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Abstract——Due to the high penetration of renewable distribut‐
ed generation (RDG), many issues have become conspicuous
during the intentional island operation such as the power mis‐
match of load shedding during the transition process and the
power imbalance during the restoration process. In this paper,
a phase measurement unit (PMU) based online load shedding
strategy and a conservation voltage reduction (CVR) based
multi-period restoration strategy are proposed for the intention‐
al island with RDG. The proposed load shedding strategy,
which is driven by the blackout event, consists of the load shed‐
ding optimization and correction table. Before the occurrence
of the large-scale blackout, the load shedding optimization is
solved periodically to obtain the optimal load shedding plan,
which meets the dynamic and steady constraints. When the
blackout occurs, the correction table updated in real time based
on the PMU data is used to modify the load shedding plan to
eliminate the power mismatch caused by the fluctuation of
RDG. After the system transits to the intentional island seam‐
lessly, multi-period restoration plans are generated to optimize
the restoration performance while maintaining power balance
until the main grid is repaired. Besides, CVR technology is im‐
plemented to restore more loads by regulating load demand.
The proposed load shedding optimization and restoration opti‐
mization are linearized to mixed-integer quadratic constraint
programming (MIQCP) models. The effectiveness of the pro‐
posed strategies is verified with the modified IEEE 33-node sys‐
tem on the real-time digital simulation (RTDS) platform.

Index Terms——Intentional island, renewable distributed gener‐
ation (RDG), load shedding, restoration, phase measurement
unit (PMU), conservation voltage reduction (CVR).

I. INTRODUCTION

DURING the past decades, the scale of power system ex‐
pands rapidly due to the economic development and ur‐

ban expansion. The complex power system provides more ef‐
ficient energy, but makes reliability a challenging task, lead‐
ing to more and more blackouts [1]. For example, dozens of
large-scale blackouts occurred in the first half of 2019 such
as in Venezuela and Britain, resulting in a significant loss of
billions of dollars. The power supply to critical loads will be
interrupted for a long time during blackout. Therefore, it is
essential to improve the reliability of end-user oriented distri‐
bution system.

Fortunately, with the rapid development of distributed gen‐
eration (DG) as well as advanced devices, the distribution
system becomes active, controllable, and observable, which
has the ability to form an intentional island to maintain the
power supply during the external blackout. It is reported that
cumulative installed distributed photovoltaic (PV) is project‐
ed to reach 60 GW by 2020 in China [2]. The low-cost re‐
motely controllable switches and phase measurement unit
(PMU) have also attracted widespread interests [3], [4]. In
this context, the standard for intentional island operation was
approved in 2009 [5]. The intentional island is similar to the
islanded microgrid, but it is implemented in a wider range
of medium-voltage distribution systems. As a special opera‐
tion mode of smart distribution system, the intentional island
can provide continuous power to critical users until the main
grid is restored. However, the uncertainty of renewable dis‐
tributed generation (RDG) has a great impact on the system
operation, which must be considered to ensure the feasibility
and reliability of the intentional island. According to the
chronological order, the processes of the intentional island
can be divided into transition, restoration, and reconnection
processes. This paper mainly focuses on the first two pro‐
cesses.

When a blackout occurs, the massive power deficit caused
by the interruption of the main grid will result in a rapid fre‐
quency drop, and the governors of dispatchable DGs may
fail to maintain the stability of the intentional island with
low inertia. Therefore, it is necessary to shed some non-criti‐
cal loads to rebalance the system quickly to ensure the unin‐
terrupted supply of critical loads.

