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Abstract——The large-scale integration of renewable energy
sources (RESs) brings huge challenges to the power system. A
cost-effective reserve deployment and uncertainty pricing mech‐
anism are critical to deal with the uncertainty and variability of
RES. To this end, this paper proposes a novel locational margin‐
al pricing mechanism in day-ahead market for managing uncer‐
tainties from RES. Firstly, an improved multi-ellipsoidal uncer‐
tainty set (IMEUS) considering the temporal correlation and
conditional correlation of wind power forecasting is formulated
to better capture the uncertainty of wind power. The dimension
of each ellipsoidal subset is optimized based on a comprehen‐
sive evaluation index to reduce the invalid region without large
loss of modeling accuracy, so as to reduce the conservatism.
Then, an IMEUS-based robust unit commitment (RUC) model
and a robust economic dispatch (RED) model are established
for the day-ahead market clearing. Both the reserve cost and
ramping constraints are considered in the overall dispatch pro‐
cess. Furthermore, based on the Langrangian function of the
RED model, a new locational marginal pricing mechanism is de‐
veloped. The uncertainty locational marginal price (ULMP) is
introduced to charge the RES for its uncertainties and reward
the generators who provide reserve to mitigate uncertainties.
The new pricing mechanism can provide effective price signals
to incentivize the uncertainty management in the day-ahead
market. Finally, the effectiveness of the proposed mechanism is
verified via numerous simulations on the PJM 5-bus system
and IEEE 118-bus system.

Index Terms——Day-ahead market, ellipsoidal uncertainty set,
locational marginal pricing, reserve, robust unit commitment.

I. INTRODUCTION

ALTHOUGH the large-scale integration of renewable en‐
ergy sources (RESs) alleviates the environmental pres‐

sure, they bring great challenges to the power system [1],

[2]. The uncertainty and variability of RES need to be effec‐
tively managed in the market operation, calling for new pric‐
ing mechanisms for uncertainty management in the electrici‐
ty markets.

The security-constrained economic dispatch (SCED) mod‐
el is used in the current market-clearing to optimally dis‐
patch the generators and provide price signals, i.e., the loca‐
tional marginal price (LMP), to market participants [3]. The
LMP is composed of three components: energy price, con‐
gestion price, and loss price. The traditional LMP does not
account for uncertainties in the system. However, in today’s
electricity market with high penetrations of RESs, it is essen‐
tial to formulate a pricing mechanism considering uncertain‐
ty to guarantee the security and economy of system opera‐
tion. Recently, some researchers have utilized SCED to de‐
sign and derive the LMP mechanism for pricing system un‐
certainty. The SCED model in [4] is formulated as a two-
stage stochastic programming problem, where the first stage
clears the market and the second stage models the system op‐
eration under wind power uncertainty. A marginal pricing
mechanism including pool energy prices and balancing ener‐
gy prices is established. Reference [5] designs a chance-con‐
strained stochastic market, which is capable of providing ef‐
fective price signals that internalize the uncertainty of renew‐
able generation resources and risk tolerance of the market
operators. Reference [6] proposes an energy and reserve pric‐
ing mechanism that takes into account the RES stochasticity
with the intention to produce more accurate signals to mar‐
ket participants. However, [4]-[6] consider a single-period
market clearing, ignoring the impact of time-coupling con‐
straints such as ramp rate on market prices. Reference [7]
proposes a novel market framework to credit the generation
and reserve and to charge the load and uncertainty by the
SCED model in the day-ahead market. The thermal genera‐
tors offer zero prices for their reserve products, and conse‐
quently, the marginal prices for clearing reserve in some peri‐
ods are zero. In addition, this paper considers the ramping
constraints in both the dispatch and redispatch processes.
Reference [8] puts forward a stochastic market-clearing
SCED model with an energy-only pricing scheme to yield
LMPs. But it is unable to provide the pricing information
for both the reserve and uncertainty. Reference [9] derives
an uncertainty-contained LMP (U-LMP), which includes two
new uncertainty components, i.e., transmission line overload
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price and generation violation price. Unlike traditional LMP,
the U-LMP differs between different generators and loads
even at the same bus due to their uncertainty levels, which
exacerbates the difficulty and complexity of market clearing.

On the other hand, the security-constrained unit commit‐
ment (SCUC) model is essential to determine the startup and
shutdown statuses of thermal generators before SCED calcu‐
lation. Both robust SCUC (RSCUC) and robust SCED
(RSCED) have been widely used because they do not re‐
quire the detailed probability distribution of uncertain vari‐
ables or the complex calculation with a large number of sce‐
narios. One of the key obstacles of the robust optimization
(RO) methods is the uncertainty set modeling, which direct‐
ly affects the economy and robustness of the decision-mak‐
ing. Common uncertainty sets include box set, polyhedral
set, and ellipsoidal set [10]. The box set utilizes upper and
lower bounds to describe the uncertainty, but ignores the cor‐
relation widely existing in RES generation and load demand
[11]. As a result, the box set may contain numerous scenari‐
os with extremely low occurrence probability, aggravating
the conservativeness of RO model. The polyhedral set is
able to capture the correlation, but still contains large invalid
space, which cannot effectively reduce the conservativeness
of RO model. Compared with the above two uncertainty
sets, the ellipsoidal set can better preserve the correlation be‐
tween variables, and has been proved to be effective in im‐
proving modeling accuracy and reducing conservativeness
Reference [12] proposes a novel RSCUC model, where ellip‐
soidal uncertainty set (EUS) is adopted to well fit the corre‐
lated wind power, and a novel criterion for budget value se‐
lection of the EUS is presented to reduce the conservatism.
Reference [13] presents a risk-averse two-stage optimization
model. The first-stage problem minimizes the dispatch cost
using the wind power forecasting. The second-stage problem
minimizes the expected redispatch cost in the worst-case,
where the minimum volume enclosing ellipsoid (MVEE) al‐
gorithm is used to construct the uncertainty set of correlated
wind power. Reference [14] proposes an adjustable RSCED
model with wind power uncertainty. The MVEE is employed
as a convex hull to solve the scenario-based RO model.
However, [13] and [14] ignore the temporal correlation be‐
tween wind power, which may lead to an extreme climbing
phenomenon of thermal generators [12], [15]. Furthermore,
the temporal correlation of uncertain variables, e. g., wind
power as well as its forecasting error, are normally inversely
proportional to their time interval distance. As a result, the
high-dimensional ellipsoidal set, e.g., a 24-dimensional ellip‐
soidal set used in the conventional day-ahead SCUC and
SCED problems, may contain a large number of uncertain
variables with weak correlation, increasing the volume and
hindering the reduction of conservatism of the ellipsoidal set.

In view of the above shortcomings, this paper proposes an
RO framework for day-ahead market-clearing based on an
improved multi-ellipsoidal uncertainty set (IMEUS). A novel
locational marginal pricing mechanism for pricing and man‐
aging uncertainties in the electricity market is built. In this
work, the IMEUS is proposed to better characterize the un‐
certainties of wind power to reduce the conservatism of RO.

Based on the proposed IMEUS, an RSCUC model and an
RSCED model are established to optimize the dispatch
scheme for thermal generators and generate price signals for
energy and reserve, respectively. The main contributions of
this paper are summarized as follows.

1) An IMEUS modeling method that comprehensively con‐
siders the temporal correlation of the forecasting errors and
the conditional correlation between the forecasting errors
and the forecasting values is proposed. Two indexes named
integrity index and efficiency index are established to evalu‐
ate the performance and determine the optimal dimension of
each ellipsoid set. The integrity index is defined as the cover‐
age ratio of the IMEUS to the wind power data, which is
used to ensure that more actual data is involved in the IME‐
US; while the efficiency index reflects the volume of IME‐
US, which is adopted to reduce the invalid region of IME‐
US, so as to reduce the conservativeness of the uncertainty
set.

2) A day-ahead IMEUS-based RSCUC model and an
RSCED model are established. The generation cost for re‐
serve provision of thermal generators and the ramping con‐
straints in the overall dispatch process are considered to
guarantee the economic and safe operation of the generators
and power system. The optimized power output and reserve
capacity of thermal generators can meet the energy and un‐
certainty demands, and avoid waste of flexible resources.

3) A novel locational marginal pricing mechanism is devel‐
oped. The LMP is used for pricing energy. The uncertainty
locational marginal price (ULMP) is introduced to charge
the RES and load for their uncertainties and reward the gen‐
erators who provide reserve to mitigate uncertainties. This
pricing mechanism can provide effective price signals to
guarantee the cost recovery of thermal generators and incen‐
tivize the uncertainty management.

The remainder of this paper is organized as follows. Sec‐
tion II proposes the IMEUS model. Section III introduces
the IMEUS-based RSCUC model. Section IV presents the
new locational marginal pricing mechanism. Section V pres‐
ents the simulation results. Section VI concludes this paper
with major findings.

II. IMEUS MODEL

The uncertainty set modeling of day-ahead wind power in‐
cludes two stages. The samples denoting the possible realiza‐
tion of wind power in the next day are generated at the first
stage, and the Gaussian Copula approach is utilized to gener‐
ate the samples to consider the temporal correlation of the
forecasting error as well as the conditional correlation be‐
tween the forecasting error and the forecasting value. Then,
the generated samples are adopted to construct the IMEUS
at the second stage.

A. Gaussian Copula-based Wind Power Sampling

Suppose T is the number of scheduling periods that is usu‐
ally considered as 24 in day-ahead decision-making with
time resolution of 1 hour. Define x =[x1 x2xT], y =
[y1 y2 yT], and e=[e1 e2 eT] as the historical data sets
of actual value, forecasting value, and forecasting error of
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wind power, respectively, and x = y + e. The joint distribution
of forecasting error and forecasting value can be written as
(1) according to Gaussian Copula theory [16].

fey (ey)= ϕR (zx1 zx2zxT zy1 zy2zyT|R)×

∏
t = 1

T

fxt
(yt + et) fyt

(yt) (1)

where zxt =Φ-1
0 (Fxt (yt + et)), zyt =Φ-1

0 (Fyt (yt)), t = 12T;
f (×) is the probability density function (PDF); F(×) is the cu‐
mulative distribution function (CDF); Φ-1

0 denotes the in‐
verse of the CDF of the standard Gaussian distribution
Φ0 (×); Fxt (yt + et) and Fyt (yt) can be calculated from histori‐
cal data; and ϕR (×) is the PDF of standard Gaussian distribu‐
tion with covariance matrix R.

