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Optimal Decomposition of Stochastic Dispatch
Schedule for Renewable Energy Cluster

Yue Yang, Wenchuan Wu, Bin Wang, Mingjie Li, and Tao Zhu

Abstract——The correlated renewable energy farms are usually
aggregated as a cluster in economic dispatch to relieve computa‐
tional burden. This strategy can also achieve better perfor‐
mance since the precision of predicting the power generation of
a cluster can be higher than those of individual farms. This pa‐
per proposes an optimal decomposition method to allocate dis‐
patch schedules among renewable energy farms (REFs) in the
cluster under existing stochastic optimization framework. The
proposed model takes advantage of probabilistic characteristics
of renewable generation to minimize the curtailment and en‐
sure the feasibility of dispatch schedule of the clusters. Approxi‐
mated tractable formulation and efficient solution method are
the proposed to solve the proposed model. Numerical tests show
that the proposed method achieves the optimal decomposition
of dispatch schedule among REFs and facilitates the utilization
of renewable generation.

Index Terms——Renewable energy, stochastic optimization, eco‐
nomic dispatch, decomposition of dispatch schedule.
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Normalized forecasting error

Expectation of random variable

Total dispatch cost including fuel cost and cur‐
tailment penalty of renewable energy

Arbitrary convex function

Total number of probe points

Penalty factors of under-generation and over-
generation of REF i

Number of renewable energy sources (RESs) in
cluster

Over-generation and under-generation of REF i

Probability density function of available genera‐
tion of REF i

q-quantile of random variable ξ

Actual output of renewable generation

Available generation of REF i

Lower bound and upper bound of dispatch inter‐
val of REF i

Forecasting value of generation

Probe points to linearize objective function

Maximal capacity of REF i

Allowable upper bounds of the total renewable
generation from REC

Lower bound and upper bound of dispatch inter‐
val of REC

Generation schedules of conventional units

I. INTRODUCTION

THE installed capacity of renewable energy in the power
system has increased rapidly in recent years. The power

output of renewable energy sources such as wind power and
solar power is heavily influenced by weather conditions with
significant uncertainties. Thus, novel paradigms of optimiza‐
tion have been introduced to model the influence of uncer‐
tainties on the operation of power system, including robust
optimization (RO) and stochastic optimization (SO). Com‐
pared with conventional deterministic operation strategies,
the uncertainties of renewable energy are explicitly consid‐
ered in RO and SO models to arrange dispatch schedules for
renewable energy sources and conventional units. The uncer‐
tainties of renewable generation are usually modelled as in‐
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tervals [1]-[4] or scenarios [5], [6].
Renewable energy farms (REFs) are usually integrated in

power grid as aggregated renewable energy cluster (REC)
based on their spatial locations, ownerships, and generation
characteristics. Compared with separate operation of REF di‐
rectly, the clustering of REFs is more appropriate for accom‐
modating large-scale renewable energy because of the follow‐
ing advantages.

1) Clustering reduces the uncertainties and increases the
predictability of renewable generation [7]. Due to the spatial
smoothing effect, relative forecasting error decreases as spa‐
tial range and size of cluster expands as shown by empirical
research in [8], [9]. Heterogenous clustering of REFs may
further reduce the total fluctuation of power output by ex‐
ploiting complementary characteristics of solar power sourc‐
es and wind power sources [10].

2) Clustering provides a scalable approach for the opera‐
tion and control of numerous renewable energy sources.
REC participates in the dispatch at system level by replacing
multiple REFs with one equivalent power source, which re‐
lieves the computational burden of economic dispatch (ED).
This hierarchical dispatch framework is discussed in previ‐
ous research [8], [11]-[13].

The dispatch schedules of REC should be decomposed in‐
to the instructions for each individual REF as reference for
its internal generation controller. There have been some re‐
search works on the dispatch within REC. Reference [14]
proposes an active power cutback control method for wind
farm cluster with priority list. The regulation capacity, regu‐
lation speed, and response time are considered to choose
wind farms appropriately to respond to control instructions.
Two operation modes of wind farms, i. e., free mode and
power restrained mode, are considered in [15], and wind
farms in power restrained mode participate in active power
control. Reference [11] develops a hierarchical active power
dispatch framework of wind power cluster with dynamic
grouping of wind farms. Reference [16] studies the active
power control in photovoltaic station cluster based on the
percentage of forecasting error and fairness of allocation.
Reference [17] proposes an emergency controller for mi‐
crogrid cluster including renewable sources.

However, there are two major technical challenges for de‐
composition of dispatch schedule under SO-based dispatch
framework compared with conventional dispatch framework.