Traditionally, the load shedding strategy generally re‐
sponds to the changes of frequency and sheds a predefined
load when the frequency falls below a certain threshold. Ref‐
erence [6] designs an under-frequency load shedding plan
for the Danish power system with high penetration of wind
power. A semi-adaptive load shedding strategy is proposed
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in [7], which employs both the frequency and rate of change
of frequency (ROCOF) as the thresholds. Reference [8] pro‐
poses an adaptive load shedding scheme, where the number
of loads to be shed is accurately estimated through the
swing equation and ROCOF. In [9], a centralized adaptive
load shedding method is designed, which uses the state esti‐
mator to determine the power of each bus in order to shed
the load at the correct location. The droop characteristics of
dispatchable DGs are considered in [10] when estimating the
number of loads to be shed. In [11], the power flow tracing
technology is utilized to determine the amount of load shed‐
ding of each bus; besides, the topology constraint is also tak‐
en into account. The conventional load shedding, semi-adap‐
tive load shedding, and adaptive load shedding strategies are
analyzed and compared in [12]. The above load shedding
strategies are response-based load shedding (RLS) strategies,
which respond to the frequency and ROCOF obtained by
PMU. However, the estimation performance of ROCOF in
the transient process is poor since PMU relies on the static
signal model, which may result in a wrong load shedding
[13]. Furthermore, the load shedding action of RLS is acti‐
vated only when the frequency is below the threshold, and
such a long delay may cause the system to collapse. There‐
fore, the event-based load shedding (ELS) strategy is pro‐
posed, which is activated by a specific trigger signal, such
as the status of the breaker. For example, [14] proposes an
ELS strategy for the microgrid islanding event. In [15], the
amount and location of loads to be shed for the possible con‐
tingency are calculated periodically and stored in a look-up
table.

Meanwhile, the cost of load shedding is high, and it is es‐
sential to optimize the load shedding plan to achieve the re‐
quired seamless transition with the minimum load curtail‐
ment. Besides, the uncertainty of RDG should also be taken
into account to ensure the feasibility of load shedding plan.
A bi-level optimization is proposed in [16], which combines
the preventive dispatch and the load shedding to achieve the
minimum coordination cost. Reference [17] employs the La‐
grange multipliers to optimize the load shedding locations.
In [18], a stochastic load shedding optimization is proposed
to maximize the economic performance, where the Markov
decision model is utilized to solve the uncertainty of RDG.
A robust ELS strategy with steady constraints is proposed in
[19], which is periodically calculated to consider the uncer‐
tainty. Besides, some intelligent algorithms such as genetic
algorithm [20], particle swarm optimization [21], heuristic
strategy [22], and multi-agent system [23] are also utilized
to solve the load shedding optimization. However, due to the
nonlinear constraints and the binary variables, the load shed‐
ding optimization generally requires a long solution time. Be‐
sides, the power of PV fluctuates rapidly, and the ramp rate
is up to 70%/min in the field [24]. The real-time power fluc‐
tuation may lead to a large power mismatch in load shed‐
ding plan, especially in the intentional island with low iner‐
tia but a high penetration of RDG, which cannot be ignored.
However, few researchers have addressed the problem of on‐
line optimal load shedding with both steady and dynamic
constraints, while considering the real-time power change of

RDG.
The duration of the intentional island operation depends

on the repair time of the main grid, which may take a few
hours. However, the output of RDG and the demand of cus‐
tomers change significantly on a long time scale, which may
cause the system to collapse when there is a large unbal‐
anced power. Therefore, after the transition, the restoration
strategy is desired to make full use of resources to maintain
the power balance and optimize the restoration performance.