Let zx =[zx1 zx2 zxT]T, zy =[zy1 zy2 zyT]T, and z =
[z T

x z T
y ]T obeys standard Gaussian distribution, i.e., z~N(0R).

R can be calculated as:
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where ρ(zxizyj)= 2sin(ρr (zxizyj) π 6)ij = 12T; ρ(×) and
ρr (×) are the linear correlation coefficient and Spearman cor‐
relation coefficient, respectively [17]. Similarly, ρ(zxizxj)
and ρ(zyizyj) can be obtained in the same way.

The conditional PDF of forecasting error can be formulat‐
ed as (6) based on (1).

fe|y (e|y)=
fey (ey)

fy (y)
=
ϕR (z T

x z T
y )

ϕRyy
(z T

y ) ∏t = 1

T

fxt
(yt + et)=

fzx|zy
(z T

x |z T
y )∏

t = 1

T

fxt
(yt + et) (6)

where zy~N(0Ryy); and zx|zy is a conditional distribution of
the multivariate Gaussian distribution, which obeys Gaussian
distribution, i.e., zx|zy~N(μzx|zy

Rzx|zy
). The expected value vec‐

tor μzx|zy
and covariance matrix Rzx|zy

can be obtained as [18]:

{μzx|zy
=Rxy R-1

yy zy

Rzx|zy
=Rxx -Rxy R-1

yy Ryx

(7)

zx|zy characterizes the temporal correlation and conditional
correlation between the actual value and forecasting value of
wind power. Accordingly, the wind power samples for the

next day can be generated based on the latest day-ahead fore‐
casting value. The specific sampling steps are as follows.

1) Obtain CDFs of the actual value and forecasting value
of wind power in each time period based on the historical
data. Calculate the covariance matrix R via (2)-(5).

2) Calculate zyt =Φ-1
0 (Fyt (yt)) based on the latest day-

ahead forecasting value of wind power.
3) Calculate the expected value μzx|zy

and covariance ma‐

trix Rzx|zy
of zx|zy through (7).

4) Generate samples of zx by sampling zx|zy and then get
the actual value samples xs of wind power through xst =
F -1

xt (Φ0 (zxt)).
The above sampling method generates day-ahead actual

value samples xs =[xs1 xs2 xsT]T according to the condi‐
tional distribution obtained from the historical data and the
latest forecasting value. It not only reveals the temporal cor‐
relation and conditional correlation of wind power, but also
updates the day-ahead samples based on the latest forecast‐
ing, showing good adaptability to wind power variation and
better modeling accuracy.

B. IMEUS Model

An ellipsoidal uncertainty set (EUS) covering the samples
xs with confidence degree αc is formulated as:

(xs - μs)
T R-1

s (xs - μs)£Cα (8)

where μs and Rs are the expectation vector and covariance
matrix of samples xs, respectively; and Cα is a constant corre‐
sponding to αc.
μs and Rs can be easily calculated from samples xs. Take

the samples into (9) to obtain the CDF of C. Let P(C £Cα)=
αc, and then we can get Cα corresponding to αc.

C = (xs - μs)
T R-1

s (xs - μs) (9)

μs, Rs, and Cα determine the center, shape, and volume of
the EUS, respectively. When Cα is large, the EUS covers
more samples with a big volume, which may increase the
conservativeness of the uncertainty set.

The traditional method considers a T-dimensional EUS to
model the temporal correlation of wind power. However, al‐
though the high-dimensional EUS is more likely to cover the
actual realization of wind power, the weak correlation
among distant time periods makes EUS too conservative due
to its large volume. On the contrary, a low-dimensional EUS
has smaller volume but may not include enough wind power
data. As a result, a trade-off between wind power coverage
capacity and conservatism should be made in an optimal
manner. To this end, the integrity index and efficiency index
are put forward to optimize the dimension of EUS. The roll‐
ing modeling process is shown in Fig. 1. Firstly, the T-di‐
mensional ellipsoidal set is decomposed into several low-di‐
mensional ellipsoidal subsets chronologically. Define Ns as
the number of subsets and TD as the optimal dimension of
EUS, Ns = T - TD + 1. Define sn as the index for the serial
number of subsets. The s th

n subset Ωsn
expressed as (10) con‐

siders the temporal correlation among time interval [sn sn +
TD - 1], 1£ sn£Ns, and is used to involve the possible realiza‐
tion of wind power among this time interval. Then, the inter‐
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section of these subsets is taken as the IMEUS Ω, which is
formulated as (11).

Ωsn
={xsn

|(xsn
- μssn

)T R-1
ssn

(xsn
- μssn

)£Cαsn
} (10)

Ω = ∩
sn = 1

Ns

Ωsn
(11)

The integrity index ζ is defined as the average coverage
ratio of the IMEUS Ω to the actual data of wind power for
D days, which is used to ensure that more actual data is con‐
tained in the IMEUS. If the maximum number of time peri‐
ods when the IMEUS of the d th day (1£ d £D) can cover the
actual wind power is N max

d , ζ can be expressed as:

ζ =
1
D∑d = 1

D N max
d

T
(12)

The efficiency index η evaluates the volume of IMEUS Ω
by referring to the box set Ωbox shown in (13). This index
limits the volume of IMEUS to reduce the conservativeness.

Ωbox ={xt|xtÎ[xmin
t xmax

t ]} (13)

To estimate the volume of IMEUS, Nboxd samples are gen‐
erated in box set Ωboxd of the d th day, and the number of
these samples in Ωd is recorded as Nelld. The efficiency in‐
dex η is defined as:

η=1-
lg ( )1

D∑d = 1

D

Nelld

lg ( )1
D∑d = 1

D

Nboxd

(14)

Taking into account the two indexes comprehensively, the
comprehensive index CI is defined as:

CI = kζ + (1- k)η k Î[01] (15)

Since there are few potential solutions, the exhaustive
method is utilized to optimize TD. The pseudocode for the
process of optimizing TD is demonstrated in Algorithm 1.

Through Cholesky decomposition R-1
ssn
=LT

ssn
Lssn

, (10) can

be transformed into the following form:

Ωsn
= { }xsn

|
| (xsn

- μssn
)T LT

ssn
Lssn

(xsn
- μssn

)£Cαsn
(16)

This formula can be further converted into:

Ωsn
= { }|

|xsn
||C -1/2

αsn
Lssn

(xsn
- μssn

)||2 £ 1 (17)

Replace xsn
=[xsn

xsn + 1 xsn+TD - 1]
T with the day-ahead

wind power P wIMEUS
sn

=[P wIMEUS
sn

P wIMEUS
sn + 1 P wIMEUS

sn +TD - 1]
T, and (17)

can be converted into (18) to realize the uncertainty model‐
ing of day-ahead wind power.

Ωsn
= { }|

|P wIMEUS
sn

||C -1/2
αsn

Lssn
(P wIMEUS

sn
- μssn

)||2 £ 1 (18)

In order to realize the adjustability of the robustness, the
IMEUS is finally formulated as:

PwIMEUS:=

ì

í

î

ï
ï
ï
ï

|P wIMEUS
t ||C -1/2

αsn
Lssn

(P wIMEUS
sn

- μssn
)||2 £ 1

P wIMEUS
t ³Bwt P

w
ft

∑
t = 1

T

Bwt³T - Γ w

t = 12Tsn = 12Ns (19)

where P w
ft is the day-ahead forecasting value of wind power

at time t; and Bwt is a binary variable related to the realiza‐
tion of wind power. In the worst-case scenario of RO, wind
power takes the lower bound of IMEUS at time t when Bwt =
0, otherwise, takes the forecasting value P w

ft at time t when
Bwt = 1. Γ w is the uncertainty budget denoting the maximum
number of periods when wind power is taken at the lower
bound of the uncertainty set, which is an integer value be‐
tween 0 and T. Therefore, the solution is more conservative
when Γ w is bigger.

Considering the fact that the forecasting accuracy of load
demand is higher than that of wind power, the uncertainty of
load is addressed only by box sets in this paper, which can
be expressed as:

P dbox:=

ì

í

î

ïï
ïï

P dbox
t |P dbox

t =P d
ft +BdtDP dbox

t

∑
t = 1

T

Bdt £Γ d
(20)

where P dbox
t , P d

ft, and DP dbox
t are the uncertain variables relat‐

ed to load demand, forecasting value of load, and the devia‐
tion between the load demand and the forecasting value at
time t, respectively, P dbox =[P dbox

1 P dbox
2 P dbox

T ]T; Bdt is a
binary variable related to the realization of load; and Γ d is the
uncertainty budget, denoting the maximum number of periods
when load is taken at the upper bound of the uncertainty set.

III. RSCUC

A. RSCUC Model

The RSCUC model optimizes the dispatch scheme of ener‐
gy and reserve with the lowest cost in the worst-case scenar‐

TD

TD

TD

1+TD�1

2+TD�1

Time

Time

Time

1 T

1

1

T

NS+TD�1=T

2

2

2 NS

NS

�

Fig. 1. Modeling process of IMEUS.

Algorithm 1: process of optimizing TD

Input: wind power samples xs obtained by the method presented in Sec‐
tion II-A, the confidence degree αc which is used to calculate Cαsn

in

(10), and the coefficient k in (15)
Output: the optimal value of the dimension TD of each low-dimensional

ellipsoidal set
1: for TD = 2:T do
2: for d = 1:D do
3: Establish all low-dimensional ellipsoidal sets Ωsn

shown in (10)

4: Take the intersection of these low-dimensional ellipsoidal sets to
form the IMEUS Ω formulated as (11)

5: end for
6: Calculate the integrity index ζ and the efficiency index η which are

shown in (12) and (14), respectively
7: Calculate the comprehensive index CI which is shown in (15)
8. end for
9: Select TD with the maximum value of CI as the solution
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io, and provides unit commitment status and the worst-case
uncertainty realization for RSCED calculation. It contains ba‐
sic dispatch and redispatch processes in this paper. In basic
dispatch process, thermal generators provide energy accord‐
ing to the forecasting values of load and wind power. In the
redispatch process, reserve is optimized to cope with the de‐
viation between the forecasting value and the worst-case real‐
ization of load and wind power. The RSCUC model is for‐
mulated as:

min
uvIPg DPg∑

t = 1

T∑
i = 1

NG

[C g
i (P g

it +DP g
it)+C SU

i uit +C SD
i vit] (21)

s.t.

