance (due to generator contingency or demand increase),
BESS is forced to increase the output power for supplying
an upward frequency response. This can be obtained through
two ways, i.e., ① increasing the discharging power; and ②
reducing the charging power even transforming to the dis‐
charging state. That means the preset power (points A and
B) can be extremely adjusted to point D for obtaining the
maximum upward frequency responses. Similarly, the down‐
ward frequency response power represent the power-head‐
room with incremental generation. In Fig. 1, E c

et and E d
et are

the upward PFR power of charging and discharging at the
beginning of frequency regulation, respectively; E c'

et and E d'
et

are the downward PFR power of charging and discharging at
the beginning of frequency regulation, respectively; Rcmax

e

and Rdmax
e are the maximum charging and discharging power,

respectively; and r c
et and r d

et are the realistic charging and
discharging power, respectively.

On this basis, constraints (5) and (6) are proposed to stipu‐
late ranges of frequency response power with respect to dis‐
charging and charging states. Constraint (7) gives an expres‐
sion of total PFR power. Only one of E c

et and E d
et would take

effect at any particular time, which can be guaranteed by in‐
tegrating binary indicators (vc

et and vd
et) and adding exclusive

constraint (8). The stored energy after frequency responses
should be subject to the permitted energy ranges in (9) and
(10), which provides enough energy headroom to sustain fre‐
quency responses for the duration time of PFR ΔtP. Note
that (9) gives out a clear correlation of the stored energy be‐
tween the normal operation and post-regulation. Here, parts

① -③ refer to the changeable energy due to the frequency
regulation. Specifically, part ① relates to the condition that
BESS discharges power in normal operation. BESS charges
in both normal operation and frequency regulation with part
② . On the contrary, BESS charges in normal operation but
transforms to the discharging state after frequency regulation
with part ③ . Constraint (10) restricts the exclusive state
through binary variables k c

et and k d
et.

0£E d
et £(Rdmax

e - r d
et)v

d
et (5)

0£E c
et £(Rdmax

e + r c
et)v

c
et (6)

Eet =E c
et +E d

et (7)

vd
et + vc

et £ 1 (8)

SOC min
e £ SOC'et = SOCet -        

(E d
et + r d

et)DtP ηd
e

①

+

         ηc
e (r c

et -E c
et)k

c
etDtP

②

-
         
(E c

et - r c
et)k

d
etDtP ηd

e

③

£ SOC max
e (9)

k c
et + k d

et £ 1 k c
etÎ{01}k d

etÎ{01} (10)

where vd
et and vc

et are the indicators of discharging and charg‐
ing operation states, respectively; Eet is the total PFR power;
SOCet and SOC'et are the stored energy before and after fre‐
quency responses, respectively; SOC min

e and SOC max
e are the

permitted minimum and maximum stored energy, respective‐
ly; and ηd

e and ηc
e are the discharging and charging efficien‐

cies of BESS e, respectively.

C. Formulation of AMSFR Model

An innovative MSFR model comprising synthetical fre‐
quency responses from SGs (both thermal and hydro) as
well as converters (both wind farm and BESS) is integrated
to maintain frequency stability. This MSFR model can be il‐
lustrated by the block diagram in Fig. 2.

For thermal units, Fh and Tr are the fraction of power gen‐
erated by the high-pressure turbine and the reheat time of
thermal unit, respectively; and Kg and Rg are the mechanical
power gain coefficient and the governor speed constant, re‐
spectively. For hydro units, frequency responses mainly
come from the synchronous inertia, governors, and hydro tur‐
bines, where the core component is the governor [18]. Thus,
turbines are omitted in this paper since a low-hydraulic pow‐
er system is considered with a negligible water hammer ef‐

Charging 

Discharging 

Normal operation Frequency regulation

c

c'Ee,t

d'Ee,t

dEe,t

cEe,t

c,max

A

B

C

D

0 0

Re

d,maxRe

re,t

dre,t

Fig. 1. Schematic diagram of PFR from BESS.
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fect. In this vein, RP and RC = RT /RP are the permanent and
synthetical droop constants for hydro units, respectively, and
RT is the temporary droop constant for hydro units; Td is the
governor time of hydro units. Moreover, DPG, DPH, DPW,
and DPE are the PFR power from the thermal unit, hydro
unit, wind farm, and BESS in response to frequency devia‐
tion Df, respectively; DPL is the system unbalanced power;
and HE and DE are the equivalent system inertia and load
damping constant, respectively.

As can be observed from Fig. 2, large-scale control loops
for multi-machines and converters incur unacceptable compu‐
tation obstacles in frequency calculation. Thus, we aggregate
massive devices into an equivalent machine by means of the
parameter equivalence method from [27], which can con‐
struct an AMSFR model in Fig. 3. Here, FH, TR, and RT are
equivalent frequency parameters.

Equivalent generator

+
ΔPL +

� 1
2HEs+DE

Inertial and load damping
Δf

PFR
limitation

RT(1+TRs)
1+FHTRs

Fig. 3. Schematic diagram of AMSFR model.

Furthermore, the power gain factor Km of each synchro‐
nous generator and converter can be defined as:

Kmi =
Pimax

SBsys

iÎGT GH RX (11)

where Pimax is the maximum response capacity of device i;
SBsys is the system base power; and GT, GH, R, and X are the
sets of thermal units, hydro units, wind farms, and BESS, re‐
spectively.

In this paper, we assume that the system base power
equals the hourly demand so that the damping coefficient al‐
ways keeps the same in any time interval. Thus, the equiva‐
lent system inertia can be calculated by (12), which relates
to the individual inertia and response capacity at the same
time.

HEt =
1

∑
bÎB

dbt

∑
gÎG

Hg Pgmaxugt (12)

where HEt is the equivalent system inertia at time t; Hg is
the inertia constant for generator g; Pgmax is the maximum
frequency response capacity of generator g; dbt refers to de‐
mand b at time t; ugt is the frequency-support state of gener‐
ator g at time t; and G and B are the sets of SGs and power
grid buses, respectively.

To derive the equivalent frequency parameters, the trans‐
fer functions of wind farms, BESS, and hydro units can be
converted into (13)-(15), respectively, in sequence.

ì

í

î

ï

ï
ï
ïï
ï

ï

ï
ï
ïï
ï

2Hw s+Dw

1+ Tw s
=Dw

1+ 2HwTw s/(Tw Dw)

1+ Tw s
=

1
Rw

1+FwTw s

1+ Tw s

Rw =
1

Dw

Fw =
2Hw

Tw Dw

(13)

ì

í

î

ï

ï
ïï

ï

ï
ïï

Ke

Re (1+ sTe)
=

1
Re /Ke

1
(1+ sTe)

=
1
R'e

1+FeTe s

1+ Te s

R'e =
Re

Ke

Fe = 0

(14)

ì

í

î

ï

ï
ïï

ï

ï
ïï

1
RP

1+ Td s

1+RCTd s
=

1
RP

1+ (1/RC)RCTd s

1+RCTd s
=

1
RP

1+FdT 'd s

1+ T 'd s

T 'd =RCTd

Fd =
1

RC

(15)

where Rw and R'e are the equivalent droop coefficients of
wind farm and BESS, respectively; Fw, Fe, and Fd are the
equivalent power fractions of wind farm, BESS, and hydro
unit, respectively; and T 'd is the equivalent time constant of
hydro unit.