Many research works in recent years have focused on the
restoration of distribution system [25]. For example, some in‐
telligent algorithms such as heuristic strategy [26], multi-
agent system [27], and genetic algorithm [28] are utilized to
solve the restoration problem. However, these methods may
not always ensure global optimal restoration plan, so mathe‐
matical programming has been widely used. For example,
[29] proposes a two-stage single-period optimization model,
where the graph theory and optimal power flow (OPF) tech‐
nology are employed to find the optimal restoration plan
with the maximum load recovery. In [30], a multi-period
mixed-integer linear programming (MILP) is designed to dy‐
namically adjust resources to maintain the system stability.
In [31], the switches are categorized into six groups, and dif‐
ferent switches are optimized at different stages to reduce
the solution time. In [32], a complex mixed-integer nonlin‐
ear restoration problem is proposed and solved by the modi‐
fied combinatorial Benders algorithm. A multi-time step res‐
toration strategy is proposed in [33], which can optimize the
control sequence of switches, DGs, and energy storage. In
[34], the internal combustion engine vehicles are utilized as
the backup energy source to restore the critical loads. The
output of RDG is random, and its uncertainty has a great im‐
pact on the determination of the restoration plan. Therefore,
in [35], the chance-constrained restoration optimization is
proposed, where the PV output is represented by different
scenarios. In [36], a robust mixed-integer optimization mod‐
el is proposed, where the final restoration plan is related to
the worst-case scenario. The latest forecasting of renewable
generation is used as the input in [37], and the output of
wind generators are represented by Markov states in [38] to
reduce the DG curtailment and load shedding. However, pre‐
vious works have focused only on the traditional control re‐
sources, i. e., the adjustment of DG output and load shed‐
ding, which ignores the continuous adjustment potential of
load demand.

Load demand can be regulated flexibly, which is usually
realized through the financial compensation of demand re‐
sponse (DR). However, the performance of DR depends on
the response of the end-user [39], which is highly uncertain,
especially in emergency circumstances. In practice, system
operators can regulate the load demand independently based
on conservation voltage reduction (CVR), which is a direct
load control technology based on the fact that most loads are
sensitive to the voltage [40]. The load demand can be regu‐
lated continuously by adjusting voltage within the statutory
limits. Some applications of CVR have been investigated in
energy saving [41] and peak demand reduction [42]. Howev‐
er, there is no research on the restoration of the intentional
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island based on CVR to increase the number of the restored
customers.

Motivated by the challenges mentioned above, this paper
proposes a PMU-based online load shedding strategy and a
CVR-based multi-period restoration strategy for the intention‐
al island with RDG. Besides, the modified IEEE 33-node
system is employed to verify the effectiveness of the pro‐
posed strategies. The main contributions are as follows.

1) An online load shedding strategy is proposed based on
the real-time PMU data. The existing strategy only updates
the load shedding plan periodically, which may be invalid in
the scenarios with rapid fluctuations of PV and loads. By
combining the load shedding optimization with the correc‐
tion table, the proposed load shedding strategy can obtain
the optimal load shedding plan online and ensure the smooth
transition of the intentional island with the minimum load
shedding cost. Besides, the load shedding optimization,
which meets dynamic and steady constraints, is linearized to
a mixed-integer quadratic constraint programming (MIQCP).

2) Compared with previous restoration research works that
focus on the optimization of DG output and load shedding,
this paper exploits the continuous adjustment of load de‐
mand based on CVR during the restoration process. With
limited DG capacity, the restoration performance can be fur‐
ther improved. Meanwhile, the restoration problem is formu‐
lated as multi-period optimization to adjust the restoration
plans dynamically in order to adapt to the intermittence of
PV output, which is also linearized to MIQCP. Besides, the
impacts of the forecasting errors of PV output are also con‐
sidered in the dynamic scenario.

The remainder of this paper is organized as follows. Sec‐

tion II describes the intentional island. The load shedding
strategy and restoration strategy are introduced in Section III
and Section IV, respectively. In Section V, the simplified
methods for load shedding optimization and restoration opti‐
mization are presented. The case study is given in Section
VI, whereas concluding remarks are given in Section VII.