∑
i = 1

NG

P g
it +∑

j = 1

NW

P w
jft =∑

m= 1

NM

P d
mft "t(λb

t ) (22)

-P g
it ³-Iit P

g
imax "it(-β

b

it
) (23)

P g
it ³ Iit P

g
imin "it(-β

b

it
) (24)

P g
it - 1 -P g

it ³-r ru
i (1- uit)- r su

i uit "it(-α
b

it) (25)

P g
it -P g

it - 1 ³-r rd
i (1- vit)- r sd

i vit "it(-α
b

it) (26)

-∑
m= 1

NM

GSFlm ×P inj
mt ³-Fl "lt(-η

b

lt
) (27)

∑
m= 1

NM

GSFlm ×P inj
mt ³-Fl "lt(-η

b

lt
) (28)

∑
i = 1

NG

DP g
it =∑

m= 1

NM

DP d
mt -∑

j = 1

NW

DP w
jt (λr

t ) (29)

-P g
it -DP g

it ³-Iit P
g
imax "it(-β

r

it
) (30)

P g
it +DP g

it ³ Iit P
g
imin "it(-β

r

it
) (31)

-DP g
it ³-r ru

i (1- uit)- r su
i uit "it(-α

r1

it) (32)

DP g
it ³-r rd

i (1- vit)- r sd
i vit (-α

r1

it) (33)

P g
it - 1 +DP g

it - 1 -P g
it -DP g

it ³-r ru
i (1- uit)- r su

i uit "it(-α
r2

it) (34)

P g
it +DP g

it -P g
it - 1 -DP g

it - 1 ³-r rd
i (1- vit)- r sd

i vit "it(-α
r2

it) (35)

-∑
m= 1

NM

GSFlm ×(P inj
mt +DP inj

mt)³-Fl "lt(-η
r

lt
) (36)

∑
m= 1

NM

GSFlm ×(P inj
mt +DP inj

mt)³-Fl "lt(-η
r

lt
) (37)

- ∑
q= t -UT g

i + 1

t

ut
iq ³-Iit "itÎ[UT g

i T] (38)

- ∑
q= t -DT g

i + 1

t

vt
iq ³ Iit - 1 "itÎ[DT g

i T] (39)

uit - vit = Iit - Iit - 1 uit vit IitÎ{01}"i"t (40)

-uit - vit ³-1 "i"t (41)

where i, j, m, and l are the indices for thermal generators
(except RES), wind farms, buses, and transmission lines, re‐

spectively; NG, NW, and NM are the numbers of thermal gener‐
ators, wind farms, and buses, respectively; P g

it is the energy
output of thermal generator i at time t in the basic dispatch
process; DP g

it is the reserve in the redispatch process; C g
i (·)

is the operation cost of thermal generator i; C SU
i and C SD

i are
the startup and shutdown costs of thermal generator i, respec‐
tively; uit is the startup variable (1 for startup, 0 otherwise);
vit is the shutdown variable (1 for shutdown, 0 otherwise);
Iit is the unit commitment binary variable (1 for online, 0
otherwise); P w

jft and P d
mft are day-ahead forecasting power of

wind farm j and load at bus m (corresponding to P w
ft in (19)

and P d
ft in (20), respectively); GSFlm is the generation shift

factor of bus m to line l; Fl is the maximum transmission
flow of line l; P g

imin and P g
imax are the lower and upper output

limits of thermal generator i, respectively; the variables in
brackets of (22)-(37) are the dual variables of corresponding
constraints; UT g

i and DT g
i are the minimum up time and min‐

imum down time, respectively; r ru
i and r rd

i are the maximum
ramp up/down rates of thermal generator i, respectively; r su

i

and r sd
i are the startup and shutdown ramp rates, respective‐

ly; DP d
mt and DP w

jt are the difference between forecasting val‐
ue and the worst-case realization of load (P d

mt) and wind
power (P w

jt), respectively; and P inj
mt and DP inj

mt are the power in‐
jection in basic dispatch process and incremental power in‐
jection in redispatch process, respectively. DP d

mt, DP w
jt, P inj

mt,
and DP inj

mt can be expressed as:

DP d
mt =P d

mt -P d
mft (42)

DP w
jt =P w

jt -P w
jft (43)

P inj
mt:= ∑

iÎG(m)

P g
it + ∑

jÎW (m)

P w
jft -P d

mft (44)

DP inj
mt:= ∑

iÎG(m)

DP g
it + ∑

jÎW (m)

DP w
jt -DP d

mt (45)

where G(m) and W (m) are the sets of wind farms and loads
at bus m, respectively.

The objective function (21) minimizes the total operation
costs over the entire dispatch horizon. Constraints (22)-(24)
relate to the basic dispatch, redispatch, and unit on/off sta‐
tus, respectively; (22) and (29) ensure the power balance at
each bus; (23), (24), (30), and (31) enforce the generation
limits of thermal generators; (25), (26) and (32)-(35) denote
the ramping constraints; (27), (28), (36), and (37) enforce
the line capacity; (38) and (39) impose the minimum up/
down time constraints; (40) describes the relationship be‐
tween the unit commitment, startup and shutdown variables;
and (41) ensures that the startup and shutdown of one ther‐
mal generator cannot occur at the same time.

In order to provide reserve capacity for system uncertain‐
ty, the generators will limit their energy output P g

it, which
may reduce their revenue from energy provision. Therefore,
we define the opportunity cost for providing reserve capacity
as the reserve cost C g

i (DP g
it), which is the product of per-

unit generation cost and reserve capacity of generators. This
term guarantees the economy of the reserve deployment and
the overall RSCUC model. Furthermore, the price signals de‐
rived from the reserve cost-contained RSCED model (de‐
scribed in Section IV) ensure that the reserve revenue covers
the reserve cost of thermal generators. The rest in the objec‐
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tive function denote the energy cost C g
i (P g

it), startup cost
C SU

i uit, and shutdown cost C SD
i vit.

In addition, the proposed RSCUC model includes three
parts of ramping constraints. The first two parts, namely
(25), (26) and (32), (33), present the requirements for the en‐
ergy output and reserve capacity of thermal generators, re‐
spectively. These constraints are also applied in the RSCUC
model presented in [7]. Different from the previous works,
this paper adds constraints (34) and (35) as the third part to
ensure that the aggregate of energy and reserve of thermal
generators does not violate the ramping limits. In practical
situation, even if one thermal generator meets the ramping
constraints in terms of both energy output and reserve capac‐
ity, the sum of energy and reserve may exceed the ramping
limits in some extreme scenarios when the reserve capacity
is fully deployed by the independent system operator (ISO).
The energy output and reserve capacity of thermal genera‐
tors are mutually restricted. Constraints (34) and (35) guaran‐
tee the safe operation of the thermal generators.

The above RSCUC model can be modeled as a two-stage
“min-max-min” RO model as:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

min
x

cT x + max
P d

mÎPdbox

P w
j ÎPwIMEUS

min
yÎΩ(xP d

m P
w
j )

bT y

s.t. Ax +By ³ d (γ1)

Cx +Dy = g (γ2)

Ey +FP d
m -FP w

j ³h (γ3)

Gy +P d
m -P w

j = p (γ4)

(46)

where c and b are the cost coefficient of startup/shutdown
cost and operation cost of thermal generators corresponding
to objective function (21), respectively; A, B, C, D, E, F,
and G are the coefficient matrices of the corresponding con‐
straints; d, g, h, and p are the constant column vectors; and
γ1, γ2, γ3, and γ4 are the corresponding dual variables of
these constraints.

The outer “minimization” model is the first-stage problem
with the decision variable x, and the inner “max-min” bi-lev‐
el model is the second-stage problem with the decision vari‐
able y and (P d

m P w
j ), where x, y, and (P d

m P w
j ) are summa‐

rized as (47). Ω(xP d
m P w

j ) denotes the feasible region of y
for a given set of (xP d

m P w
j ).

ì

í

î

ï
ï
ï
ï

x =[I i u i v i]
T

y =[P g
i DP g

i ]T

P d
m =[P d

m1P d
m2P d

mT]T

P w
j =[P w

j1P w
j2P w

jT]T

(47)

where I i, u i, and v i are the variable vectors related to the de‐
cisions of unit commitment, startup, and shutdown of ther‐
mal generator i during [0, T], respectively; P g

i and DP g
i are

the vectors of energy and reserve of thermal generator i dur‐
ing [0, T], respectively; and P d

m and P w
j are the variable vec‐

tors related to the worst-case realization of load at bus m
and wind power j during [0, T], respectively.

Specifically, after bringing (42) - (45) into (22) - (37), the
first line of the constraints in (46) includes (23)-(28), (30)-
(35), (38), (39), and (41); the second line includes (22) and
(40); the third line includes (36) and (37); and the fourth
line includes (29).

B. Solution Method

The column-and-constraint generation (CCG) algorithm
[19] is utilized to solve the RSCUC model. The optimal solu‐
tion is obtained by decomposing the original problem (46)
into the master problem (MP) and subproblem (SP) and solv‐
ing them alternately. The MP can be expressed as:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

min
x

cT x + α

s.t. α³ bT yk

Ax +Byk ³ d

Cx +Dyk = g

Eyk +FP d*
mk -FP w*

jk ³h

Gyk +P d*
mk -P w*

jk = p

(48)

where k is the iteration number; yk is the SP solution at the kth

iteration; and P d*
mk and P w*

jk are the worst-case scenario realiza‐
tions of wind power and load at the kth iteration, respectively.