Afterwards, the newly-defined droop and governor speed
constants can be described as (16) and (17), respectively.
Similarly, the occupation proportion is defined as (18), and
all proportions should sum up to one. On this basis, we con‐
struct the linear formula of FH and TR in (19) and (20), re‐
spectively.

PFR from thermal units

 

PFR from wind farms

 

PFR from hydro units 

+

+

+

ΔPG

ΔPE

ΔPL Δf

ΔPW

ΔPH

+

+

+

+

+

�

�

Governor
response

Converter
response

PFR
limitation

PFR
limitation
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�

1+Fh,1Tr,1s
1+Tr,1s

Kg,1
Rg,1

1+Fh,nTr,ns
1+Tr,ns

Kg,n
Rg,n
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1+Td,1s

1+Td,ns

1+RC,1Td,1s

1+RC,nTd,ns

1

1

RP,1

 

PFR
limitation

� �

�

Hw,1s+Dw,1
1+Tw,1s

Hw,ns+Dw,n
1+Tw,ns

RP,n

1
2HEs+DE

Thermal
unit 1

�

Hydro
unit 1

Hydro
unit n

Thermal
unit n

Inertial and load damping

 

PFR
limitation

� �

Ke,1

Ke,n

Re,1(1+sTe,1)

Re,n(1+sTe,n)

Converter 1

Converter n

�

Converter 1

Converter n

PFR from BESS 

Fig. 2. Schematic diagram of MSFR model.
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κ i =
Kmi

Ri

iÎGT GH RX (16)

1
RTt

= ∑
iÎGT GH RX

κ i =
1

∑
bÎB

dbt
(∑

gÎGT

Kg

Rg

Pgmaxugt+

)∑
d ÎGH

1
Rd

Pdmaxudt+∑
wÎR

1
Rw

pf
wtuwt+∑

eÎX

1
R'e

Rmax
e uet (17)

ì

í

î

ï
ïï
ï

ï
ïï
ï

λ i =
κ i∑

iÎGT GH RX
κ i

∑
iÎGT GH RX

λ i= 1

(18)

FHt

RTt

=
1

RTt
∑

iÎGT GH R
λ i Fhi =

1

∑
bÎB

dbt
(∑

gÎGT

Kg Pgmax Fgugt

Rg

+

)∑
d ÎGH

Fd Pdmaxudt

Rd

+∑
wÎR

pf
wt Fwuwt

Rw

(19)

TRt =
1

∑
bÎB

dbt
(∑

gÎGT

Kg PgmaxTrgugt

Rg

+∑
d ÎGH

T 'd Pdmaxudt

Rd

+

∑
wÎR

pf
wtTwuwt

Rw
)+∑

eÎX

Ke Rmax
e Teuet

R'e
(20)

where udt, uwt, and uet are the frequency-support states of
hydro unit, wind farm, and BESS at time t, respectively;
Pdmax is the maximum capacity of hydro unit d; and Rmax

e is
the maximum response capacity of BESS e.

Based on the block diagram in Fig. 3, the transfer func‐
tion G(s) of the proposed AMSFR model can be deduced as
(21). Here, the natural oscillation frequency wn and damping
ratio ξ are accordingly calculated by (22).

G(s)=
Df (s)
DPL (s)

=
RTw2

n (1+ TR s)

(DE RT + 1)(s2 + 2ξwn s+w2
n)

(21)

ì

í

î

ï
ï
ï
ï

w2
n =

DE RT + 1

2RT HETR

ξ =
RT DETR + 2RT HE +FHTR

2(DE RT + 1)
wn

(22)

The analytical formulation of Df (t) in the time domain can
be given as (23), where the damping frequency wr and coef‐
ficients α and φ are defined in (24). Then, a step signal is
settled for the power deviation.

Df (t)= L-1 (G(s)
DPL

s )= RTDPL

DE RT + 1
(1+ αe-ξwnt sin(wrt + φ)) (23)

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

α=
1- 2TRξwn + T 2

R w2
n

1- ξ 2

wr =wn 1- ξ 2

φ= arctan ( )wrTR

1- TRξwn

- arctan ( )1- ξ 2

-ξ

(24)

According to the frequency deviation (23), we implement
its derivation to deduce the maximum frequency deviation
Dfmax and related nadir time tmax. These two metrics ex‐
pressed as (25) are directly decided by the equivalent fre‐
quency parameters of system. In addition, the ROCOF f ̇max is
employed to limit the maximum changing speed of frequen‐
cy at the initial time of frequency regulation, which enables
to avert unexpected generator tripping. The formulation of
ROCOF is shown as (26) [16], which mainly relates to the
system inertia and the magnitude of the unbalanced power.

ì

í

î

ï
ï
ï
ï

Dfmax =
RTDPL

DE RT + 1 ( )1+ 1- ξ 2 αe-ξwntmax

tmax =
1
wr

arctan ( )wrTR

ξwnTR - 1

(25)

f ̇max =
dDf (t +0 )

dt
=
DPL

2HE
(26)

Furthermore, the frequency deviation and ROCOF restric‐
tions are constructed as (27) and (28), respectively. In this
vein, the ROCOF limitation equals the system inertia require‐
ment, which is totally linear and can be directly put into the
optimization model. Moreover, the frequency deviation is
transformed into the power expression in constraint (29) to
reflect the basic requirement of system frequency response
power. However, the right part defined as PFR (w0) is a high‐
ly nonlinear multi-variable function, which is decided by the
equivalent frequency parameters w0 =[HERTFHTRDE]T

and should be further linearized in the next section.

| fb RTDPL

DRT + 1 (1+ 1- ξ 2 αe-ξwntmax) |£ Dfmax (27)

HE ³
fbDPL

2 ×ROCOFmax
(28)

| DPL |£
|

|

|

|
||

(DRT + 1)Dfmax

RT ( )1+ 1- ξ 2 αe-ξwntmax

|

|

|

|
||=PFR (w0) (29)

where fb is the nominal frequency; and ROCOFmax is the
maximum permitted ROCOF.

III. DDPWL METHOD

In this section, a traditional piecewise linearization (PWL)
method from [16], [28] is introduced, which is generally ap‐
plied to linearize the multi-variable functions. In brief, this
method maximizes all hyperplanes to approach the accurate
function value. Before linearization, two widely-used as‐
sumptions are made as follows.

1) Due to the low sensitivity of the frequency deviation to
the reheat time constant (about 1%) [28], the identical value
is always assumed for all frequency-support devices without
loss of accuracy.