II. INTENTIONAL ISLAND

The intentional island discussed in this paper is a medium-
voltage distribution system, which has only one transmission
line connected to the main grid and is prone to large-scale
blackouts. This system is widespread in the mountains of
southern China. The substation is regarded as the point of
common coupling (PCC) between the main grid and the in‐
tentional island. The status of the breaker at the PCC can be
regarded as the indicator signal of the load shedding event,
which is continuously monitored by the distributed manage‐
ment system (DMS). There are dispatchable DGs and RDGs
in the intentional island. The output and terminal voltages of
the dispatchable DGs can be controlled by DMS. The active
power of PV depends on the solar irradiance and tempera‐
ture, but the reactive power can be regulated to perform
CVR. During the intentional island operation, the dispatch‐
able DG with the largest capacity is the master DG that
maintains the stability of the island, while other DGs are the
slave ones with constant output. Most loads in the modern
distribution system are equipped with remote units such as
the distribution terminal unit (DTU) and smart switch [33],
which enable the load to be remotely restored or shed. The
framework of the proposed load shedding strategy and resto‐
ration strategy is shown in Fig. 1.

A. Load Shedding Strategy

The proposed load shedding strategy consists of the load
shedding optimization and correction table. Firstly, before
the blackout occurs, the load shedding optimization is solved
periodically based on the snapshot of the system. The calcu‐

lated load shedding plan meets various constraints with the
minimum load shedding cost. Meanwhile, the correction ta‐
ble is updated in real time based on the PMU data with the
heuristic algorithm. Then, once the DMS detects the occur‐
rence of blackout event, the load shedding process is activat‐
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?�Load demand
?�Power at PCC

Load shedding optimization

?�Objective: minimize the number
     of loads to be shed during
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…
…
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…
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Fig. 1. Framework of proposed load shedding strategy and restoration strategy.
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ed immediately. According to the power difference at PCC
between the moments of blackout and optimization, i. e.,
DPPCC, the correction table modifies the load shedding plan
online to reduce the power mismatch caused by PV. For ex‐
ample, DPPCC > 0 indicates that the DG output reduces or the
load demand increases compared with that at the optimiza‐
tion moment. Therefore, in addition to the loads in the pre-
calculated load shedding plan, some other non-critical loads
need to be shed. The details about the load shedding strategy
are presented in Section III.

B. Restoration Strategy

During the intentional island operation, due to the rapid
fluctuation of PV, it is necessary to generate multi-period res‐
toration plans to ensure the power balance and improve the
restoration performance during each time period. For the pro‐
posed restoration strategy, in addition to the optimization of
DG output, load shedding, and restoration, CVR is imple‐
mented through the volt/var control to regulate the load de‐
mand to restore more customers. Besides, the PV outputs are
represented by dynamic scenarios to reduce the impacts of
forecasting errors. Meanwhile, the multi-period restoration
optimization is solved through the look-ahead method [30].
The look-ahead method solves the optimization repeatedly as
time moves forward and obtains restoration plans over the
optimization window, but only the plan for the next period is
implemented in practice. The details about the restoration
strategy are presented in Section IV.

III. LOAD SHEDDING STRATEGY

A. Load Shedding Optimization

The objective of load shedding optimization is to mini‐
mize the number of loads to be shed, which is expressed as:

min∑
iÎ I

ci xi (1)

ci = ρ i + ni (2)

where ci is the load weight; ρi is the priority factor; ni is the
customer factor; I is the set of loads; and the load status xi

is the decision variable, which is a binary variable, and
xi = 1 indicates that load i is to be shed.

According to the losses caused by blackouts, the priority
of load is divided into three classes [43]. The first-class load
is the very important load with the highest priority factor
such as hospital; the second-class load is the important load
such as shopping mall; and the third-class load has the low‐
est priority factor such as resident. In most existing studies,
the load weight is only related to the load priority [15], [20].
In order to improve the reliability indices and reduce the cus‐
tomer complaints, the load weight is also related to the cus‐
tomer factor in this paper. Customer factor is the ratio of the
number of customers of the load to the total number of cus‐
tomers with the same priority.