The SP can be expressed as:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

max
P d

mÎPdbox

P w
j ÎPwIMEUS

min
yÎΩ(xP d

m P
w
j )

bT y

s.t. Ax +By ³ d (γ1)

Cx +Dy = g (γ2)

Ey +FP d
m -FP w

j ³h (γ3)

Gy +P d
m -P w

j = p (γ4)

(49)

For a given (xP d
m P w

j ), the inner “min” problem is a lin‐
ear optimization problem, which is transformed into a
“max” form according to the strong duality theory and com‐
bined with the outer “max” problem. The transformed single-
level “max” model can be expressed as:

ì

í

î

ï

ï
ïï

ï

ï
ïï

max
P d

mP
w
j γ1γ2γ3γ4

((d -Ax)Tγ1 + (g -Cx)Tγ2 + hTγ3 + pTγ4-

)(FP d
m)Tγ3 + (FP w

j )Tγ3 - (P d
m)Tγ4 + (P w

j )Tγ4

s.t. BTγ1 +DTγ2 +ETγ3 +GTγ4 £ b

γ1γ3 ³ 0

(50)

There are bilinear terms, i.e., (FP d
m)Tγ3, (FP w

j )Tγ3, (P d
m)Tγ4,

and (P w
j )Tγ4, in the objective function. These four nonlinear

terms can be linearized by the binary expansion method and
the big-M approach [19]. As a result, the SP can be reformu‐
lated as a mixed-integer second-order cone programming
(MISOCP) problem, which can be expressed as:

max
P d

mP
w
j γ1γ2γ3γ4

{(d -Ax)Tγ1 + (g -Cx)Tγ2 + hTγ3 + pTγ4 + (P w
j )Tγ4min -∑

t = 1

T é

ë
êêP d

mft (F
Pos
t γPos

3t + F Neg
t γNeg

3t )+DP dbox
mt (F Pos

t εdPos
it +F Neg

t εdNeg
it )-

}ùûúú( )F Pos
t P w

jtγ
Pos
3tmin +F Neg

t P w
jtγ

Neg
3tmin +F Pos

t DγPos
3 ∑

i = 0

n

2iεwPos
it +F Neg

t DγNeg
3 ∑

i = 0

n

2iεwNeg
it + (P d

mftγ4t +DP dbox
mt ε

d
it)-Dγ4∑

i = 0

n∑
t = 1

T

2iεw
it (51)
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s.t.

BTγ1 +DTγ2 +ETγ3 +GTγ4 £ b γ1 ³ 0γ3 ³ 0 (52)

{0£ εdPos
it £Bdt M

γPos
3t - (1-Bdt)M £ εdPos

it £ γPos
3t

(53)

{0£ εdNeg
it £Bdt M

γNeg
3t - (1-Bdt)M £ εdNeg

it £ γNeg
3t

(54)

{0£ εwPos
it £ χ Pos

it M
P w

jt - (1- χ Pos
it )M £ εwPos

it £P w
jt

(55)

{0£ εwNeg
it £ χ Neg

it M
P w

jt - (1- χ Neg
it )M £ εwNeg

it £P w
jt

(56)

{0£ εd
it £Bdt M

γ4t - (1-Bdt)M £ εd
it £ γ4t

(57)

{0£ εw
it £ χ it

P w
jt - (1- χ it)M £ εw

it £P w
jt

(58)

 C -1/2
αsn Lssn (P wIMEUS

sn - μssn)
2
£ 1 sn = 12Ns (59)

{P wIMEUS
t ³Bwt P

w
ft

∑
t = 1

T

Bwt ³T - Γ w (60)

{P dbox
t =P d

ft +BdtDP dbox
t

∑
t = 1

T

Bdt £Γ d (61)

The detailed linearizing process and the meaning of each
notation are illustrated in Appendix A.

After the above transformation, the CCG algorithm-based
solution steps are as follows.

1) Give a set of (P d
m P w

j ) as the initial worst-case scenario,
set the lower bound of the objective function LB®-¥, and
the upper bound UB®+¥, k = 1.

2) Solve the MP (28), obtain the solution (x *
k α*

k y*
k ), and

update the lower bound as LB= cT x *
k + α*

k.
3) Fix x *

k and solve the SP (51)-(61), obtain the objective
function f *

k (x *
k ) and the worst-case scenario (P d*

mk + 1 P w*
jk + 1),

and update the upper bound as UB=min{UBc T x *
k + f *

k (x *
k )}.

4) Set tolerance ε. If UB- LB£ ε, the iteration is terminat‐
ed and return the optimal solution x *

k , y*
k, and (P d*

mk + 1 P w*
jk + 1);

otherwise, create yk + 1 and add the following constraints to
the MP:

ì

í

î

ï

ï
ïï

ï

ï
ïï

α³ bT yk + 1

Ax +Byk + 1 ³ d

Cx +Dyk + 1 = g

Eyk + 1 +FP d*
mk + 1 -FP w*

jk + 1 ³h

Gyk + 1 +P d*
mk + 1 -P w*

jk + 1 = p

(62)

5) Update k = k + 1 and go to 2).

IV. LOCATIONAL MARGINAL PRICING MECHANISM

The ISO should deploy reserve appropriately and form a

pricing mechanism in a cost-effective manner to guide pow‐
er entities to improve the efficiency of system operation
while ensuring their own profits. This section first expounds
the RSCED model, and then derives a novel locational mar‐
ginal pricing mechanism.

A. RSCED Model

Fixing the unit commitment status and robust uncertainty
scenario realization (i.e., Iit, uit, vit, P d

mt, and P w
jt) obtained in

the RSCUC model, the RSCED model can be formulated as:

{min
Pg DPg∑

t = 1

T∑
i = 1

NG

C g
i (P g

it +DP g
it)

s.t. (22)-(37)
(63)

This RSCED model is a linear programming model,
which can be easily solved by optimization software.

B. Pricing Mechanism and Market Clearing Mechanism

The Lagrangian function L(PDPλβαη) is a by-product
of the RSCED model. According to the definition, the LMP
at bus m can be derived as:

LMPmt =
¶L(PDPλβαη)

¶P d
mft

= λb
t -∑

l

GSFlm ×(
-
η

b

lt
- -η

b

lt
)-

∑
l

GSFlm ×(
-
η

r

lt
- -η

r

lt
) (64)

The ULMP is defined as the marginal cost corresponding
to the unit increment of forecasting deviation of net load at
bus m, which can be derived as:

ULMPmt =
¶L(PDPλβαη)

¶ ( )DP d
mt - ∑

jÎW (m)

DP w
jt

= λr
t -∑

l

GSFlm ×(
-
η

r

lt
- -η

r

lt
)

(65)

For the thermal generator i at bus m, LMP and ULMP can
also be derived from KKT condition [8]:

LMPmt =
¶C g

i (P g
it +DP g

it)

¶P g
it

+ -
β

b

it
- -β

b

it
+ -
α

b

it - -α
b

it -

-
α

b

it + 1 + -α
b

it + 1
+ -
β

r

it
- -β

r

it
+ -
α

r2

it - -α
r2

it -
-
α

r2

it + 1 + -α
r2

it + 1 (66)

ULMPmt =
¶C g

i (P g
it +DP g

it)

¶DP g
it

+ -
β

r

it
- -β

r

it
+ -
α

r1

it -

-α
r1

it +
-
α

r2

it - -α
r2

it -
-
α

r2

it + 1 + -α
r2

it + 1 (67)

The detailed derivation processes of (64), (65) and (66),
(67) are given in Appendix B and Appendix C, respectively.

It can be seen from (64)-(67) that the marginal prices are
affected by various factors such as line capacity and genera‐
tor capacity [20], [21], which belong to non-time-coupling
factors. On the other hand, the time-coupling factors, mainly
the generator ramping constraints, have been proved to cause
high marginal prices possibly [22] - [24]. Different from the
previous works, this paper proves that ramping constraints
may lead to low prices (lower than the generation cost of
thermal generators), which is illustrated below.

The dual variables
-
α

b

it, -α
b

it,
-
α

b

it + 1, -α
b

it + 1
,
-
α

r1

it , -α
r1

it,
-
α

r2

it, -α
r2

it,
-
α

r2

it + 1, and -α
r2

it + 1
in (66) and (67) correspond to the ramping
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constraints (25), (26) and (32), (35). When one of these con‐
straints is binding in the day-ahead economic dispatch, the
corresponding dual variable is greater than 0. The signs be‐
fore -α

b

it,
-
α

b

it + 1, -α
r1

it, -α
r2

it, and
-
α

r2

it + 1 are negative. Therefore,

when these dual variables are greater than 0, the prices may
decrease. According to the time period when these con‐
straints are binding, it can be discussed in two cases as follows.

1) When the thermal generator i reaches the ramp up limit
from time t to time t + 1, the ramping constraint (25) or (34)
is binding at time t + 1. At this time,

-
α

b

it + 1 > 0 or
-
α

r2

it + 1 > 0.
2) When the thermal generator i reaches the ramp down

limit from time t - 1 to time t, the ramping constraint (26),
(33), or (35) is binding at time t. At this time, -α

b

it > 0,

-α
r1

it > 0, or -α
r2

it > 0.

Both cases will decrease LMP and ULMP at time t. The
former case happens at the beginning of ramp up stage
(ramp up from time t to time t + 1, time t is the beginning
time), and the latter case happens at the end of ramp down
stage (ramp down from time t - 1 to time t, time t is the end‐
ing time).

Formulas (29)-(37) are the constraints for the thermal gen‐
erators to provide reserve capacity against system uncertain‐
ties. The related dual variables denote the shadow prices of
system resources, such as the energy, generation capacity of
thermal generators as well as the line capacity. The expres‐
sions of (65) and (67) reveal the influence of uncertainty on
ULMP obviously. On the other hand, LMP in (64) is a par‐
tial differential of Lagrangian function with respect to the
forecasting value of load (P d

mft), which is a deterministic val‐
ue. However, the economic dispatch model co-optimizes the
basic dispatch process and redispatch process, resulting in
the mutual influence of energy scheduling (deal with deter‐
ministic forecasting values) and the reserve scheduling
(against uncertainties). Accordingly, (64) and (66) that in‐
clude the dual variables corresponding to redispatch con‐
straints (29)-(37) reflect the impact of system uncertainty on
LMP. In a word, both LMP and ULMP internalize the sys‐
tem uncertainty.

Based on the definition, LMP is used for price energy,
and ULMP is used for price uncertainty and reserve. The
day-ahead market clearing scheme is as follows.
1) Market Clearing for Thermal Generators

The energy revenue of thermal generator i at bus m is the
product of the energy output and LMP, i.e., LMPmt P

g
it.