1) Dispatch schedule for REC under SO framework is
more flexible than deterministic tracking point for generation
under conventional deterministic dispatch, such as allowable
generation intervals. Thus, novel decomposition model is re‐
quired to allocate stochastic dispatch schedule among REFs
in form of intervals.

2) Different probabilistic characteristics of REFs should
be considered to obtain the appropriate decomposition strate‐
gy due to uncertainties of renewable generation. The intro‐
duction of uncertainties complicates the decomposition mod‐
el and requires efficient solution method.

In order to address these issues, we propose an optimal de‐
composition model for stochastic dispatch schedule of REC
and corresponding solution method in this paper. The major

contributions of this paper are summarized as follows.
1) We develop an optimization model to enable the decom‐

position of more versatile dispatch schedules in form of in‐
tervals generated by stochastic dispatch framework. Uncer‐
tainties of individual REF are fully characterized with proba‐
bilistic distribution of forecasting error in the proposed mod‐
els to promote the utilization of renewable energy.

2) An efficient solution method is developed for the pro‐
posed decomposition model containing nonlinear objective
function and constraints by formulating a tractable optimiza‐
tion model with approximation. Numerical tests exhibit that
our solution method scales well with the number of REFs in
the cluster and is suitable for real application.

The remainder of this paper is organized as follows. The
mathematical formulation of decomposition model is intro‐
duced in Section II. The solution method is developed in
Section III. Numerical tests and results are demonstrated in
Section IV. Conclusions are drawn in Section V.

II. MATHEMATICAL FORMULATION OF DECOMPOSITION

MODEL

As shown in Fig. 1, REC plays a role as middle layer in
the hierarchical operation framework of power system. From
the perspective of system operator, REC participates in sys‐
tem-level ED and receives dispatch schedule as a whole.
However, the dispatch schedules of REC cannot be executed
by individual REF directly and should be allocated appropri‐
ately among REFs in the cluster, which is vital for the effec‐
tive implementation of cluster-level schedules and promotes
the utilization of renewable energy. Afterwards, the dispatch
schedule of each REF is implemented by controlling renew‐
able power sources such as wind turbines and photovoltaic
panels. In this section, we introduce the stochastic dispatch
model and decomposition model for its dispatch schedule in
form of dispatch interval (DIs).

A. Introduction of Stochastic ED

In this paper, we consider the stochastic ED model formu‐
lated as chance-constrained programming problem as pro‐
posed in [18], [19], which can be written in the following

Control center

REC

Dispatch schedule

Decomposition of dispatch
schedule

REF

ED module

Dispatch schedule of
REC

Dispatch schedule of
REC

Execution of dispatch
schedule

Control of
renewable

power sources

REF
Control of
renewable

power sourcespow

Fig. 1. Hierarchical operation framework of power system.
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compact form (1). The decision variables consist of two
parts: x and r ub. Security constraints gi (xr͂)£ ci are ensured
to be satisfied with high probability when the actual output
of renewable generation r͂ changes. f (xr ub) denotes the ob‐
jective function.

ì

í

î

ï
ï
ï
ï

min f (xr ub)

s.t. Pr(gi (xr͂)£ ci )³1- α i

r͂ £ r ub

xr ubÎ χ

(1)

B. Optimal Decomposition Model

Under the above-mentioned stochastic ED framework, the
upper bound of allowable generation for REC is given as the
result of optimization. Besides, the lower bound of genera‐
tion from REC is inferred from aggregated cluster forecast‐
ing as the minimal generation power. Thus, the dispatch
schedule of stochastic ED is provided to REC in form of DI
including the allowable upper and lower bounds of genera‐
tion of the entire REC. As mentioned above, the DI of indi‐
vidual REF needs to be determined in the decomposition pro‐
cedure. Afterwards, each REF controls its generation inde‐
pendently according to its DI.

In order to achieve the optimal decomposition of DI, quan‐
tified criteria are required to assess the optimality of DI de‐
composition. Intuitively, a wider DI is better because more
renewable generation in DI can be utilized. As shown in Fig.
2, renewable generation is fully accommodated without inter‐
vention when available renewable generation is between the
upper and lower bounds of specified DI. If available renew‐
able generation is less than the lower bound of DI (under-
generation), spinning reserve or energy storage with fast re‐
sponse is required to compensate the power mismatch of the
system. If available renewable generation exceeds the upper
bound of DI (over-generation), necessary curtailment is intro‐
duced to keep the actual generation no higher than the allow‐
able maximal value and ensure the system security. Thus,
the upper and lower bounds of DI should be chosen to re‐
duce the negative influence of under-generation and over-
generation.