The system average interruption duration index (SAIDI) is
one of the most critical reliability indices [44], which indi‐
cates the duration of interruption for the average customer
and it is formulated as:

SAIDI =∑
k ÎK
∑

iÎ I

rk Nik

NT
(3)

where rk is the duration time of blackout k; Nik is the num‐
ber of customers of load i affected by blackout k; K is the
set of blackouts; and NT is the total number of customers.

SAIDI plays an important role in the reliability assess‐
ment, and it is essential to reduce the SAIDI for both power
utilities and customers. When facing load with the same pri‐
ority, based on the customer factor, the optimization program
can preferentially select the load with a small number of cus‐
tomers to be shed, thereby reducing the SAIDI as well as
the customer complaints.

The constraints of the load shedding optimization include:
1) Dynamic Constraint

Since the large frequency drop may trigger the cascading
event, the frequency deviation during the transition process
should be limited by:

Df £Df max (4)
where Df is the frequency deviation; and Df max is the frequen‐
cy limit.
2) Steady Constraints

The operation of the intentional island should meet the
power flow constraints. Besides, the power at PCC SPCC

should be limited to zero.

Pi - jQi = (Vi)
*∑

jÎΩi

YijVj (5)

SPCC = 0 (6)

where Pi and Qi are the injected active and reactive power at
node i, respectively; Vi and Vj are the voltage of node i and
node j; Ω i is the node set connected to node i; and Yij is the
conductance between node i and node j.

Besides, the node voltage should be within the allowable
ranges as shown in (7).

V min £ |Vi |£V max (7)

where |Vi | is the voltage amplitude of node i; and V min and

V max are the minimum and maximum limits of voltage, re‐
spectively.

The line current should also not exceed its allowable
range.

Il £ I max (8)

where Il is the line current; and I max is the current limit.
3) DG Constraints

The output of dispatchable DG should be within the ramp
limits process.

DP dntr
g £P DDG

g -P DDGbef
g £DP uptr

g (9)

where P DDGbef
g and P DDG

g are the active power of dispatchable
DG g before and after the transition, respectively; and DP uptr

g

and DP dntr
g are the ramp-up and ramp-down active power of

dispatchable DG g during the transition process, respectively.
The output of RDG should be unchanged during the transi‐

tion.

P RDG
g =P RDGbef

g (10)

QRDG
g =QRDGbef

g (11)
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where P RDGbef
g , P RDG

g , QRDGbef
g , and QRDG

g are the active and the
reactive power of RDG g before and after the transition, re‐
spectively.

In addition, each DG should be within its rated capacity.

(P DG
g ) 2

+ (QDG
g ) 2

£ (S DG
g ) 2

(12)

where S DG
g is the rated capacity of DG g.

4) Load Constraints
The ZIP load model is utilized to represent the depen‐

dence of the load on voltage, which is formulated as:

Pi = xi P
N
i
é
ë
êZ P

i (Vi V N
i ) 2

+ I P
i (Vi V N

i )+P P
i
ù
û
ú (13)

Qi = xiQ
N
i
é
ë
êZ Q

i (Vi V N
i ) 2

+ I Q
i (Vi V N

i )+P Q
i
ù
û
ú (14)

where P N
i and QN

i are the rated active and reactive power of
load at the rated voltage V N

i , respectively; and Z P
i , I P

i , P P
i ,

Z Q
i , I Q

i , and P Q
i are the ZIP coefficients.

Meanwhile, it also should be noted that only the load
equipped with the remote breaker can be shed, which is
shown as:

xi =

ì

í

î

ïï
ïï

0 load is not equipped with remote breaker

or it is not to be shed
1 load is equipped with remote breaker

and it is to be shed

(15)

B. Correction Table

Due to the influence of dynamic constraints and the bina‐
ry-continuous variables, the calculation burden of load shed‐
ding optimization is heavy. Even if the optimization model
is solved periodically, there is still a power mismatch be‐
tween the DG output and load demand in the load shedding
plan when the fluctuation of PV is rapid. Therefore, in order
to make a correct load shedding decision online, the correc‐
tion table is proposed as an auxiliary tool for load shedding
optimization. The power difference at PCC between the mo‐
ments of blackout and optimization DPPCC indicates the mis‐
match level of the load shedding plan, which can be reduced
by additionally shedding or restoring loads. The input item
of the correction table is DPPCC, and the output item is the
corrective load combination. By determining which condi‐
tion the input satisfies, the output corresponding to this con‐
dition is quickly selected to modify the load shedding plan.