The sources that provide reserve to address system uncer‐
tainties will get paid for their generation reserve. The reve‐
nue for reserve provision of thermal generator i at bus m is the
product of its reserve capacity and ULMP, i.e., ULMPmt × DP g

it.
The term ¶C g

i (·)/¶DP g
it of ULMP in (67) related to the re‐

serve cost in the RSCED model ensures that thermal genera‐
tors can receive enough revenue commensurate with their re‐
serve cost.
2) Market Clearing for Wind Farms

The energy revenue of wind farm j at bus m is the prod‐
uct of its power forecasting value and LMP, i.e, LMPmt ×P w

jft.
The uncertainty sources need to pay for uncertainties they

bring to the system based on the ULMP. Since DP w
jt £ 0 in

the worst-case scenario, the reserve payment of wind farm j
at bus m is -ULMPmt × DP w

jt, which is determined by the
maximum forecasting deviation and the ULMP.
3) Market Clearing for Loads

The energy payment of the load at bus m is the product of
its power forecasting value and LMP, i.e., LMPmt ×P d

mft. The
load at bus m will pay ULMPmt × DP d

mt to the ISO, denoted
as the product of the maximum forecasting deviation and the
ULMP.

The uncertainties increase the system cost and the pay‐
ment of uncertainty sources, which are ultimately embodied
in the changes of LMP and ULMP. The proposed pricing
mechanism can stimulate uncertainty sources to improve the
forecasting accuracy and provide effective price signals to in‐
centivize the uncertainty management in the day-ahead market.

V. CASE STUDY

In this section, the effectiveness of the proposed method
is verified by the PJM 5-bus system and IEEE 118-bus sys‐
tem. All the simulations have been implemented in MAT‐
LAB 2017a with YALMIP interface and CPLEX 12.9.0 in a
computational environment with Intel(R) Core(TM) i7-
10700F CPU running at 2.9 GHz with 16 GB RAM. The
CCG gap is set to be ε = 0.1%´ LB for both the PJM 5-bus
system and IEEE 118-bus system.

A. PJM 5-bus System

In this section, the confidence degree and uncertainty bud‐
get are set to be 90% and 24 for all uncertainty sets, respec‐
tively.
1) Comparison of Different Uncertainty Sets

A group of hourly data in 2019 is taken from a 400 MW
wind farm in China for research. The temporal correlation
coefficient of forecasting error is shown in Fig. 2(a), where
the colors indicate the correlation strength and the abscissa/
ordinate represent the time interval. The forecasting error
shows obvious temporal correlation which is inversely pro‐
portional to the time interval distance. This correlation is re‐
lated to the wind power fluctuation and affects the ramp rate
of thermal generators [25]. The conditional correlation be‐
tween forecasting error and forecasting value is presented in
Fig. 2(b). The forecasting error increases and the error distri‐
bution becomes more dispersed as the forecasting value be‐
comes larger. The formulated Gaussian Copula function es‐
tablishes the relationship between forecasting error and fore‐
casting value, so that the samples of the possible realization
of wind power can be updated based on the latest day-ahead
forecast power. The temporal correlation and conditional cor‐
relation are important features of wind power, which need to
be fully considered in uncertainty set modeling.

The relationship between the dimension TD of each ellip‐
soidal subset and the evaluation indices is illustrated in Fig.
3 when k is set to be 0.3. The integrity index increases mo‐
notonously with the increase of the TD, whereas the efficien‐
cy index decreases gradually after TD³ 5 as more invalid re‐
gion is contained in the IMEUS. The comprehensive index
performs best when TD= 6, which is selected as the optimal
solution for TD.
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To verify the advantage of the IMEUS, three uncertainty
set modeling methods are compared. Method 1 utilizes the
box set that adds error interval on both sides of the forecast‐
ing value in each period, which can actually be regarded as
the polyhedral set [26]. Method 2 uses the traditional high-
dimensional ellipsoidal set proposed in [10], [12]. Method 3
applies the proposed IMEUS model. The box set is denoted
as (20). The traditional high-dimensional ellipsoidal set is a
special case of (10), (11) with TD valued as 24. The pro‐
posed IMEUS is formulated as (10), (11) with the optimal
TD. The data from January to November are used as histori‐
cal data to build the joint distribution of forecasting value
and forecasting error, the forecasting value data in the last
month is applied to generate the corresponding IMEUS, and
the actual wind power data in the last month is used to test
the performance. The performance of modeling methods for
different uncertainty sets is summarized in Table I. The cov‐
erage ratio denotes the total proportion of the actual data in
the uncertainty sets, and the average width is the average dif‐
ference between the upper and lower bounds of the uncer‐
tainty sets.

It can be seen that the traditional ellipsoidal set performs
better in terms of actual data coverage ratio. However, it con‐
tains too much invalid region, resulting in a high degree of
conservativeness. On the premise of ensuring the coverage
ratio, the IMEUS has the narrowest interval, which can re‐
duce the conservativeness. Although the box set has a simi‐
lar coverage ratio with IMEUS, its conservativeness is high‐
er than that of the IMEUS. The reason is that the IMEUS
takes into account the temporal correlation and conditional
correlation to updates the set via the latest day-ahead fore‐
casting data, whereas the box set has a fixed error interval in
different days, which is poor in adaptability.

Figure 4 demonstrates the set realization of three methods
on a specified day, where the above conclusions can also be
drawn. These results indicate that the IMEUS can effectively
reduce the conservativeness on the premise of ensuring the
modeling accuracy.

The PJM 5-bus system is shown in Fig. 5. The thermal
generators originally located at bus A are combined and ther‐
mal generator parameters are shown in Table II [27]. The
forecasting total load is distributed to the loads at buses B,
C, and D with a ratio of 3:3:4. It is assumed that there is no
forecasting error for the load at bus D, and the maximum
forecasting error for the loads at bus B and C are 10% and
5% of their forecasting values, respectively. The wind farm
mentioned above is located at bus D.

The proposed RSCUC model is implemented with the
three uncertainty set modeling methods for wind power men‐
tioned in Section V-A, respectively. The load is modeled by
box set in all cases. The daily average performances of the
31-day (in November) simulations are listed in Table III.
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TABLE I
PERFORMANCE OF MODELING METHODS FOR DIFFERENT UNCERTAINTY SETS

Method

Method 1

Method 2

Method 3

Coverage ratio (%)

90.11

99.85

90.07

Average width (MW)

95.84

130.87

80.53

Brighton

Solitude

Sundance

E

A

B C

D

$15
210 MW

$20
600 MW

$40
200 MW

$30
520 MW

400 MW
Limit=240 MW

Limit=400 MWAlta+Park City

Fig. 5. PJM 5-bus system.
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Thanks to the improved conservativeness, the extreme
wind power fluctuation scenarios with low probability of oc‐
currence are eliminated in the IMEUS. As a result, the ramp-
up and ramp-down rate levels of wind power are the lowest
in the RSCUC model based on the IMEUS (Method 3). In

addition, the IMEUS-based RSCUC can also reduce the re‐
serve demand, and the RSCUC cost is significantly reduced
by 1.91% as compared with Method 1 and 7.63% with Meth‐
od 2. To sum up, the IMEUS reduces the RO conservative‐
ness and the demand for flexible resources, and improves
the economy and reliability. On the other hand, the RSCUC
calculation of Method 1 consumes less than 1 s and no itera‐
tive calculation is required. In Method 1, load and wind pow‐
er are both modeled by box sets. The upper and lower
bounds of the box sets are taken as the worst-case scenario
for the load and wind power, respectively. Given the worst-
case scenario, the RSCUC is transformed into a single level
“min” model, which does not require iterative calculation
and takes very little time. The RSCUC based on Method 2
and Method 3 are similar in calculation time and iteration
number, which are around 2 s and 3 iterations, respectively.

Furthermore, the performance of uncertainty sets is veri‐
fied through an out-of-sample evaluation, which utilizes the
actual wind power data in the last month as the out-of-sam‐
ple values to obtain the real benefits of each uncertainty
modeling method after the uncertainty is realized. Assume
that the wind farm will be punished by the ISO if the actual
output is lower than the lower bound of its uncertainty set,
as it will lead to additional balancing costs; while the wind

farm will be compensated if the actual output is larger than
the lower bound of its uncertainty set. The real benefits of
wind farm with different penalty coefficients and compensa‐
tion coefficients are demonstrated in Table IV, where the pen‐
alty coefficients are all set to be 2. The two coefficients de‐
note the ratio of the penalty price and compensation price to
the day-ahead LMP, respectively.

It can be seen that the extra profit of the wind farm with
Method 3 is the lowest among all cases. However, the total
profit of Method 3 is the highest in all cases. The reason is
that the profit in day-ahead market of Method 3 is signifi‐
cantly higher than the other two methods as the box set and
high-dimensional ellipsoidal set are too conservative, which
requires higher reserve payments. This out-of-sample test re‐
veals that the proposed IMEUS with lower conservativeness
has better economic performance.

To sum up, the proposed IMEUS can reduce the conserva‐
tiveness of the uncertainty set and improve the accuracy of
uncertainty modeling, thus improving the economy of RO.
2) Comparison of Different RSCUC/RSCED Models

In Section V-A-1), the RSCUC model based on Method 3
(box set for load, IMEUS for wind power) has obtained the

worst-case scenario realization of wind power and load,
which is fixed in this section to compare the following three
different RSCUC/RSCED models.

1) Model 1: the proposed RSCUC/RSCED models in this
paper.

2) Model 2: the RSCUC/RSCED models proposed in [7].
Different from Model 1, the ramping constraints (34), (35)
and the reserve cost (C g

i (DP g
it) in (21)) are not considered in

this model. The derived ULMP does not include the cost
term ¶C g

i (·)/¶DP g
it in (66).

3) Model 3: all ramping constraints, i. e., (25), (26) and
(32)- (35) are excluded, while other aspects are the same as
Model 1.