With the notation of probability density, under-generation
and over-generation under uncertainties can be represented
by their expectations as:

E(UGi )= ∫
0

r lb
i

(r lb
i - r͂iav)×PDFi (r͂iav)dr͂iav (2)

E(OGi )= ∫
r ub

i

r max
i

(r͂iav - r ub
i )×PDFi (r͂iav)dr͂iav (3)

Therefore, minimizing the weighted sum of expectations
of under-generation and over-generation for all REFs in the
REC is selected as the objective function of the optimal DI
decomposition model.

min∑
i = 1

N

(kUGi E(UGi )+ kOGi E(OGi )) (4)

We have the following constraints to ensure the feasibility
of DI decomposition result. Constraints (5) and (6) ensure
that the total power output of the cluster does not violate the
DI constraint. Constraint (7) guarantees that the lower and
upper bounds of DI are physically implementable. In prac‐
tice, the sum of renewable generation is permitted to exceed
the upper limit of cluster DI with a small probability α for‐
mulated as chance constraint (8), where extra generation is
balanced by system-level real-time redispatch and automatic
generation control procedure. The risk level α can be adjust‐
ed to promote the utilization of renewable energy, and (6) is
a special case of (8) when α is 0 strictly.

∑
i = 1

N

r lb
i ³Rlb (5)

∑
i = 1

N

r ub
i £Rub (6)

0£ r lb
i £ r ub

i £ r max
i (7)

Pr (∑
i = 1

N

min(r͂iavr ub
i )£Rub)³ 1- α (8)

The model of optimal decomposition of DI is obtained by
combining objective function (4) and constraints (5), (7),
and (8). The decision variables are the upper and lower
bounds of DIs r ub

i r lb
i .

III. SOLUTION OF DECOMPOSITION MODEL

The decomposition model of DI formulated in the previ‐
ous section is a nonlinear optimization problem due to the in‐
tegration in objective function (2), (3), and inclusion of
chance constraint (8), which is hard to solve directly. The
tractable formulation and solution method of the decomposi‐
tion model is discussed in this section.

A. Linearization of Objective Function

The raw probability distribution of available renewable
generation can be obtained from empirical analysis on histor‐
ical operation data and/or short-term numerical weather fore‐
casting in form of probability histograms, which can be fur‐
ther fitted with parametric distributions such as Gaussian,
Cauchy, Weibull, and beta distributions. Recently, mixture
models are employed to describe the probability density of
renewable generation in a more flexible and accurate ap‐
proach, including Gaussian mixture model [19], versatile
mixture distribution [20], and beta kernel density representa‐
tion [21]. Therefore, we assume that the PDF of available re‐

Lower
bound

Upper
bound

Renewable
generation

Probability
density

DI Over-
generation

Under-
generation

Fig. 2. Probability density function (PDF) of available renewable genera‐
tion and DI.
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newable generation of each REF is known in this paper.
With this assumption, the expectations in (2) and (3) can be
calculated numerically for specific values of r ub

i r lb
i . Howev‐

er, numerical integration is computationally intensive and
not suitable for large-scale application.

We notice that the first-order and second-order derivatives
of expected under-generation and over-generation can be ex‐
pressed in cumulative probability function (CDF) and PDF
of renewable generation, respectively.

¶E(UGi )

¶r lb
i

=CDFi (r
lb
i )-CDFi (0) (9)

¶E(OGi )

¶r ub
i

=CDFi (r
ub
i )-CDFi (r

max
i ) (10)

¶2 E(UGi )

¶(r lb
i )2

=PDFi (r
lb
i )³ 0 (11)

¶2 E(OGi )

¶(r ub
i )2

=PDFi (r
ub
i )³ 0 (12)

The second-order derivatives are consistently nonnegative
in (11) and (12), which implies that E(UGi ) is a convex func‐
tion of r lb

i and E(OGi ) is a convex function of r ub
i . Inequality

(13) holds for arbitrary convex function h(x). Thus, the origi‐
nal nonlinear objective function can be approximated with
series of linear constraints as shown in (15) and (16).

h(x)³ h(x0)+ h′(x0)(x- x0) (13)

min∑
i = 1

N

(kUGi si + kOGiti ) (14)

|si ³E(UGi ) r lb
i = rik

+ (CDFi (rik)-CDFi (0))(r lb
i - rik)

k = 12K (15)

|ti ³E(OGi ) r ub
i = rik

+ (CDFi (rik)-CDFi (r
max
i ))(r ub

i - rik)

k = 12K (16)

At the probe points rik, the exact values of E(UGi ),
E(OGi) and their derivatives are evaluated in advance to for‐
mulate linear constraint as an approximation of the objective
function. The appropriate selection of probe points is impor‐
tant for the accuracy and performance of solution. More
probe points will increase the precision of linearization at
the cost of more evaluations of numerical integration and
more constraints in the optimization model.