2) With respective damping and droop gains usually strict‐
ly prescribed within narrow ranges by the system operator,
the equivalent damping constant of the system can be settled
as a constant [16].
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On this basis, the decision variable set can be further re‐
duced as w in =[HERTFH]T. To form a linear correlation be‐
tween PFL (w) and frequency-support states, fitting variables
coming from (17) and (19) are employed instead. Thus, the
improved PWL function can be given as:

PFL (w)= max
nÎP (ch

n HT + cr
n

1
RT

+ cf
n

FH

RT

+ bn) (30)

w =
é

ë
êê

ù

û
úúHE

1
RT


FH

RT

T

(31)

where cn =[ch
ncr

ncf
n] and bn refer to the fitting coefficients,

which are optimized to eliminate fitting errors between the
real value PFR (w) and the fitting value PFL (w); n counts the
number of adopted hyperplanes; and P is the set of hyper‐
planes.

Note that the second-order terms are always optimized to
derive the appropriate fitting coefficients based on the datas‐
et D. The traditional PWL problem can be constructed as:

min
cnbn
∑
iÎD

(PFL (w i )-PFR (w i ))
2

(32)

Since the problem (32) minimizes the squared errors in
the data set, the frequency stability is possibly destroyed at
some points. Meanwhile, the over-conservativeness takes
place if a lower fitting value adopts and facilitates more fre‐
quency supports. Meanwhile, enough data points and hyper‐
planes should be inserted to guarantee accuracy so that solu‐
tion obstacles always exist. To overcome the shortcomings
above, [16] proposes an alternative approach called bound
extraction to confine the values within a plausible range,
which guarantees that the frequency nadir threshold is not vi‐
olated. This method introduces linear bound extraction con‐
straints to reduce solution time and guarantee conservative‐
ness for the UC problem. Nevertheless, it should enumerate
every possible frequency-support state to take the worst-case
frequency parameters as the restricted bounds, where 2NG

combinations for all frequency-support conditions nearly
lead to an untractable solution in large-scale power systems.
Note that NG is the total number of frequency support sourc‐
es.

In this paper, a modified DDPWL methodology is pro‐
posed to deal with the nonlinear FRPC. Firstly, the initial
problem (30)-(32) can be transformed into the problem (33)-
(35) by defining fL (w i)= max

nÎP
{cnw i + bn}. It can be found

that the inner problem can be totally eliminated through (34)
and (35), which guarantees the same value as the maximum
function. Moreover, a logistic constraint that limits one effi‐
cient hyperplane in each variable region can be constructed
as (36). Furthermore, constraints (37) and (38) are novelly
added without loss of generality if all data points are posi‐
tive. These two constraints shrink the feasible regions and ac‐
celerate the solution procedure [29].

min
cnbn
∑
iÎD

( fL (w i)-PFR (w i))
2

(33)

s.t.

fL (w i)³ cnw i + bn "nÎP"iÎD (34)

fL (w i)£ cnw i + bn +M (1- z n
i ) "nÎP"iÎD (35)

∑
nÎP

z n
i = 1 z n

i Î{01}"iÎD (36)

cnw i + bn ³ 0 "nÎP"iÎD (37)

fL (w i)£∑
nÎP

cnw i + bn "iÎD (38)

where z n
i is a binary variable, z n

i = 1 when the nth hyperplane
takes effect for data point i; and M is a very large positive
number.

As the nonlinear FRPC is a hard constraint in our plan‐
ning problem, it is not necessary to force the linearized val‐
ue as close to its real value as possible at all data points. In
this vein, a data-driven classification idea from [30] can be
utilized to construct the linearized function. Similarly,
enough fitting data points should be firstly produced with
combinations of frequency-support states, whereas full enu‐
meration is not required. The idea of this classification is ap‐
plied to solve the analytical formulation, which omits the fit‐
ting errors as long as the linearized value is on the same
side of the limit as its real value. On this basis, the modified
DDPWL problem is proposed as (39)-(45). Specifically, con‐
straints (40) and (41) restrict the fitting values in D1 and D3

on the same side of the limit, respectively, where the precise
fitting value is not cared about. Meanwhile, all below- and
above-limit data sets defined as D1, D2, and D3 can be accu‐
rately classified through (42) - (44), respectively. Note that a
small number τ is introduced to guarantee the model feasibil‐
ity. Based on the objective function (39), merely fitting er‐
rors are minimized in D2 [25], which not only accelerates
the computation procedure, but also guarantees the conserva‐
tiveness of the frequency stability.

min
cnbn
∑
iÎD2

( fL (w i)-PFR (w i))
2

(39)

s.t.

fL (w)< |DPL| wÎD1 (40)

fL (w)³ |DPL| wÎD3 (41)

D1 ={wPFR (w)< |DPL|} (42)

D2 ={w|DPL|£PFR (w)< |DPL|+ τ} (43)

D3 ={w|DPL|+ τ £PFR (w)} (44)

(34)-(38) (45)

After deriving all PWL functions, we should deal with the
maximum problem among all hyperplanes. On this basis, the
big-M method [31] can be utilized to select the largest plane
in all regions subsequently. The general formulation of n hy‐
perplanes can be expressed as (46). Finally, the constraint
(29) can be transformed into a linear term |DPL|£ Ln- 1. Here,
u1,u2,,un- 1 are binary variables to indicate which hyper‐
plane has the maximal function value.
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ì

í

î

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï
ïï
ï
ï

c1w + b1 £L1 £ c1w + b1 +Mu1

c2w + b2 £L1 £ c2w + b2 +M (1- u1)

L1 £L2 £L1 +Mu2

c3w + b3 £L2 £ c3w + b3 +M (1- u2)


Ln- 2 £Ln- 1 £Ln- 2 +Mun- 1

cnw + bn £Ln- 1 £ cnw + bn +M (1- un- 1)

(46)

IV. FREQUENCY-CONSTRAINED PLANNING MODEL

A. Model Formulation

This section proposes a frequency-constrained GEP&ESI
model, which can satisfy the required demand increase and
supply enough frequency response power simultaneously.
Since unit states impact system inertia and PFR directly, the
short-term UC considering RPSs is inserted into the long-
term planning model, which schedules sufficient frequency-
support sources and promotes renewable consumption at the
same time. Specifically, the objective function of the pro‐
posed model is to minimize the total cost as formulated in
(47). The total cost comprises the investment costs of ther‐
mal units, wind farms, and BESS, fuel cost, unit startup
cost, wind curtailment cost, load curtailment cost, load shift‐
ing-in cost, and load shifting-out cost, respectively. In this
paper, the curtailable and shiftable demands are deemed as
two efficient ways to obtain demand responses (DRs).

min∑
gÎGC

C I
g xg +∑

wÎR
C I

w xw +∑
eÎX

C I
e xe +∑

sÎS
πsTh∑

tÎ T

é

ë
êê∑

gÎG
C G

g pgts+

ù

û
úú∑

gÎG
C SU

g ygts +∑
wÎR

C R
w pc

wts+∑
bÎB

(C D
b pDC

bts +C FD
b pFD+

bts +C FD
b pFD-

bts )

(47)

where GC, T, and S are the sets of candidate thermal units,
time intervals, and stochastic scenarios, respectively; C I

g, C I
w,

C I
e, C G

g , C SU
g , C R

w, C D
b , and C FD

b are the coefficients of annual
investment costs of thermal units, wind farms, and BESS,
costs of fuel consumption and unit startup, scheduling of
wind curtailment, load interruption, and load shifting, respec‐
tively; xg, xw, xe, pgts,ygts, pc

wts, pDC
bts, pFD+

bts , and pFD-
bts are deci‐

sion variables including binary construction indicators of can‐
didate thermal units, wind farms, and BESS, power output
of conventional units (both thermal and hydro units), binary
indicators of unit startup, curtailable power of wind farm
and interrupted load, and shifting-in and shifting-out power
of response demand, respectively; and πs and Th are the pos‐
sibility of scenario s and the total hours of the target plan‐
ning year, respectively.