Model 2 is used to explore the influence of the ramping
constraints (34), (35) and the reserve cost C g

i (DP g
it) on the

TABLE II
GENERATOR PARAMETERS

Generator name

A (Alta + Park City)

C (Solitude)

D (Sundance)

E (Brighton)

rru /rsu /rrd /rsd

(MW/hour)

25

60

25

80

Csu ($)

360

500

300

550

Csd ($)

40

80

50

90

UT g

(hour)

4

4

2

3

DT g

(hour)

3

4

2

3

TABLE III
RSCUC RESULTS WITH DIFFERENT UNCERTAINTY MODELING METHODS

Method

Method 1

Method 2

Method 3

The maximum ramp up
of wind power (MW)

82.17

91.00

76.00

The maximum ramp down
of wind power (MW)

87.00

111.08

85.10

Reserve capacity
(MW)

1487.31

1915.49

1328.62

RSCUC cost ($)

254193.84

269945.57

249342.03

Average calculation
time (s)

< 1

2.05

1.91

Average iteration
number

3.16

3.03

TABLE IV
OUT-OF-SAMPLE RESULTS

Compensation
coefficient

0.25

0.50

0.75

Extra profit (penalty + compensation) ($)

Method 1

1266.70

4717.93

8169.16

Method 2

5961.36

12747.90

19534.44

Method 3

1103.88

4487.69

7871.51

Total profit (extra profit + profit in day-ahead market) ($)

Method 1

27683.28

31134.51

34585.74

Method 2

26002.80

32789.34

39575.88

Method 3

34681.45

38065.26

41449.08
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RSCUC results. Model 3 is designed to explore the influ‐
ence of all ramping constraints on the RSCUC results and to
prove that ramping constraints are one of the reasons leading
to low prices.

Figure 6 and Table V indicate the dispatching scheme.
Each period includes three histograms, corresponding to the
results of three models, respectively. In Fig. 6, “Gen” repre‐
sents the generator. It can be seen that the load is mainly
supported by Gen A and Gen E due to their low generation
costs. In Model 1, the residual capacity of Gen A with the
cheapest offer is limited after providing energy. Therefore,
the reserve is mainly provided by Gen E with large residual
capacity and low offer price. In Model 2, the reserve cost is
not considered; thus, Gen C and Gen D with higher costs
supply a great quantity of reserve capacity.

The above results show that the proportion of energy pro‐
vided by each generator in Model 1 and Model 2 is close.
However, the two models differ greatly in reserve provision.
In Model 1, Gen E with lower cost supplies 89.07% reserve.
In Model 2, Gen C with higher cost provides 80.94% re‐
serve. Table VI illustrates the day-ahead cost for energy and

reserve of the three models. It can be seen that the reserve
cost of Model 2 is significantly higher than that of Model 1,
as the reserve is provided by thermal generators with higher
cost. In addition, the total cost of Model 1 is higher than that
of Model 3. The reason is that Model 1 considers the ramping
constraints which limit the output of low-cost generators.

The proposed RSCUC model tightens the ramping con‐
straints. Taking hours 17-18 as an example, the energy out‐
put of Gen E increases from 307 MW to 376.87 MW, the re‐
serve capacity increases from 54.64 MW to 64.78 MW, and
the total output will increase from 361.64 MW to 441.64
MW if the reserve is fully dispatched in Model 1. Both the
energy output and reserve do not violate the ramping con‐
straints, yet their sum just triggers the limit of 80 MW. In
Model 2, however, the total output of the energy and reserve
increases from 305.00 MW to 393.56 MW, exceeding the
ramping limit. A more serious situation occurs in Model 3,
where both the energy output (from 313.00 MW to 423.00
MW) and the overall output (from 367.64 MW to 516.56
MW) violate the constraints. Accordingly, the proposed RS‐
CUC/RSCED model ensures the safe operation of generators
by considering ramping constraints comprehensively.
3) Pricing Mechanism and Day-ahead Market Clearing

The LMP and ULMP derived from the three RSCED mod‐
els mentioned in Section V-A-2) are shown in Fig. 7 and

Fig. 8, respectively. In Model 1, the prices are high during
heavy load periods in hours 18-22. The prices are different
at different buses in each period of hours 20-23 due to the
network congestion on line D-E. In addition, there are some
differences between LMP and ULMP. For example, LMP is
15 $/MWh higher than ULMP in hour 2 (40 $/MWh vs 25
$/MWh). It can be explained by (66) and (67), and the mar‐
ginal prices at bus A is taken as an example firstly.
¶C g

i (·)/¶P g
it and ¶C g

i (·)/¶DP g
it of Gen A (at bus A) are both

equal to its generation cost, i.e., 15 $/MWh. Besides, Gen A
reaches the output limit in hour 2 and ramp down limit from
hour 2 to hour 3, and consequently, the results of -α

b

A3 and
-
β

r

A2
are equal to 15 $/MWh and 10 $/MWh, respectively.

Then the marginal prices at bus A are obtained by introduc‐
ing these nonzero terms into (66) and (67). The prices of oth‐
er buses can be derived in the same way.
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Fig. 6. Dispatching results of three RSCUC models.

TABLE V
ENERGY OUTPUT AND RESERVE RESULTS

Model

Model 1

Model 2

Model 3

Energy output (MWh)

Gen A

4859.01

4921.00

5040.00

Gen C

554.52

282.15

136.99

Gen D

3.00

14.27

0.00

Gen E

6345.45

6544.57

6585.01

Reserve (MW)

Gen A

99.94

25.00

0.00

Gen C

64.11

1310.89

327.93

Gen D

12.90

231.52

0.00

Gen E

1442.65

52.19

1291.68
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Fig. 7. LMP derived from three RSCED models. (a) Model 1. (b) Model
2. (c) Model 3.

TABLE VI
RSCUC COST RESULTS

Model

Model 1

Model 2

Model 3

Energy cost ($)

216550.14

213742.05

211409.90

Reserve cost ($)

32791.89

50006.87

35671.73

Total cost (objective
value) ($)

249342.03

263748.92

247081.63

744



ZHAO et al.: LOCATIONAL MARGINAL PRICING MECHANISM FOR UNCERTAINTY MANAGEMENT BASED ON IMPROVED...

The three RSCED models produce different prices due to
the different considerations of reserve cost and ramping con‐
straints. The LMPs of Model 1 and Model 2 deviate in
hours 6-7, 14-15, 20, and 22-23. For instance, LMP of Mod‐
el 1 is 5 $/MWh higher than that of Model 2 in hour 7 (25
$/MWh vs 20 $/MWh). The cheap Gen A and Gen E in
Model 1 provide all the reserve in this period, and yet the
expensive Gen C and Gen D in Model 2 also provide re‐
serve due to the lack of reserve cost. The full use of the out‐
put capacity of Gen E makes the sum of energy and reserve
reach the ramping limit (from 214.41 MW in hour 6 to
294.41 MW in hour 7) in Model 1. As a result,

-
α

r2

it of Gen E
is equal to 5 $/MWh in Model 1 with constraint (34) bind‐
ing, whereas there is no such term in Model 2. Thus, LMP
at bus E in Model 1 and Model 2 are 25 $/MWh and 20
$/MWh, respectively, according to (66) as ¶C g

i (·)/¶P g
it = 20

$/MWh for Gen E. The LMP of other buses is the same as
that of bus E as there is no congestion.

The ULMP in Model 1 almost matches the reserve cost of
generators. However, the ULMP in Model 2 are all equal to 0
$/MWh. The reason is that the reserve cost term ¶C g

i (·)/¶DP g
it

is considered in the ULMP expression in Model 1, but is ig‐
nored in Model 2. The generator revenue/profit from reserve
provision in Model 1 and Model 2 is $33677.20/$885.30 and

$0/$- 50006.87, respectively. The proposed model provides
enough revenue for reserve provision of generators, whereas
Model 2 cannot cover the reserve cost, resulting in profit
loss. Model 3 considers the reserve cost but ignores all the
ramping constraints. As a result, the price variation related
to ramping constraint is not reflected in Model 3. LMP and
ULMP are 20 $/MWh in hours 1-18 and 24, as there is no
network congestion and Gen E is the marginal generator. In
hours 19-23, Gen C is activated as the marginal generator
due to the congestion of line D-E, and the price at each bus
goes up consequently. Model 3 guarantees the generator prof‐
its, but the lack of ramping constraints increases the opera‐
tion risk of the system. In conclusion, the proposed pricing
mechanism can generate effective price signals to reflect the
actual operation safety of the system and ensure the cost re‐
covery of generators simultaneously.

Figures 7 and 8 reveal that low electricity prices (less
than the offer prices of generators at corresponding buses)
occur in hours 3, 6, 16, and 17 when the generators trigger
ramping limits in Model 1. There are no low prices when
ramping limits are not considered in Model 3. The following
uses the proposed RSCUC/RSCED model (Model 1) to ana‐
lyze the low electricity prices. Low prices lead to profit loss
of generators in that period. Hours 15-19 coupled with ramp‐
ing constraints are selected for analysis. The profits except
Gen D (all zero values) are presented in Table VII (at the
left of the solidus “/”). Gen A and Gen E suffer losses due
to low prices in hours 16 and 17, but their total profits
($6250 and $4800, respectively) are positive in hours 15-19.
Gen A and Gen E have an incentive to reduce output to min‐
imize profit loss. Suppose that Gen A reduces 1 MW energy
in hour 16 and Gen E reduces 1 MW reserve in hour 17. To
meet the system constraints, other generators follow to ad‐
just energy and reserve in hours 15-19. After the adjustment,
the profit change of generators is shown in Table VII (at the
right of the solidus “/”).

Gen A in hour 16 and Gen E in hour 17 reduce the profit
loss by cutting down energy and reserve, respectively. How‐
ever, due to the output adjustment in the rest hours, the prof‐
its of Gen A and Gen C decrease by $10 and $110, respec‐
tively, and the profit of Gen E keeps unchanged. The system
costs before/after adjustment are $56703.06/$56823.15 in
hours 15-19. Thus, the generators should not deviate from
the optimal plan of system in terms of both the system cost
and generator revenue. Another verification is that low pric‐
es may appear at the beginning of ramp up stage (hours 6

and 16) and the end of ramp down stage (hours 3 and 17).
From the previous discussion, it can be seen that low prices
at time t can be caused by a generator reaching the ramp
down limit from time t - 1 to t or the ramp up limit from
time t to t + 1. In order to gain enough revenue by exporting
more energy and reserve in high price periods, e. g., time
t - 1 and t + 1, the generators constrained by the ramping
constraints still provide a certain amount of energy and re‐
serve in low price periods, e.g., time t, even though they
may bear some losses. When these periods are considered as
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Fig. 8. ULMP derived from three RSCED models. (a) Model 1. (b) Model
2. (c) Model 3.