Since the fluctuation of renewable generation is restricted
within the range of [0r max

i ], the CDF at the endpoint of inter‐
val equals to 0.0 or 1.0 approximately.

{CDFi (0)» 0

CDFi (r
max
i )» 1

(17)

The accuracy of linear approximation is directly related to
the value of second-order derivative. When the second-order
derivative namely PDF of distribution is greater, the first-or‐
der approximation is less accurate and requires denser probe
points. The PDF of renewable generation is usually unimod‐
al and near zero at the edges of interval. In this paper, we
propose a heuristic method to locate probe points with vari‐

able probe intervals. The whole interval [0r max
i ] is divided in‐

to three parts at CDF -1
i (0.1) and CDF -1

i (0.9). In the leftmost
and rightmost interval, probe points are selected sparsely at
specific quantiles with linear or logarithmic q-values. In the
central interval, denser probe points are arranged at quantiles
with equidistant q-values such as 0.10 0.12  0.90. The
heuristic selection of probe points achieves smaller approxi‐
mation error than evenly spaced selection, which is proved
by numerical test in the next section.

In practice, the linear approximation of expectations (15)
and (16) can be pre-calculated by each REF in parallel. Af‐
terwards, relevant coefficients are collected for cluster-level
dispatch.

B. Approximation of Chance Constraint

The feasible region of chance constraint (8) is difficult to
be expressed analytically in closed form. Although the exact
feasible region can be obtained numerically via brute force
search in multidimensional space, the computational com‐
plexity is exponential with respect to the number of REFs
and is intractable for practical application. Instead, we give
the following proposition to acquire the tractable linear con‐
straints as its sufficient condition.

Proposition: the following inequality is a sufficient condi‐
tion for chance constraint (8).

∑
iÎΩ

r ub
i +Q (∑

jÏΩ

r͂jav|1- α)£Rub (18)

Proof: if ξ1 £ ξ2 always holds for two random variables ξ1

and ξ2, then we have Pr(ξ2 £ c)£Pr(ξ1 £ c) because ξ2 £ cÞ
ξ1 £ c, which indicates that ξ2 £ c is the sufficient condition
of ξ1 £ c.

Inequality (20) is true due to (19). Thus, constraint (21) is
a sufficient condition of (8) based on derivation above,
which is equivalent to (18).

{min(r͂iavr ub
i )£ r͂iav

min(r͂iavr ub
i )£ r ub

i

(19)

∑
i = 1

N

min(r͂iavr ub
i )£∑

iÎΩ

r ub
i +∑

jÏΩ

r͂jav (20)

Pr (∑
iÎΩ

r ub
i +∑

jÏΩ

r͂jav £Rub)³ 1- α (21)

If Ω={12N} in (18), a sufficient condition is ob‐
tained, which is the same as (6). This illustrates that chance
constraint (8) expands the feasible region of deterministic
constraint (6).

A two-step method is developed to approach the optimal
solution under chance constraint (8) approximately with help
of sufficient condition proposition.

At the first step, a series of sufficient conditions are for‐
mulated by substituting Ω with different subsets in (18), and
each constraint is a linear inequality with respect to r ub

i after
the corresponding quantile is calculated. The feasible region
of original chance constraint can be approximated as a union
of these linear constraints (22). It can be rewritten as mixed-
integer linear constraints (23) with big-M relaxation and in‐
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troduction of binary variable bj, where at least one constraint
is satisfied (24).


Ωj { }∑

iÎΩj

r ub
i +Q ( )∑

jÏΩj

r͂ jav |1- α £Rub (22)

∑
iÎΩj

r ub
i +Q (∑

jÏΩj

r͂ jav|1- α)£Rub + (1- bj )M (23)

∑bj ³ 1 bj Î{01} (24)

After solving the mixed-integer programming model in‐
cluding constraints (23) and (24), there must be at least one
inequality constraint in (23) that is binding under optimal so‐
lution where bj = 1. Otherwise, r ub

i (×) (iÎΩ j ) can further in‐
crease to reduce the objective function without violating con‐

straint because
¶E(OGj )

¶r ub
j

£ 0. Ω j in the binding constraint rep‐

resents the REFs where the generation should be restricted
under the optimal decomposition of DI.