This problem should subject to the following constraints.
1) Nodal Power Balance∑
gÎGb

pgts + ∑
lÎL | to(l)= b

flts - ∑
lÎL | from(l)= b

flts +∑
wÎRb

(pf
wts - pc

wts) +

∑
eÎXb

(r d
ets - r c

ets)= d DS
bts "bÎB"tÎ T"sÎS (48)

where sets Gb, Rb, Xb, and L are the indices of synchronous
units (both thermal and hydro units), wind farms, BESS con‐

nected to bus b, and all transmission lines, respectively; and
flts and d DS

bts are transmission power flow and the load de‐
mand after DRs, respectively.
2) DC Power Flow Constraints

DC power flow for transmission lines can be expressed as
(49). Also, the maximum power flow should be limited with‐
in the line capacity by constraint (50).

flts =Bl (θo(l)ts - θr(l)ts) "lÎL"tÎ T"sÎS (49)

F min
l £ flts £F max

l "lÎL"tÎ T"sÎS (50)

where θo(l)ts and θr(l)ts are the voltage phase angles of origin
and receive buses for line l, respectively; and Bl, F min

l , and
F max

l are the susceptance, minimum and maximum power
flows of line l, respectively.
3) UC Constraints

Constraint (51) implements the logistic correlation be‐
tween on/off states, startup, and shutdown actions. Con‐
straint (52) declares the exclusive correlation between start‐
up and shutdown actions. The minimum on/off time main‐
tained for conventional units is limited by constraints (53)
and (54), respectively. Moreover, constraint (55) imposes the
limit on active output power. The ramp-up and ramp-down
rates for conventional generators are restricted in (56).

ygts - hgts = vgts - vgt - 1s "gÎG"tÎ T"sÎS (51)

ygts + hgts £ 1 "gÎG"tÎ T"sÎS (52)

∑
k = t -UTg + 1

t

ygks £ vgts "gÎG"tÎ[LguNT]"sÎS (53)

∑
k = t -DTg + 1

t

hgks £ 1- vgts "gÎG"tÎ[LgdNT]"sÎS (54)

P min
g vgts £ pgts £P max

g vgts "gÎG"tÎ T"sÎS (55)

-RDg × DT £ pgts - pgt - 1s £RUg × DT "gÎG"tÎ T"sÎS
(56)

where hgts is the indicator of unit shutdown; vgts is the indi‐
cator of on/off state of unit g; RUg and RDg are the maxi‐
mum ramp-up and ramp-down power of unit g, respectively;
UTg and DTg are the minimum on/off time of unit g, respec‐
tively; Lgu and Lgd are the duration hours of on/off states at
the begging of typical days, respectively; P min

g and P max
g are

the minimum and maximum output power offered by unit g,
respectively; and NT and DT are the number of time intervals
and the duration hour of adjacent time, respectively.
4) Wind Farm Constraints

Nowadays, in order to reduce emissions and promote in‐
vestment in renewable generation, new integration incentives
such as RPSs, feed-in tariffs (FITs), and production tax cred‐
its have been implemented in more than 150 countries [32].
In this paper, for the satisfaction of the RPSs, the minimum
consumption percentage γw occupied in total demand is afore‐
hand settled in constraint (57). Also, the restriction of curtail‐
ment power with coefficient γe is also taken into account in
constraint (58).

∑
sÎS
∑
tÎ T
∑
wÎR

(pf
wts - pc

wts)DT³ γw∑
sÎS
∑
tÎ T
∑
bÎB

dbtsDT (57)
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∑
sÎS
∑
tÎ T
∑
wÎR

pc
wtsDT£ γe∑

sÎS
∑
tÎ T
∑
wÎR

pf
wtsDT (58)

where dbts represents the forecasted demand connected to
bus b at time t in scenario s.
5) Energy Storage Constraints

The operation constraints of BESS are listed in (59)-(65).
In general, the charging and discharging processes of BESS
can be described as (59). Constraint (60) represents the low‐
er and upper bounds of SOC [33]. Besides, constraints (61)
and (62) impose limitations on charging and discharging
power, respectively. Constraint (63) restricts the mutual oper‐
ation state. Constraint (64) stipulates that the remaining ener‐
gy of BESS at the initial and end time should keep the same
on representative days. Constraint (65) refers to the limita‐
tion of charging and discharging states with respect to the
construction procedure. Constraint (66) proposes the preset
power-headroom restrictions for BESS, which is specifically
illustrated in Section II-B.

SOCets =SOCet-1s +(r c
etsη

c
e -r d

ets /η
d
e )DT "eÎX"tÎT"sÎS

(59)

SOC min
e × xe £ SOCets £ SOC max

e × xe "eÎX"tÎ T"sÎS (60)

0£ r c
ets £Rcmax

e vc
ets "eÎX"tÎ T"sÎS (61)

0£ r d
ets £Rdmax

e vd
ets "eÎX"tÎ T"sÎS (62)

vc
ets + vd

ets £ 1 "eÎX"tÎ T"sÎS (63)

SOCeT0s
= SOCeTNs

"eÎX"tÎ T"sÎS (64)

vc
ets £ xevd

ets £ xe "eÎX"tÎ T"sÎS (65)

(5)-(10) (66)

where SOCeT0s
and SOCeTNs

are the remaining energy of

BESS e at the initial and end time on representative days, re‐
spectively.
6) Cascading Hydro Generator Constraints

For hydro units, the limitations of output power, minimum
on/off time, and ramp-up/down power in normal operation
can be similarly constructed as thermal units. Besides, the
unique constraints for cascading hydro unit can be listed as
(67)-(70) [34]. Specifically, constraint (67) restricts the water
balance for hydro unit d. The water discharge and volume
limits are formulated as (68) and (69), respectively. Con‐
straint (70) restricts the initial and terminal water volume on
representative days.