TABLE VII
GENERATOR PROFITS AND PROFIT CHANGES IN HOURS 15-19

Time (hour)

15

16

17

18

19

Energy profit ($)

Gen A

925/-5

-4000/25

2775/-15

3150/-15

3150/-167

Gen C

0/0

0/-80

0/0

0/0

0/0

Gen E

0/0

-6810/30

3070/-10

3769/91

4569/91

Reserve profit ($)

Gen A

125/0

125/0

0/0

0/0

0/167

Gen C

0/0

0/0

0/-30

0/0

0/0

Gen E

0/0

0/0

-1093/20

648/-111

648/-111
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a whole, each generator can obtain a considerable positive
profit.

Table VIII shows the day-ahead market clearing results in
Model 1. As the energy output provided by all the genera‐
tors is far more than the reserve capacity, the generator prof‐
it mainly comes from energy supply, accounting for 97.62%
of the total profit. The loads and wind farms should pay tar‐
iff for their uncertainties. The reserve payment of wind farm
with strong uncertainty accounts for 33.54% of its energy
revenue. Therefore, it is urgent to improve forecasting accu‐
racy to strengthen the regulation ability.

B. IEEE 118-bus System

The performance of the proposed method is also tested in
the IEEE 118-bus system, which includes 118 buses, 54 tra‐
ditional thermal generators, and 186 lines. The detailed pa‐
rameters are given in [7]. This system contains 10 uncertain
loads at buses 11, 15, 49, 54, 56, 59, 60, 62, 80, and 90.

Five wind farms are located at buses 10, 26, 49, 65, and 80.
The load and wind power are modeled by box set and the
IMEUS model, respectively.
1) Sensitivity Analysis of Load Deviation

The uncertainty budgets are all set to be 24, and the confi‐
dence degree of the IMEUS is set to be 90%. The forecast‐
ing deviation of uncertain load is set to be 0.2, 0.25, and 0.3
of the forecasting values, respectively, and the simulation re‐
sults are demonstrated in Table IX. It can be seen that the
energy cost/revenue, reserve cost/revenue, and the total prof‐
its of generators increase with the load deviation level. This
is because the width of the box set of load becomes larger
along with the increase of forecasting deviation, thus more
energy and reserve are required to deal with the uncertainty.
Meanwhile, the electricity prices as well as the payment/rev‐
enue of load and wind farms increase accordingly. In addi‐
tion, it can be found that the reserve revenues of generators
in Table IX are smaller than the total reserve payment of
load and wind farm, which is caused by the difference of
ULMP in different bus, also known as the congestion residu‐
al. Therefore, the serious system uncertainties make electrici‐
ty prices go up, which influences the revenue and payment
of each participant, not only the uncertainty sources them‐
selves. On the other hand, the CCG algorithm for solving
the RSCUC problem can terminate in a finite number of iter‐
ations (about 6 iterations in these cases) and takes about 20
minutes.

2) Sensitivity Analysis of Confidence Degree and Uncertain‐
ty Budget

When the uncertainty budgets are all set to be 24, the re‐
sults with different confidence degrees are shown in Table
X. It can be seen that with the increase of confidence de‐
gree, the reserve demand in the worst-case scenario will in‐
crease significantly, which will cause the rise of average
electricity prices, and accordingly, lead to the increase in the
energy cost and reserve cost of market participants. It should
be noted that when the confidence degree changes from 90%

to 100%, the unit commitment outcomes and price results
have a significant increase compared with that from 70% to
90%. The reason is that when the confidence degree is close
to 100%, there will be some extreme scenarios with very
low probability in the actual situation, which make the solu‐
tion too conservative.

When the confidence degrees of the box set and the IME‐
US are all set to be 90%, the simulation results under differ‐
ent uncertainty budgets are shown in Table XI.

TABLE VIII
DAY-AHEAD MARKET CLEARING RESULTS

Clearing result

Energy

Reserve

Total

Load payment ($)

335618.28

14512.86

350131.13

Wind revenue ($)

55625.40

-22047.83

33577.56

Generator profit ($)

36419.64

885.30

37304.94

TABLE IX
DAY-AHEAD CALCULATION RESULTS

Load
deviation

0.20

0.25

0.25

System
cost ($)

2.03×106

2.07×106

2.11×106

Generators

Energy
cost ($)

1.82×106

1.83×106

1.83×106

Energy
revenue

($)

2.48×106

2.51×106

2.68×106

Reserve
cost ($)

2.10×105

2.40×105

2.83×105

Reserve
revenue

($)

2.47×105

2.93×105

3.54×105

Total
profit ($)

6.95×105

7.30×105

9.29×105

Load

Energy
payment

($)

2.70×106

2.73×106

2.93×106

Reserve
payment

($)

1.59×105

2.01×105

2.60×105

Wind

Energy
revenue

($)

2.10×105

2.14×105

2.28×105

Reserve
payment

($)

9.22×104

9.36×104

9.97×104

LMP/
ULMP
average
($/MWh)

20.18

20.45

21.94

Average
calculation

time (s)

1110.92

1270.03

1435.66

Average
iteration

6.19

6.45

6.61

TABLE X
RSCUC RESULTS WITH DIFFERENT CONFIDENCE DEGREES

Confidence
degree (%)

70

80

90

100

Reserve demand
(MW)

4595.43

5863.60

8135.70

19843.47

System cost
($)

1.86×106

1.89×106

1.93×106

2.17×106

Average LMP/
ULMP ($/MWh)

18.43

18.58

18.88

22.33

Load

Energy payment ($)

2.46×106

2.47×106

2.52×106

3.05×106

Reserve payment ($)

4.78×104

5.92×104

8.03×104

2.42×105

Wind

Energy revenue ($)

1.94×105

1.96×105

1.99×105

2.36×105

Reserve payment ($)

3.73×104

5.03×104

7.40×104

2.10×105
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It can be seen that when the uncertainty budgets are set to
be 0, the forecasting uncertainty of the system is ignored. In
this situation, the reserve demand, ULMP, the reserve pay‐
ment of the uncertain load and wind farms are all equal to 0.
The system cost and LMP are also the lowest among the re‐
sults with different uncertainty budgets. With the increase of
uncertainty budgets, the stronger uncertainty raises the de‐
mand for reserve capacity, which leads to the increase of
unit commitment cost and the prices. Consequently, the ener‐
gy payment/revenue and the reserve payment of the load and
wind farm increase.

In conclusion, the confidence degree and the uncertainty
budget have similar impact on unit commitment outcomes
and prices. High confidence degree and uncertainty budget
indicate high uncertainty, which leads to the increase of unit
commitment cost, reserve demand, and electricity prices.
3) Comparison Between IMEUS Method and MVEE Method

In this section, the proposed method is further compared
with the MVEE-based method. Two cases are carried out for
comparison. Case 1 uses the MVEE method to construct the
ellipsoidal uncertainty set of wind power of the five wind
farms in each hour, and 24 ellipsoidal sets are established in
the day-ahead electricity market. Case 2 applies the pro‐
posed IMEUS method to construct a 24-hour uncertainty set
for each wind farm, thus 5 IMEUSs are needed. The confi‐
dence degrees are all set to be 90%, and the uncertainty bud‐
get of each IMEUS is set to be 24. Based on the uncertainty
sets of the two cases, RSCUC and day-ahead market clear‐
ing results are shown in Table XII.

It can be seen that the results of Case 2 are superior to
those in Case 1, except for the energy revenue of the wind
farms due to the low prices in Case 2. The linear correlation
coefficients between the wind power of the five wind farms
are between -0.3 and 0.3, showing a very weak spatial corre‐
lation [28]. Therefore, although the MVEE method has the
ability to consider the spatial correlation, the influence of the
spatial correlation on uncertainty set modeling can be ig‐
nored in this case study. Accordingly, the main difference be‐
tween the two cases is that IMEUS takes into account the
temporal correlation and conditional correlation of wind pow‐
er forecasting, whereas MVEE does not consider, which may
worsen the extreme events of wind power and increase the
reserve demand, RSCUC costs, and prices. Consequently,
Case 2 performs better in RSCUC and market clearing re‐
sults than Case 1.

To further verify the impact of temporal correlation on the
extreme ramp events [12], [15], the relevant calculation is
carried out in Case 1 and Case 2, which is shown in Fig. 9.
The extreme ramp events denote the wind power fluctuating
between the minimum and maximum of the wind power un‐
certainty set. It can be seen that the proposed IMEUS meth‐
od performs better than the MVEE method due to the consid‐
eration of temporal correlation. In addition, 14 generators
reach the climbing limit for 48 times in the IMEUS-based
RSCUC, whereas 17 generators reach the climbing limit for
51 times in the MVEE-based RSCUC. To sum up, IMEUS
can relieve the extreme ramp events of wind power and ex‐
treme climbing phenomenon of generators due to the ability
to internalize temporal correlation.

VI. CONCLUSION

This paper proposes a novel locational marginal pricing
mechanism in day-ahead market for managing uncertainties.
The improved multi-ellipsoidal uncertainty set is proposed to
better characterize the uncertainties of wind power to reduce
the conservativeness of RO problems. The robust unit com‐
mitment and economic dispatch models are presented to opti‐
mize the dispatch scheme for thermal generators and gener‐
ate price signals for energy, reserve and uncertainty, respec‐
tively. The following conclusions can be drawn from the sim‐
ulations.

TABLE XII
RSCUC AND DAY-AHEAD MARKET CLEARING RESULTS

Case

1

2

Reserve
demand
(MW)

9482.88

8135.70

System
cost ($)

1.95×106

1.93×106

Average
LMP/

ULMP ($/
MWh)

18.97

18.88

Energy
revenue
(wind)

($)

2.00×105

1.99×105

Reserve
payment
(wind)

($)

9.98×104

7.40×104

Total
revenue
(wind)

($)

1.00×105

1.25×105

MVEE; IMEUS
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Fig. 9. Extreme ramp-up/ramp-down event. (a) Ramp-up. (b) Ramp-down.