The solution obtained at the first step is conservative be‐
cause the sufficient condition is stronger than original
chance constraint. At the second step, we relax the binding
constraint obtained from the first step gradually to refine the
solution by increasing β in (25) from 0 until the chance con‐
straint is unsatisfied. The refinement procedure contains 5
steps:

∑
iÎΩj

r ub
i £(1+ β)

é

ë

ê
êR

ub -Q (∑
jÏΩj

r͂ jav|1- α)ù
û

ú
ú (25)

Step 1: initialize β0 = 0k = 0 and original solution x0.
Step 2: update βk + 1 = βk + δ.
Step 3: reoptimize original model and obtain solution xk + 1.
Step 4: check if the chance constraint is satisfied. If satis‐

fied, k = k + 1, go to Step 2; otherwise, go to Step 5.
Step 5: output the previous solution xk as result.
Remark: the quantiles in this section can be obtained with

Monte Carlo method or Gaussian mixture model (GMM)
method proposed in our previous work [19].

C. Summary of Solution Procedure

Based on the approximation of nonlinear objective func‐
tion and chance constraint, the overall solution procedure of
optimal DI decomposition model is summarized as follows.

The model is firstly solved as mixed-integer linear pro‐
gramming problem including objective function (14) and
constraints (5), (7), (15), (16), (23), (24), then the solution is
refined iteratively by replacing (23), (24) with relaxed bind‐
ing constraint (25). Especially, when the tolerable risk level
α is 0, the chance constraint is equivalent to linear constraint
(6) and the model is a linear programming problem.

Thus, the optimal decomposition model is transformed in‐
to tractable linear programming or mixed-integer linear pro‐
gramming model, and can be solved with off-shelf open-
source or by commercial solvers efficiently.

IV. NUMERICAL TESTS

In this section, the proposed decomposition model of dis‐
patch schedule and solution algorithm is tested on various
cases, and the results of numerical tests are demonstrated.
Firstly, a two-REF test case is discussed as a simplified ex‐
ample to illustrate the effectiveness of algorithm compared
with the conventional decomposition method. Secondly, larg‐
er-scale test cases are constructed to exhibit the computation‐
al efficiency and scalability of the proposed solution method.
Thirdly, decomposition is tested in a power system with two
RECs. Optimization models are all implemented with JuMP
[22] and solved by IBM CPLEX.

A. Small Test Case with Two REFs

In the first test case, we consider a cluster with two REFs.
The installation capacities of REFs are both 60 MW and the
forecasting values of generation are both 30 MW. r͂iav is a
random variable fluctuating around riforecast due to the fore‐
casting error as shown in (26). The probability distribution
of normalized forecasting error can be modelled by aggregat‐
ed historical forecasting and generation data empirically.
Thus, the probability distribution of available renewable gen‐
eration is acquired from linear transformation of random
variable.

r͂iav = riforecast (1+ e͂i ) (26)

In this test case, we use normalized forecasting error dis‐
tribution based on historical field data of two wind farms
with one-year timespan. The probability distributions of
available renewable generation from two REFs are illustrat‐
ed in Fig. 3 as the probability density histograms. The mean
values and standard deviations of two distributions are calcu‐
lated as shown in Table I.

The standard deviation of REF 2 is greater than that of
REF 1 due to wider distribution range of forecasting errors.
Thus, the expectations of under-generation and over-genera‐
tion of REF 2 are higher than those of REF 1 under the
same DI according to Fig. 4.

0 10 20 30 40 50 60
Available renewable generation (MW)

0 10 20 30 40 50 60
Available renewable generation (MW)

(a)

(b)

0.1

0.2

0.2

Pr
ob

ab
ili
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si
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Fig. 3. Probability distributions of available renewable generation from
two REFs. (a) REF 1. (b) REF 2.
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Firstly, we consider the simplified version of chance con‐
straint where the tolerable risk level is 0. The DI of cluster
is provided as a result of ED and is assumed to be symmetri‐
cal with respect to the total forecasting generation 60 MW,
namely [60-Δ/260+Δ/2]. If no decomposition is implement‐
ed, the probability that total generation of REC stays in the
DI is only 0.27, 0.49, 0.64, 0.75, 0.83 when Δ equals to 4,
8, 12, 16, 20, respectively. Therefore, the decomposition is
necessary to constrain the actual generation of cluster within
DI.

By setting kUGikOGi equal to 1.0 for two REFs, the result
of decomposed DIs under different values of Δ is provided
in Table II, including the upper bound, lower bound, and
width of DI for each REF.