Vdts =Vdt - 1s + (Rd +Qd - 1ts -Qdts) "d ÎGH"tÎ T"sÎS
(67)

vdtsQdmin £Qdts £ vdtsQdmax "d ÎGH"tÎ T"sÎS (68)

Vdmin £Vdts £Vdmax "d ÎGH"tÎ T"sÎS (69)

{Vd0 =V 0
d

VdNT =V NT
d

"d ÎGH (70)

where Vdts and Qdts are the water discharge and reservoir
volume of hydro unit d, respectively; vdts is the indicator of
on/off state; Rd is the natural inflow to reservoir of hydro
unit d; Qdmin and Qdmax are the minimum and maximum wa‐
ter discharges of hydro unit d, respectively; Vdmin and Vdmax

are the minimum and maximum reservoir volumes of hydro
unit d, respectively; and V 0

d and V NT
d are the initial and termi‐

nal reservoir volumes of hydro unit d, respectively.
The water-to-power conversion of cascaded hydro units is

expressed by a head-dependent function in (71) [34]. It can
be found that the output power of hydro unit d pdts is solely
decided on the water head level Hdts, water discharge Qdts,
and conversion coefficient αd. Meanwhile, the water head
level satisfies the correlation Hdts = hd0 + βdVdts, where con‐
stants hd0 and βd are mainly determined by the physical size
of reservoirs. On this basis, the output power is finally ex‐
pressed as a nonlinear expression (72).

pdts = αdQdts Hdts "d ÎGH"tÎ T"sÎS (71)

pdts = αdQdts (hd0 + βdVdts) "d ÎGH"tÎ T"sÎS (72)

7) DR Constraints
In this paper, the curtailable and shiftable demands are em‐

ployed to obtain DRs [35]. Constraint (73) restricts the cur‐
tailed power at bus b through the maximum curtailment rate
λDC

b . Similarly, constraint (74) models the actual demand
shifting limitation through the maximum shifting rate λFD

b . In
the case of demand shift services, the payback effect is also
considered with the payback coefficient δ, which requires
the demand to be shifted out/in at bus b to satisfy the corre‐
lation in (75). In total, the relationship between the forecast‐
ed demand and DRs can be expressed as (76) and (77).

0£ pDC
bts £ λDC

b dbts "bÎB"tÎ T"sÎS (73)

{0£ pFD+
bts £ λFD

b dbts

0£ pFD-
bts £ λFD

b dbts

"bÎB"tÎ T"sÎS (74)

δ∑
tÎ T

pFD-
bts =∑

tÎ T
pFD+

bts "bÎB"sÎS (75)

pDR
bts = pDC

bts + pFD-
bts - pFD+

bts "bÎB"sÎS (76)

d DS
bts = dbts - pDR

bts "bÎB"sÎS (77)

8) Frequency Constraints
Constraints (46) and (78) are utilized to guarantee enough

frequency response power, while the constraint (79) requires
enough system inertia to limit ROCOF. The equivalent fre‐
quency parameters can be calculated through (12), (17), and
(19). Note that all equivalent frequency parameters just de‐
pend on the frequency-support states if settling a fixed unbal‐
anced power. In this vein, the inner maximum problem can
be eliminated by big-M method as introduced in Section III.
Furthermore, constraints (80)-(83) preset enough power-head‐
room to guarantee PFR from thermal units, hydro units,
wind farms, and BESS, respectively. Here, Dfssmax represents
the maximum frequency deviation at the quasi-steady state,
which is generally utilized to estimate the required power-
headroom for PFR. If settling t®¥ in (23), Dfssmax can be
estimated by (84), which mainly correlates to the values of
DPL, SBsys, DE, and Rmax

T .

| DPLts |£Ln- 1ts "tÎ T"sÎS (78)

HEts ³
fbDPLts

2 ×ROCOFmax

"tÎ T"sÎS (79)
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Pgmax - pgts ³ ugts

Kg

Rg

PgmaxDfssmax "gÎGT"tÎ T"sÎS

(80)

Pdmax - pdts ³ udts

1
Rd

PdmaxDfssmax "d ÎGH"tÎ T"sÎS

(81)

pc
wts ³ uwts

1
Rw

pf
wtsDfssmax "wÎR"tÎ T"sÎS (82)

Eets ³ uets

1
R'e

Rmax
e Dfssmax "eÎX"tÎ T"sÎS (83)

Dfssmax =
Rmax

T DPL

SBsys (DE Rmax
T + 1)

(84)

9) Binary Variable Constraints
Constraints (85)-(87) indicate that the unit states and pri‐

mary frequency indicators are restricted by construction pro‐
cedures. Besides, constraint (88) declares all binary variables
in this model.

ugts £ vgts £ xg "gÎG"tÎ T"sÎS (85)

uwts £ xw "wÎR"tÎ T"sÎS (86)

uets £ xe "eÎX"tÎ T"sÎS (87)

xgxwxevgtsygtshgtsvc
etsvd

etsugtsudtsuwtsuetsÎ{01}

"gÎGT"d ÎGH"wÎR"eÎX"tÎ T"sÎS
(88)

B. Model Linearization

Unfortunately, the bilinear constraints render the proposed
model unable to be dealt with by the off-the-shelf solvers.
These constraints can be classified into two categories, i. e.,
① the multiplier of binary and continuous variables such as
(5), (6), and (9); ② the multiplier of two continuous vari‐
ables such as (72). With respect to the former category, aux‐
iliary variables denoted as qd

ets = r d
etsv

d
ets and qc

ets = r c
etsv

c
ets

are adopted to linearize constraints (5) and (6). The related
auxiliary constraints are proposed as (89) and (90) through
big-M method [31]. On this basis, constraints (5) and (6) can
be ultimately substituted by linear expressions (91) and (92).
Similarly, constraint (9) can also be successfully linearized
through the same method, which is not introduced here ow‐
ing to the limitation of scope.

{-M (1- vd
ets)£ qd

ets - r d
ets £M (1- vd

ets)

-Mvd
ets £ qd

ets £Mvd
ets

(89)

{-M (1- vc
ets)£ qc

ets - r c
ets £M (1- vc

ets)

-Mvc
ets £ qc

ets £Mvc
ets

(90)

0£E d
ets £Rdmax

e vd
ets - qd

ets "eÎX"tÎ T"sÎS (91)

0£E c
ets £Rdmax

e vc
ets + qc

ets "eÎX"tÎ T"sÎS (92)

With respect to the bilinear problem with the multiplier of
two continuous variables, the RLT has been used to deal
with the nonlinear part in (72). This method is widely used
to solve continuous factorable nonconvex optimization prob‐

lems through tightly effective relaxations in a higher-dimen‐
sional space [36]. In theory, the applied terms should satisfy
the following two assumptions.

1) The nonlinear term must be expressed as the form of
bilinear products.

2) All variables are bounded within the preset ranges. It
can be observed from constraints (68), (69), and (72) that
the nonlinear term QdtsVdts entirely conforms to the above
conditions.

On this basis, we reformulate the nonlinear terms through
substituting QdtsVdts by auxiliary, nonnegative, and continu‐
ous variables Ldts. Meanwhile, McCormick envelopes [36]
are also used to bound these auxiliary variables as shown in
(93). Finally, operation constraints of cascading hydro units
can be formulated as (67)-(70), (93), and (94).