It should be noted that, compared with the load shedding
optimization, the correction table is only providing a feasible
correction scheme quickly, but may not be optimal. In order
to ensure that the calculation results of the correction table
are consistent with the load shedding optimization results,
the load selection principles of the correction table are de‐
signed.

1) The load with lower priority should be shed preferen‐
tially and restored later.

2) For the same power deficit, the load with the same pri‐
ority but with fewer customers should be shed preferentially
and restored later.

The first principle is used to deal with the selection of
loads with different priorities, and its role is the same as the

priority factor in the load shedding optimization, ensuring
that the load with higher priority is restored preferentially.
The second principle is used to deal with the selection of
loads with the same priority, and its role is the same as the
customer factor. Based on the above principles, a heuristic al‐
gorithm that can quickly generate the correction table is pro‐
posed. There are only two scenarios in the correction table:
additional load restoration (DPPCC > 0) and additional load
shedding (DPPCC < 0). An example is given below to illustrate
the generation process of the correction table in the case of
additional load restoration with the heuristic algorithm, and
the generation process of additional load shedding is similar.

Step 1: identify the set of loads to be shed and obtain
their information. For example, according to the pre-calculat‐
ed load shedding plan, loads L1, L2, and L3 are to be shed
when the blackout occurs. Their priority factors are ρ1 = 10,
ρ2 = 1, and ρ3 = 1, respectively. The number of their custom‐
ers are N1 = 58, N2 = 99, and N3 = 59, respectively, and their
power demands are P1 = 50 kW, P2 = 204 kW, and P3 =
63 kW, respectively.

Step 2: generate power segment points according to the
combination of load demand. According to the load demand
of L1, L2, and L3, seven power segment points are generated:
{50 kW, 63 kW, 113 kW, 204 kW, 254 kW, 267 kW, 317 kW}.

Step 3: generate power intervals according to the ascend‐
ing order of power segment points. Arrange the segment
points in ascending order, and generate seven power inter‐
vals, namely seven scenarios, including {S1, 50 kW£DPPCC <
63 kW}, {S2, 63 kW£DPPCC < 113 kW}, {S3113 kW£DPPCC <
204 kW}, {S4204 kW£DPPCC<254 kW}, {S5254 kW£DPPCC

<267 kW}, {S6267 kW£DPPCC<317 kW}, and {S7317 kW
£DPPCC}.

Step 4: for each power interval, select appropriate loads
according to the proposed principles to form a load combina‐
tion. The total load demand in the load combination should
be less than the lower limit of the power interval, and each
combination should contain as many loads as possible. Ac‐
cording to the proposed principles, for the loads with differ‐
ent priorities, the load with higher priority is selected prefer‐
entially. Then, for the loads with the same priority, the load
with more customers is selected preferentially. Therefore, for
{S1, 50 kW£DPPCC < 63 kW}, L1 is preferentially selected
due to its high priority, and no other loads can be further se‐
lected due to the power limit. Thus, the load combination of
S1 is {L1}. For {S2, 63 kW£DPPCC < 113 kW}, due to the pri‐
ority of L1 is higher than L3, the corresponding load combina‐
tion is also {L1}. For {S3, 113 kW£DPPCC<204 kW}, L3 is al‐
so selected in addition to L1, i. e., the load combination is
{L1, L3}. For {S4, 204 kW£DPPCC<254 kW}, the load combi‐
nation is also {L1, L3} due to the power limit. For
{S5, 254 kW£DPPCC<267 kW}, although L2 and L3 have the
same priority, L2 is selected preferentially because it has
more customers, and the load combination is {L1, L2}. For
{S6, 267 kW£DPPCC < 317 kW}, no more load can be select‐
ed due to the power limit, and the load combination is also
{L1, L2}. For {S7, 317 kW£DPPCC}, all loads are selected, and
the load combination is {L1, L2, L3}.
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Step 5: generate the correction table. The condition of the
correction table is that DPPCC is within the power interval.
The result is to restore all the loads in the load combination
corresponding to the power interval. The example of correc‐
tion table is generated, as shown in Table I.