The sum of width of individual DIs equals to Δ, which
validates the correctness of the decomposition. The DI of
REF 2 is consistently wider than that of REF 1, because its
distribution of forecasting errors is more dispersed, and a
wider DI is required to accommodate available generation
and reduce the penalty of under-generation or over-genera‐
tion.

Since the original nonlinear objective function is linearly
approximated in our tractable optimization model, we com‐
pare the errors between approximated objective values and

exact objective values (including absolute error and relative
error percentage) under proposed heuristic selection of probe
points with variable intervals and naive selection of probe
points with uniform intervals, as shown in Table III. Both se‐
lections use 54 probe points for approximation. The pro‐
posed linear approximation achieves satisfying accuracy, and
the relative error is kept under 0.2%. The selection of probe
points proposed in this paper also reduces the error of ap‐
proximation compared with the uniformly distributed probe
points.

If the probabilistic characteristics of forecasting errors are
unknown, naive decomposition can be employed to deter‐
mine DIs, which are proportional to forecasting generation
of REF.

r ub
i =

riforecast∑riforecast

Rub
(27)

r lb
i =

riforecast∑riforecast

Rlb
(28)

We compare the objective values of our decomposition
method with naive decomposition method in Table IV. The
DIs obtained from our proposed decomposition method
achieve lower objective values compared with naive decom‐
position, because uncertainties of renewable generation from
each REF are modelled explicitly in our optimal decomposi‐
tion model to reduce the negative impacts of under-genera‐
tion and over-generation. By contrast, DIs under naive meth‐
ods are merely proportional to forecasting generation regard‐
less of probabilistic characteristics of REFs.

kUGi and kOGi represent the relative priority for utilization
of renewable generation among multiple REFs, and have a
significant influence on the result of DI decomposition. We

TABLE I
STATISTICS OF AVAILABLE RENEWABLE GENERATION

REF

1

2

Mean (MW)

29.77

29.52

Standard deviation (MW)

3.64

6.56

Lower bound of DI (MW) Upper bound of DI (MW)
(a) (b)

15 20 25 30 35 40 4515 20 25 30 35 40 45
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Fig. 4. Relationship between expectation of under-generation and over-gen‐
eration and bounds of DIs. (a) Under-generation. (b) Over-generation.

TABLE II
RESULT OF DECOMPOSED DIS

Δ

4

8

12

16

20

REF 1 (MW)

Upper
bound

30.75

31.59

32.30

33.96

33.75

Lower
bound

28.95

28.17

27.63

26.92

26.60

Width

1.80

3.42

4.67

6.04

7.16

REF 2 (MW)

Upper
bound

31.25

32.41

33.70

35.04

36.25

Lower
bound

29.05

27.83

26.37

25.08

23.40

Width

2.20

4.58

7.33

9.96

12.84

TABLE III
ERRORS OF OBJECTIVE VALUES COMPARED WITH EXACT OBJECTIVE VALUES

Δ

4

8

12

16

20

Variable intervals

Absolute
error (MW)

-0.0010

-0.0021

-0.0016

-0.0026

-0.0036

Relative
error (%)

-0.0176

-0.0489

-0.0492

-0.1031

-0.1872

Uniform intervals

Absolute
error (MW)

-0.0413

-0.0147

-0.0216

-0.0035

-0.0106

Relative
error (%)

-0.7459

-0.3462

-0.6566

-0.1394

-0.5497

TABLE IV
COMPARISON OF OBJECTIVE VALUES UNDER PROPOSED DECOMPOSITION

AND NAIVE DECOMPOSITION

Δ

4

8

12

16

20

Objective value (MW)

Proposed decomposition

5.5380

4.2572

3.2850

2.5223

1.9227

Naive decomposition

5.5406

4.2666

3.3195

2.5948

2.0327
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test our model under two scenarios with unbalanced penalty
factors where (29) and (30) holds, respectively, and the re‐
sults of decomposition are shown in Tables V and VI, respec‐
tively. Compared with Table II, REF with increasing penalty
factors (REF 1 in Table V, REF 2 in Table VI) receives a
wider DI to promote its utilization of renewable generation.
Thus, REFs with greater penalty factors are prioritized in al‐
location of DI. In practice, the values of penalty factors
should be adjusted by system operators to obtain economical‐
ly appropriate decomposition results.