ì

í

î

ï
ï
ï
ï

Ldts -VdminQdts -QdminVdts +VdminQdmin ³ 0

-Ldts +VdmaxQdts -QdminVdmax +QdminVdts ³ 0

-Ldts +QdmaxVdts -QdmaxVdmin +VdminQdts ³ 0

Ldts +QdmaxVdmax -QdmaxVdts -VdmaxQdts ³ 0

(93)

pdts = αdQdtshd0 + αd βd Ldts "d ÎGH"tÎ T"sÎS (94)

V. CASE STUDY

In this section, the proposed frequency-constrained
GEP&ESI model is implemented on a modified IEEE RTS-
79 test system [37]. All simulations are performed on a PC
with AMD R5-3600 CPU and 16 GB RAM.

A. Test System Parameters

The modified IEEE RTS-79 test system consists of 24 bus‐
es, 33 generation units, 38 lines, and 17 load points. The de‐
mand has enlarged to be 1.1 times the original value for
highlighting the needs of generation expansion. The schemat‐
ic diagram of this test system is depicted in Fig. 4. All pa‐
rameters of candidate thermal units can be found in Table I,
where OC and IC represent operation cost and annual invest‐
ment cost, respectively. Three wind farm groups named A,
B, and C can be invested during the planning horizon [38].
Specifically, group A contains three 300 MW wind farms lo‐
cated at buses 1, 2, and 3; group B contains three 400 MW
wind farms located at buses 6, 7, and 8; group C contains
three 500 MW wind farms located at buses 20, 21 and 22. All
wind farms are installed with a cost of 0.5 M$/(MW·year)
[39]. The parameters of candidate BESS are listed in Table
II. The operation parameters of cascading hydro units can be
found in [40]. Besides, the frequency parameters pertaining
to thermal units, wind farms, and BESS are listed in Table
III. As illustrated in Section III, the identical time constant is
set as 8 s for all frequency-support devices.

The scenario technique is used to describe uncertainties
through K-means clustering [41]. On this basis, the historical
data (8760 hourly datasets) has been clustered into four typi‐
cal days to reflect both fluctuated wind power and load de‐
mand, where the forecasted data points are depicted in
Fig. 5.
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Besides, the minimum consumption rate γw and the maxi‐

mum curtailment rate γe are set as 15% and 30%, respective‐
ly, in the following case studies except otherwise stipulated.
In this paper, DRs can be implemented in buses 3, 10, 13,
15, and 18, where the maximum curtailable and shiftable per‐
centages are settled as 10%. Meanwhile, 80 $/MWh and 5
$/MWh should be paid for such curtailable and shiftable
loads, respectively [42]. The payback considers a 10% penal‐
ization in terms of energy consumption, i. e., δ= 1.1. More‐
over, the punishment cost of wind curtailment is settled as
150 $/MWh. In terms of frequency limits, it is considered to
apply 375 MW as the instant imbalance power. The maxi‐
mum frequency deviation Dfmax is limited below 0.4 Hz and
ROCOFmax equals 0.5 Hz/s. The nominal frequency fb is set
as 50 Hz.

B. Validation of Linearized Frequency Constraint

In this subsection, the performance of the linearized FR‐
PC compared with the original nonlinear constraint has been
examined. Two types of errors are defined as: ① Type I, sat‐
isfying the FRPC according to the linearized value but actu‐
ally violating the FRPC; ② Type II, violating the FRPC ac‐
cording to the linearized value but actually satisfying the FR‐
PC. The averaged fitting error errf can be calculated as:

errf =
1
Ne
∑
ωÎ ε

| P (ω)
f -P (ω)

f0

P (ω)
f0

|´ 100% (95)

where Ne counts the number of error points; P (ω)
f and P (ω)

f0 are
the calculated values of frequency response power through
linearized FRPC and initial nonlinear formulation (29), re‐
spectively; and ε is the set of error points.

Furthermore, the proposed DDPWL method is compared
with three other methods that are widely used in dealing
with nonlinear frequency constraints. The performances of
different methods are compared in terms of the linearization
error, fitting data, computation time, and the total cost. It
should be noted that the bound extraction is already intro‐
duced in Section III that enumerates to seek for the worst-
case frequency parameters. Comparison results of four wide‐
ly-used methods can be found in Table IV. Note that PWL1
refers to the traditional PWL method in [28] that minimizes
the fitting errors at all data points. PWL2 refers to an over-
conservative method, which compulsively requires the fitting
value to be less than the real value. The detailed fitting mod‐
el of PWL2 can be found in Appendix A. After constructing
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Fig. 4. Schematic diagram of IEEE RTS-79 bus test system.

TABLE I
PARAMETERS OF CANDIDATE UNITS

Bus
No.

1

7

13

15

16

20

21

23

Capacity
(MW)

76

197

197

155

76

155

375

197

Number

2

1

2

2

2

2

1

3

OC
($/MWh)

49

48

48

54

49

46

48

48

IC
($/MW)

200000

240000

240000

200000

190000

220000

400000

240000

Pg,max

(MW)

76

197

197

155

76

155

375

197

Pg,min

(MW)

15

38

38

30

15

20

80

37

TABLE II
PARAMETERS OF CANDIDATE ENERGY STORAGE

Bus No.

1, 2, 3, 13,
16, 17, 23

IC ($/
kWh)

500

Energy
(MWh)

200

Capacity
(MW)

100

Charging
rate

0.9

Discharging
rate

0.875

TABLE III
FREQUENCY PARAMETERS OF UNITS AND BESS

Units and BESS

Thermal unit

Wind farm

BESS

U76

U155

U197

U375

H (s)

2.3

4.6

6.0

8.0

3.0

Fh (p.u.)

0.33

0.30

0.30

0.35

R (p.u.)

0.033

0.050

0.033

0.050

0.050

Dw (p.u.)

15

Ke (p.u.)

1

Note: U76 represents the thermal units with capacity of 76 MW.
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Fig. 5. Power proportion on four typical days.
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FRPC, two million random data points are produced to cal‐
culate the fitting errors of different methods.

In theory, no error exists for the bound extraction since
the precise bound with related frequency parameters can be
found by enumerating all possible data points. However, it is
almost impossible to calculate the frequency response power
with consideration of frequency-support states for all devic‐
es, e. g., more than 252 values exist in this test system. For
the sake of simplification, two million random data points
are adopted to determine the worst-case bound with more
than 9016 s, which is further applied to our planning model
to derive a standard total cost. As addressed in [16], PWL1
easily causes computation obstacles since the second-order
objective function minimizes the fitting errors at all data
points. As simulated, only 400 data points can be successful‐
ly solved within an acceptable time (about 6293 s). Type I
and Type II errors are both existed for PWL1 due to the lim‐
ited information, which causes a larger possibility of inse‐
cure operation points (about 1.4%). Compared with PWL1,
the computation efficiency of PWL2 is evidently improved

due to the least first-order objective function. Meanwhile,
PWL2 can perfectly eliminate the Type I error since all fit‐
ting values are smaller than the real values. However, an av‐
eraged Type II error of 2.1% and a total cost increment of
4.7% demonstrate its over-conservativeness under some con‐
ditions.