TABLE XI
RSCUC RESULTS UNDER DIFFERENT UNCERTAINTY BUDGETS

Uncertainty
budget

0

6

12

18

24

Reserve demand
(MW)

0.00

2186.46

4230.36

6254.20

8135.71

System
cost ($)

1.78×106

1.82×106

1.86×106

1.90×106

1.93×106

Average LMP
($/MWh)

18.17

18.44

18.61

18.67

18.88

Average ULMP
($/MWh)

0.00

5.18

10.09

14.75

18.88

Load

Energy payment
($)

2.42×106

2.47×106

2.49×106

2.50×106

2.52×106

Reserve payment
($)

0

2.44×104

4.64×104

6.56×104

8.03×104

Wind

Energy revenue
($)

1.92×105

1.94×105

1.96×105

1.97×105

1.99×105

Reserve payment
($)

0

2.10×104

3.92×104

5.75×104

7.40×104
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1) The proposed multi-ellipsoidal uncertainty set can re‐
duce the conservativeness of uncertainty set and the robust
unit commitment/economic dispatch models, and improve
the economy and reliability of system operation.

2) The proposed robust unit commitment/economic dis‐
patch models strengthen the ramping constraints to realize
the safe operation of generators. The proposed uncertainty
LMP ensures the cost recovery of generators, thus can moti‐
vate the participants to provide reserve services. The system
operation cost is reduced by the proposed methods.

3) The generator ramping constraint is one of the reasons
for the low marginal prices. Low prices may cause the profit
loss of generators in that period, but the generator profits of
the whole day can be guaranteed.

The uncertainty-contained electricity market should have
two sequential market mechanisms, i. e., day-ahead market
and real-time market, which are more tightly linked. In the
future, our work will focus on designing a real-time market
mechanism to complement the proposed day-ahead market
mechanism based on the results already obtained in day-
ahead market clearing.

APPENDIX A

Appendix A will present the linearizing process of the sub‐
problem. There are bilinear terms, i. e., (FP d

m)Tγ3, (FP w
j )Tγ3,

(P d
m)Tγ4, and (P w

j )Tγ4, in the objective function of (30). These
four nonlinear terms can be linearized by the binary expansion
method and the big-M approach which is illustrated below.

1) Suppose F =[(F Pos)T(F Neg)T]T. F Pos and F Neg are diago‐
nal matrices of T order corresponding to constraints (36) and
(37), respectively, which can be expressed as:

{F Pos = diag(F Pos
1 F Pos

2 F Pos
T )

F Neg = diag(F Neg
1 F Neg

2 F Neg
T )

(A1)

γ3 includes 2T elements, which can be divided into:

ì

í

î

ïï
ïï

γ3 =[γ31γ32γ32T]T =[(γPos
3 )T(γNeg

3 )T]T

γPos
3 =[γ31γ31γ3T]T =[γPos

31 γPos
32 γPos

3T ]T

γNeg
3 =[γ3T + 1γ3T + 2γ32T]T =[γNeg

31 γNeg
32 γNeg

3T ]T

(A2)

Thus, (FP d
m)Tγ3 can be transformed into:

(FP d
m)Tγ3 = (F Pos P d

m)TγPos
3 + (F Neg P d

m)TγNeg
3 =

∑
t = 1

T

[P d
mft (F

Pos
t γPos

3t +F Neg
t γNeg

3t )+

DP dbox
mt (F Pos

t Bdtγ
Pos
3t +F Neg

t Bdtγ
Neg
3t )] (A3)

By introducing the dummy variable εdPos
it =Bdtγ

Pos
3t and

εdNeg
it =Bdtγ

Neg
3t , the bilinear term can be linearized by the use

of big-M approach, i.e.,

ì

í

î

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï
ïïï
ï

(FP d
m)Tγ3 =∑

t = 1

T

[P d
mft (F

Pos
t γPos

3t +F Neg
t γNeg

3t )+

DP dbox
mt (F Pos

t εdPos
it +F Neg

t εdNeg
it )]

0£ εdPos
it £Bdt M

γPos
3t - (1-Bdt)M £ εdPos

it £ γPos
3t

0£ εdNeg
it £Bdt M

γNeg
3t - (1-Bdt)M £ εdNeg

it £ γNeg
3t

(A4)

where M is a large real number.
2) (FP w

j )Tγ3 can be transformed into:

(FP w
j )Tγ3 = (F Pos P w

j )TγPos
3 + (F Neg P w

j )TγNeg
3 =

∑
t = 1

T

(F Pos
t P w

jtγ
Pos
3t +F Neg

t P w
jtγ

Neg
3t ) (A5)

Through the binary expansion method, γPos
3t and γNeg

3t can be
expanded as:

γPos
3t = γPos

3tmin +DγPos
3 ∑

i = 0

n

2i χ Pos
it (A6)

γNeg
3t = γNeg

3tmin +DγNeg
3 ∑

i = 0

n

2i χ Neg
it (A7)

where γPos
3tmin and γNeg

3tmin are the lower bounds of γPos
3t and γNeg

3t ,
respectively; DγPos

3 and DγNeg
3 are the interval of the binary ex‐

pansion; and χ Pos
it and χ Neg

it are 0-1 binary variables.
Thus, (FP w

j )Tγ3 can be transformed as:

(FP w
j )Tγ3 =∑

t = 1

T (F Pos
t P w

jtγ
Pos
3tmin +F Neg

t P w
jtγ

Neg
3tmin +

)F Pos
t DγPos

3 ∑
i = 0

n

2i χ Pos
it P w

jt +F Neg
t DγNeg

3 ∑
i = 0

n

2i χ Neg
it P w

jt (A8)

By introducing εwPos
it = χ Pos

it P w
jt and εwNeg

it = χ Neg
it P w

jt, the bilin‐
ear term can be linearized, i.e.,

ì

í

î

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

(FP w
j )Tγ3 =∑

t = 1

T (F Pos
t P w

jtγ
Pos
3tmin +F Neg

t P w
jtγ

Neg
3tmin +

)F Pos
t DγPos

3 ∑
i = 0

n

2iεwPos
it +F Neg

t DγNeg
3 ∑

i = 0

n

2iεwNeg
it

0£ εwPos
it £ χ Pos

it M

P w
jt - (1- χ Pos

it )M £ εwPos
it £P w

jt

0£ εwNeg
it £ χ Neg

it M

P w
jt - (1- χ Neg

it )M £ εwNeg
it £P w

jt

(A9)

3) γ4 has T ´1 elements γ4t, t = 12T, which corre‐
sponds to constraint (29). By introducing εd

it =Bdtγ4t, (P d
m)Tγ4

can be linearized as:

ì

í

î

ï
ï
ï
ï

(P d
m)Tγ4 =∑

t = 1

T

(P d
mftγ4t +DP dbox

mt ε
d
it)

0£ εd
it £Bdt M

γ4t - (1-Bdt)M £ εd
it £ γ4t

(A10)

4) γ4 can be expanded as:

γ4t = γ4tmin +Dγ4∑
i = 0

n

2i χ it (A11)

where γ4tmin is the lower bound of γ4t; Dγ4 is the interval of
the binary expansion; and χ it is a 0-1 binary variable.

Similar to the linearization of (FP w
j )Tγ3, (P w

j )Tγ4 can be lin‐
earized as:

ì

í

î

ï
ï
ï
ï

(P w
j )Tγ4 = (P w

j )Tγ4min +Dγ4∑
i = 0

n∑
t = 1

T

2iεw
it

0£ εw
it £ χ it

P w
jt - (1- χ it)M £ εw

it £P w
jt

(A12)

where γ4min =[γ41minγ42minγ4Tmin]
T is a constant vector;
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and the dummy variable εw
it = χ it P

w
jt.

As a result, the SP can be reformulated as a mixed-integer
second-order cone programming (MISOCP) problem, which
can be expressed in (51)-(61).

APPENDIX B

Appendix B will present the derivation process of prices
based on Lagrangian function. The Lagrangian function is
expressed as:

L(PDPλβαη)=∑
t = 1

T∑
i = 1

NG

C g
i (P g

it +DP g
it)+∑

t = 1

T

λb
t ( )∑

m= 1

NM

P d
mft -∑

i = 1

NG

P g
it -∑

j = 1

NW

P w
jft +∑

t = 1

T∑
i = 1

NG

é
ë

ù
û

-
β

b

it
(P g

it - Iit P
g
imax)+ -β

b

it
(Iit P

g
imin -P g

it) +

∑
t = 1

T∑
i = 1

NG

{-α b

it [ ]P g
it -P g

it - 1 - r ru
i (1- uit)- r su

i uit + }-α
b

it [ ]P g
it - 1 -P g

it - r rd
i (1- vit)- r sd

i vit +
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t = 1
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l = 1

NL {-η b

lt
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ë
êê
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û
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iÎG(m)

P g
it + ∑

jÎW (m)

P w
jft -P d

mft -Fl - }-η
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LMP is a partial differential of Lagrangian function with
respect to the forecasting value of load, which can be de‐
rived as:

LMPmt =
¶L(PDPλβαη)

¶P d
mft

= λb
t -

∑
l

GSFlm ×(
-
η

b

lt
- -η

b

lt
) -∑

l

GSFlm ×(
-
η

r

lt
- -η

r

lt
) (B2)

The ULMP is defined as the marginal cost corresponding
to the unit increment of forecasting deviation of net load at
bus m, which can be derived as:

ULMPmt =
¶L(PDPλβαη)

¶ ( )DP d
mt - ∑

jÎW (m)

DP w
jt

= λr
t -∑

l

GSFlm (
-
η

r

lt
- -η

r

lt
)

(B3)

APPENDIX C

Appendix C will present the derivation process of prices
based on Karush-Kuhn-Tucker (KKT) condition. According
to the KKT condition ¶L(PDPλβαη)/¶P g

it= 0 [8], it can
be obtained as:
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) (C1)

The right side of the equal sign of this equation is exactly
the LMP at bus m and time t, i.e., LMPmt. Therefore, for the
generator i at bus m, LMP can also be derived as (C2).
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Similarly, (C3) can be obtained according to the KKT con‐
dition ¶L(PDPλβαη)/¶DP g

it= 0.
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The right side of the equal sign of (C3) is exactly the
ULMP at bus m and time t, i.e., ULMPmt. Therefore, for the
generator i at bus m, ULMP can also be derived as (C4).
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