{kUG1 = 1.5kUG2

kOG1 = 1.5kOG2
(29)

{kUG2 = 1.5kUG1

kOG2 = 1.5kOG1
(30)

Next, we will consider the chance constraint with nonzero
tolerable risk level. In order to calculate the probability on
the left-hand side of chance constraint, we use Nataf trans‐
formation to generate scenarios of available renewable gener‐
ation randomly based on marginal distribution of r͂1av, r͂2av

and their Pearson correlation coefficient, which is set to be
0.3 in this paper.

For the test case of two REFs, the feasible region of the
chance constraint can be approximated by union of follow‐
ing three linear constraints according to mathematical deriva‐
tions in Section III-B. Besides the linear approximation, the
exact boundary of feasible region can also be obtained by
brute force search. We plot the exact boundary and approxi‐
mate boundary of feasible region at different risk levels α in
Fig. 5 when Rub is 70 MW. The exact feasible region is the
lower left area of the solid curve and the approximate feasi‐
ble region is the lower left area of the dashed curve com‐
posed of three linear segments in (31), which are both non‐

convex sets. As the risk level decreases, the chance con‐
straint becomes tighter, and the feasible region (both exact
and approximate) shrinks in the lower left direction. The ap‐
proximate feasible region is always a subset of the exact fea‐
sible region, which validates the sufficient condition proposi‐
tion numerically.

ì

í

î

ïï
ïï

r ub
1 +Q(r͂2av|1- α)£Rub

r ub
2 +Q(r͂1av|1- α)£Rub

r ub
1 + r ub

2 £Rub

(31)

We use α= 0.05 as a test case with three different settings
of penalty factors. The approximate solutions and refined so‐
lutions under three scenarios are shown in Fig. 6.

1) When kUGi and kOGi equal to 1.0 for two REFs, respec‐
tively, the optimal decomposition point in approximate feasi‐
ble region is AS(1) (33.75 MW, 36.25 MW), which falls on
the segment corresponding to the boundary of constraint r ub

1 +
r ub

2 £Rub. Thus, the right-hand side of the binding constraint
is increased step by step to obtain the refined solution RS(1)
(34.73 MW, 37.69 MW).

2) When the penalty factor of REF 1 is 3 times that of
REF 2, the optimal decomposition point in approximate fea‐
sible region is AS(2) (60.0 MW, 33.78 MW), which falls on

TABLE V
RESULT OF DECOMPOSED DIS WITH kUGi AND kOGi SATISFYING (29)

Δ

4

8

12

16

20

REF 1 (MW)

Upper
bound

31.67

32.32

33.17

33.75

34.73

Lower
bound

28.46

27.60

26.92

26.21

25.79

Width

3.21

4.71

6.25

7.54

8.95

REF 2 (MW)

Upper
bound

30.33

31.68

32.83

34.25

35.27

Lower
bound

29.54

28.40

27.08

25.79

24.21

Width

0.79

3.29

5.75

8.46

11.05

TABLE VI
RESULT OF DECOMPOSED DIS WITH kUGi AND kOGi SATISFYING (30)

Δ

4

8

12

16

20

REF 1 (MW)

Upper
bound

29.99

30.75

31.54

32.30

33.09

Lower
bound

29.53

28.84

28.17

27.63

26.92

Width

0.46

1.91

3.37

4.92

6.17

REF 2 (MW)

Upper
bound

32.01

33.25

34.46

35.70

36.91

Lower
bound

28.47

27.16

25.83

24.37

23.08

Width

3.54

6.09

8.63

11.33

13.83

25 30 35 40 45 50 55 60
30

35

40

45

50

55

60
α = 0.07 (exact)
α = 0.07 (approximate)
α = 0.05 (exact)
α = 0.05 (approximate)
α = 0.03 (exact)
α = 0.03 (approximate)

r 2u
b  (

M
W

)

r1ub (MW)

Fig. 5. Exact boundary and approximate boundary of feasible region with
different confidence levels when Rub = 70 MW.

r 2u
b  (

M
W

)

25 30 35 40 45 50 55 60
r1ub (MW)

30

35

40

45

50

55

60

AS(1)

RS(1)

AS(2)

RS(2)

AS(3)

RS(3) Exact boundary
Approximate boundary
Approximate solution (AS)
Refined solution (RS)

Fig. 6. Location of approximate solution and refined solution with 0.05
risk level when Rub = 70 MW.
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the segment corresponding to boundary of constraint r ub
2 +

Q(r͂1av|1- α)£Rub and indicates that only the generation of
REF 2 should be restricted. The upper bound of REF 2 is
lifted to 36.48 MW to reach RS(2) in the refinement proce‐
dure.