The above challenges can be solved by the proposed DDP‐
WL method, which is based on the idea of data classifica‐
tion. It can be observed that the simulation results are prom‐
ising with acceptable Type I error (0.7%) and negligible
Type II error (0.02%), which almost have no impact on the
total cost. Meanwhile, the computation time of DDPWL is
much shorter than that of the other three methods because it
only minimizes the error around the limit. In conclusion, the
proposed DDPWL method can be utilized to construct the
linearized FRPC with high accuracy and enhanced computa‐
tion efficiency for the rest of the study.

C. Planning Results

In this sub-section, the planning results with/without fre‐
quency constraints (denoted as WFC and WOFC, respective‐
ly) are listed in Table V. Frequency responses from SGs,
wind farms, and BESS are applied in WFC case. It can be
found that integrating frequency constraints into the planning
model does restrict the system frequency regulation. It
should be emphasized that merely wind farms are expanded
in WOFC case, whereas five SGs and two BESS are addi‐
tionally invested in WFC case. It indicates that frequency
limits facilitate the larger-scale allocation of frequency-sup‐
port devices, which leads to an incremental investment cost
(about 37%). Also, inserted frequency constraints bring a
higher total cost (about 18.6%) to maintain frequency stability.

Besides, more conventional units have to be started up
and keep the minimum output power in WFC case, which in‐
creases the fuel cost from 253.1 M$ to 281.1 M$. In order
to explore the effects of frequency constraints on operation
schedules, the output power profiles of both existing and
candidate units in all time intervals are depicted in Fig. 6. It
can be observed that the online capacity of SGs in WFC
case seems larger than that in WOFC case in all time inter‐
vals, while the maximum value increases from 3500 MW to
4596 MW in WFC case. The increased online capacity for
SGs not only supplies inertia to limit ROCOF but also acti‐
vates PFR. In addition, more power produced from SGs re‐
duces the consumption of wind power. Also, wind farms
must operate at the sub-optimal point, which causes inevita‐

ble wind curtailment to guarantee sufficient PFR. In this
vein, serious wind curtailment takes place in WFC case,
where an extra 5.8 M$ punishment cost is forced. The re‐
newable curtailment strongly addresses the importance of
making a trade-off between the wind consumption and fre‐
quency-support. Furthermore, the BESS will consume the
spillage wind power and release energy in emergency condi‐
tions so that BESS is required to be expanded in WFC case.
On the contrary, no BESS is installed in WOFC case since a
smaller capacity of SGs maintains.

The total frequency response power from SGs, wind
farms, and BESS on four representative days is shown in
Fig. 7. As expected, the frequency constraints (77) and (78)
would take effect to guarantee enough system frequency re‐

TABLE IV
COMPARISON RESULTS OF FOUR WIDELY-USED METHODS

Method

Bound
extraction

PWL1

PWL2

DDPWL

Fitting
data

2×106

4×102

5×104

5×104

Type Ⅰ

Ne

0

4210

0

2453

Errf (%)

0

1.4

0

0.7

Type Ⅱ

Ne

0

12100

42995

381

Errf (%)

0

0.90

2.10

0.02

Total cost
(M$)

390.8

386.4

410.2

390.6

Time
(s)

9016

6293

414

22

TABLE V
COMPARISON OF EXPANSION SCHEMES IN WFC AND WFOC CASES

Case

WFC

WOFC

Response
type

SGs+Wind
farms+BESS

None

Expansion schemes

SGs

1(1,76), 13(1,197),
21(1,375), 23(2,197)

None

Wind farms

1(300), 2(300), 3(300),
6(400), 8(400)

2(300), 6(400),8(400),
20(500)

BESS

13, 23

None

Investment
cost (M$)

102.1

64.0

Fuel cost
(M$)

281.1

253.1

Wind
curtailment
cost (M$)

5.8

0.6

Unit
startup

cost (M$)

1.5

0

DR
cost
(M$)

0.12

0.07

Total
cost
(M$)

390.62

317.77

Note: 1(1,76) represents installing one thermal unit with capacity of 76 MW at bus 1; 1(300) represents installing one wind farm with capacity of 300 MW
at bus 1. The scheme of BESS only lists the integration bus number.
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sponse power in all time intervals. On the contrary, the oper‐
ation schedules in WOFC case cannot satisfy the require‐
ment since insufficient frequency support sources are invest‐
ed or kept online, which leads to evident absence power be‐
tween the realistic and settled unbalanced power. As the
maximum absence power arises at hour 1 on the third day,
we compare the related frequency trajectories for two cases
in Fig. 8. It can be found that the maximum frequency devia‐
tions for two nadir points reach 0.36 Hz and 0.86 Hz, respec‐
tively.

A serious frequency drop takes place in WOFC case and
exceeds the permitted frequency limitation ultimately. From
the perspective of ROCOF, the required inertia for this test
system is 18750 MW·s for all time intervals. We can find
that the minimum system inertia for WFC and WOFC cases
are allocated with 22121 MW·s and 20735 MW·s, respec‐
tively, which addresses slight effects of ROCOF restriction
in this test system. The above results emphasize the great
significance of integrating frequency constraints into plan‐
ning problems, especially for future environments with high
penetration of renewable energy. It also powerfully demon‐
strates the effectiveness of our frequency-constrained
GEP&ESI model in guaranteeing frequency stability.

D. Comparison of Different Frequency Response Modes

In this subsection, the planning results for different re‐
sponse modes are compared to emphasize the superiority of
our proposed MSFR model. Here, four response modes are
declared as: ① only SGs; ② both SGs and wind farms; ③
both SGs and BESS; ④ synthetical responses (proposed
mode). The planning results are listed in Table VI. It can be
observed that the proposed mode ④ derives the least total
cost, where about 18 M$ (4.4%) cost savings can be ob‐
tained compared with mode ①. That addresses the great im‐
portance of taking full usage of virtual frequency responses.
Meanwhile, frequency responses from wind farms seem to
be more efficient than BESS when comparing modes ② and
③ . It can be explained by the fact that large-scale wind
farms are forced to be installed due to the consumption re‐
quirement. Thus, applying frequency response ability into
wind farm control loops makes up for the reduced inertia as
well as PFR from SGs, which weakens the effects of fre‐
quency limits. Also, fast PFR from BESS incurs 1.3 M$ cost
savings compared with mode ①. However, normal operation
restrictions affect the amounts of available response power
from BESS, which evidently limits its PFR as introduced in
Section II-B.

E. Effects of Consumption Penetration on Planning Results

Figure 9 studies the impact of consumption penetration γw

on planning results with respect to frequency constraints.
Here, WWF and WOWF refer to cases with and without fre‐
quency responses from wind farms.
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As can be observed from Fig. 9, the total cost of both cas‐
es gradually increases when the penetration rate ranges from
0% to 20%, since the uneconomic investment of wind farms
is forced in the planning model. The cost difference between
WWF and WOWF increases from 0 to 20.4 M$. The reason
is that the small capacity has negligible frequency responses,
which incurs no difference in a low-penetration environment.
However, larger-scale wind farms enable to provide more fre‐
quency responses so that the advantage of virtual frequency
response will be more evident. Besides, frequency-support in‐
curs more curtailment power in WWF, where the curtailment
rate rises initially but tends to be stable subsequently. This
phenomenon addresses the restrictions of frequency-support
by the installed capacity with low penetration. Since the to‐
tal cost reduces to a great extent, frequency-support from vir‐
tual frequency responses can bring more cost-effective inte‐
gration of wind farms when taking frequency limits into con‐
sideration.