3) Similarly, when the penalty factor of REF 2 is 3 times
that of REF 1, the approximated decomposition solution is
AS(3) (29.4 MW, 60.0 MW), which indicates that r ub

1 +
Q(r͂2av|1- α)£Rub is the binding constraint. The upper bound
of REF 1 is lifted to 29.85 MW to approach RS(3) on the
exact boundary of the feasible region.

The decomposition is tested with other risk levels and
their objective values are compared in Fig. 7. The objective
value decreases as tolerable risk level increases because the
feasible region of upper bounds of DIs is expanded to re‐
duce curtailment and promote the utilization of renewable
generation. Thus, our decomposition model is risk-adjustable
to balance the security and economic cost.

B. Test Cases with More REFs

In this subsection, test cases where the cluster contains
more REFs are analyzed, and their results are discussed. We
consider clusters with 10, 20, 40 and 80 REFs, and the clus‐
ter DI is [75 MW, 125 MW]. The probability distributions of
available renewable generation of each REF are all based on
one-year historical forecasting errors collected from real
wind farms.

The computation time of optimization and comparison of
objective values against naive decomposition under different
numbers of REF are listed in Table VII. The computation
time is under 0.05 s for cluster with 80 REFs, which illus‐
trates the scalability of proposed decomposition model and
solution method. Thus, it is suitable for real-time dispatch of
large-scale RECs. The penalties of under-generation and
over-generation are all reduced with our decomposed DIs
compared with naive decomposition with help of explicit
probabilistic modelling of uncertainties of renewable genera‐
tion.

The influence of tolerable risk level is also tested, where
the upper bound of cluster DI is set to be different values to
simulate curtailment. We assume the tolerable risk level to
be 0.01 and compare the expectation of over-generation with
zero tolerable risk in Table VIII. Increasing risk level signifi‐
cantly reduces the curtailment of renewable generation by re‐
laxing the constraint on the sum of DIs, and expands feasi‐
ble region of decomposition. Thus, the chance-constrained
formulation of decomposition model reduces the curtailment

of renewable energy as the upper bound of cluster DI can be
exceeded to utilize more renewable generation.

C. Test Case with Two Clusters

In this subsection, we test the decomposition method in a
6-bus power network. There are two RECs located at differ‐
ent buses and each contains two REFs. The DIs of two
RECs are decomposed independently. We compare the total
objective values of the proposed method and naive method
with different risk levels, and the results are shown in Fig. 8.

The optimal objective value of the proposed method con‐
sistently outperforms the result of naive method and decreas‐
es as the tolerable risk level increases, which indicates less
curtailment and more utilization of renewable generation.
Thus, the proposed method is applicable for multiple RECs
in power systems where the decomposition of each REC is
carried out in parallel.

V. CONCLUSION

A novel mathematical model for the optimal decomposi‐
tion of DI of REC is proposed in this paper. The total expec‐
tation of under-generation and over-generation is minimized

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
α

1.2

1.0

1.4

1.6

1.8

2.0

O
bj

ec
tiv

e 
va

lu
e

Fig. 7. Objective values with different risk levels.

TABLE VII
COMPARISON OF OBJECTIVE VALUES UNDER PROPOSED DECOMPOSITION

AND NAIVE DECOMPOSITION

Number
of REF

10

20

40

80

Computational time of
proposed decomposition (s)

0.002

0.004

0.013

0.043

Objective value

Proposed
decomposition

1.419

1.399

1.306

1.389

Naive
decomposition

1.596

1.507

1.420

1.497

TABLE VIII
COMPARISON OF EXPECTATION OF OVER-GENERATION

Number of REF

10

20

40

80

With risk level of 0

2.86

3.87

4.64

5.46

With risk level of 0.01

0.86

1.26

1.65

1.98

0.01 0.02 0.03 0.04 0.05
α

4.5

4.4

4.6

4.7

4.8

4.9

O
bj

ec
tiv

e 
va

lu
e

Proposed method
Naive method

Fig. 8. Total objective values of proposed method and naive method with
different risk levels.
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as objective function based on probabilistic modelling of
available renewable generation from each REF. The consis‐
tency of decomposition is ensured by the sum of lower and
upper bound constraints in deterministic or chance-con‐
strained form. We develop an efficient solution method to ac‐
quire a tractable optimization model via linear approxima‐
tion of nonlinear objective function and constraints. The re‐
sults of numerical test cases illustrate that the proposed de‐
composition model outperforms the naive decomposition due
to its characterization of uncertainties of renewable genera‐
tion. The computational performance and accuracy of the
proposed method are also proved in the test cases.
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