In our planning model, the scenario technique is utilized
to describe both the uncertainties of wind power and load de‐
mand by clustering the actual data set from 365 days into 4
typical days. However, the operation effectiveness that ac‐
commodates different levels of wind power and load fluctua‐
tion cannot be strictly guaranteed. In this vein, all planning
schemes under different penetration rates are fixed as the in‐
put data. Then, the optimal operation simulation that consid‐
ers fully actual data set is conducted. A higher possibility of
wind curtailment and load shedding will be forced if the ob‐
tained schemes have violated certain operation constraints.
Thus, we define violation rates of wind power VWC and load
demand VLS as (96). Since all operation constraints in normal
states can be totally satisfied through wind curtailment or
load shedding, the normal operation problem is always feasi‐

ble. However, the transient constraint of frequency nadir and
ROCOF is possibly violated due to the limited frequency-
support sources.

ì

í

î

ï
ï
ï
ï

VWC =
NWC

NT

´ 100%

VLS =
NLS

NT

´ 100%
(96)

where NWC and NLS count the number of days with wind cur‐
tailment and load shedding; and NT is the number of all sim‐
ulation days.

Table VII lists the simulation results with different con‐
sumption penetration rates. It can be found that the violation
rate of wind power always maintains zero, while the wind
consumption is verified to be larger than the requirement in
realistic operation. This addresses the effectiveness of our
planning model in facilitating wind power consumption,
which obtains high-penetration renewable integration even
merely basesd on four representative days. Regarding the vi‐
olation rate of load demand VLS, certain static operation con‐
straints are violated in view of nonzero violation rates. Nev‐
ertheless, it is so slight and negligible (less than 1%) that
our planning schemes are still validated to have excellent op‐
eration effectiveness with respect to actual scenarios. Taking
into account the dynamic frequency limits, the minimum fre‐
quency response power PFR and system inertia HE at all time
intervals satisfy the required imbalance power (375 MW)
and system inertia (18750 MW·s), respectively. This indi‐
cates that our planning schemes keep dynamic frequency sta‐
bility since no frequency constraint will be violated within
the actual data set.

F. Effects of Unbalanced Power on Planning Results

In this subsection, we investigate the effects of unbal‐
anced power on planning results. Figure 10 gives the total

TABLE VI
PLANNING RESULTS WITH DIFFERENT RESPONSE MODES

Mode

①
②
③
④

IC (M$)

SGs

35.4

26.4

32.6

23.7

Wind farms

64

64

64

68

BESS

0

0

10.4

10.4

Fuel cost
(M$)

305.3

295.9

297.2

281.1

Unit start-up
cost (M$)

3.8

1.8

4.8

1.5

Wind curtailment
cost (M$)

0

3.7

0

5.8

DR cost
(M$)

0.04

0.10

0.07

0.12

Total cost
(M$)

408.54

391.90

409.07

390.62

Curtailment rate
(%)

0

0.76

0

1.10

370

360

380

390
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Fig. 9. Total cost and curtailment rate with different power penetration
rates.

TABLE VII
SIMULATION RESULTS WITH DIFFERENT CONSUMPTION PENETRATION RATES

Penetration
rate (%)

0

5

10

15

20

VWC

(%)

0

0

375.1

22121

VLS

(%)

0

0

7.5

375

20681

Consumption
rate (%)

0

0.4

14.6

375

20255

The
minimum
PFR (MW)

0

0.7

18.8

375

20255

The
minimum
HE (MW·s)

0

0.8

23.1

375

19295
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cost and curtailment rate in face of different unbalanced
power. It can be observed that the total cost gradually in‐
creases with rising unbalanced power since larger-scale fre‐
quency response power is required. Similarly, PFR from
wind farms plays an essential role in frequency stability due
to more preset wind curtailment. However, it is limited for
wind farms to participate in primary frequency regulation
that can be reflected from a stable curtailment rate in the
end. Besides, frequency constraints will not take effect when
the unbalanced power is fairly low. For instance, a similar to‐
tal cost is obtained when the unbalanced power ranges from
0 to 100 MW. Figure 11 shows the hourly system frequency
response power with different unbalanced power. As the re‐
quirement ranges from 100 MW to 300 MW, the curves
have significant differences, while more frequency response
power will be activated. Thus, the effectiveness of our fre‐
quency-constrained GEP&ESI model in face of different un‐
balanced power can be totally demonstrated.

VI. CONCLUSION

In this paper, a power-headroom constrained system fre‐
quency response model that incorporates thermal units, hy‐
dro units, wind farms, and BESS has been constructed to ob‐
tain synthetical frequency analysis. Afterwards, the multi-ma‐
chine system has been transformed into a single generator
by the parameter equivalence. Based on the DDPWL meth‐
od, a linear coordination planning model of generation and
battery energy storage has been presented to keep the fre‐
quency stability. Compared with the traditional generation

planning problems, the proposed method guarantees ade‐
quate system inertia to limit ROCOF and supplies PFR to
satisfy frequency nadir in future low-inertia power systems.

In our case studies, the proposed DDPWL method con‐
structs linearized frequency constraints with high accuracy
and enhanced computation efficiency. On this basis, we con‐
duct a comparison of planning schemes in WFC and WOFC
cases. Although the proposed method incurs more expan‐
sions as well as larger-scale online capacity, its effectiveness
to satisfy frequency requirement is guaranteed. Moreover,
the necessity of adopting virtual frequency responses for
wind farms and BESSs is revealed. In such a way, more
wind curtailment arises because of the sub-optimal de-load‐
ing mode, which addresses the importance of making a trade-
off between wind power consumption and frequency-sup‐
port. An excellent operation efficiency of the proposed mod‐
el is also addressed through stochastic operation simulation.
Furthermore, it can be concluded that an incremental unbal‐
anced power incurs more installed devices since larger-scale
frequency response power is required, while the effective‐
ness of our method to keep frequency stability is totally dem‐
onstrated.

In future work, efficient solution algorithms should be em‐
ployed so that more representative days can be considered to
describe uncertainty factors more precisely. Besides, more ef‐
ficient control loops of frequency-support sources are expect‐
ed to be applied for less conservative expansion schemes.

APPENDIX A

Appendix A presents the detailed model of PWL2 method‐
ology.

min
cnbn
∑
iÎD

( fL (w i)-PFR (w i)) (A1)

s.t.

fL (w i)³ cnw i + bn "nÎP"iÎD (A2)

fL (w i)£ cnw i + bn +M (1- z n
i ) "nÎP"iÎD (A3)

∑
nÎP

z n
i = 1 z n

i Î{01}"iÎD (A4)

fL (w i)£PFR (w i) (A5)
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