It should be noted that as the number of loads N increas‐
es, the number of power intervals will increase to 2N - 1. In
order to find a tradeoff between the optimality and the
speed, the total number of power intervals for DPPCC > 0 and
DPPCC < 0 is limited to 20 in this paper. The power intervals
can be 20 equal intervals between the minimum and the
maximum power segment points. Although the limited num‐
ber of power intervals reduces the optimality, it improves the
update speed and ensures the validity of correction table.
Meanwhile, the number of power intervals can be changed
flexibly according to the actual situation. The correction ta‐
ble can be updated within 3 s using the heuristic algorithm.

IV. RESTORATION STRATEGY

A. CVR

CVR is a load control technology based on the fact that
most loads are sensitive to voltage. There have been exten‐
sive CVR tests around the world. The effect of CVR de‐
pends on the load composition, which is usually 0.3%-1%
load reduction per 1% voltage reduction. The effect of CVR
is quantified by the CVR factor, as shown in (16).

CVRfactor = DP DV (16)

where DV is the voltage reduction; and DP is the power defi‐
cit.

Different loads have different CVR factors. In general, the
CVR factors of commercial, residential, municipal, and in‐
dustrial loads are 0.99%, 0.76%, 0.76%, and 0.41%, respec‐
tively [40].

B. PV Uncertainty

The PV forecasting is the indispensable input for multi-pe‐
riod restoration optimization. In this paper, a dynamic scenar‐
io generation method and a scenario reduction method are
utilized to reduce the impact of forecasting error [45]. First‐
ly, the continuous random variable is obtained according to
the multivariate normal distribution, and then the cumulative
probability of the continuous variable is calculated with the
cumulative standard normal distribution function. Then, the
dynamic scenario of PV is generated by the inverse function

of empirical cumulative distribution in each forecasting bin.
Then, the scenario reduction method based on the backward-
reduction algorithm is utilized to reduce the number of sce‐
narios. Compared with the static scenario, the dynamic sce‐
nario can reflect the time correlation of the PV output,
which is more suitable for multi-period restoration optimiza‐
tion.

C. Restoration Optimization

The objective of restoration optimization is to minimize
the number of loads to be shed over the optimization win‐
dow. The decision variable xit is the load status in each time
period, which is expressed as:

min∑
iÎ Ι
∑
tÎ T

ci xit (17)

where T is the set of time period.
The constraints of the restoration optimization are de‐

scribed as follows.
1) Steady Constraints and Load Constraints

The steady constraints and load constraints are similar to
those in the load shedding optimization, which are omitted
here.
2) DG Constraints

The output of dispatchable DG should not exceed its maxi‐
mum, minimum, and ramp limits.

P DDGmin
g £P DDG

gts £P DDGmax
g (18)

QDDGmin
g £QDDG

gts £QDDGmax
g (19)

DP dnrs
g £DP DDG

gts -DP DDG
gt - 1s £DP uprs

g (20)

where P DDG
gts and QDDG

gts are the active and reactive power of
dispatchable DG g during period t in scenario s, respective‐
ly; P DDGmax

g and P DDGmin
g are the maximum and minimum ac‐

tive power of dispatchable DG g, respectively; QDDGmax
g and

QDDGmin
g are the maximum and minimum reactive power of

dispatchable DG g, respectively; and DP uprs
g and DP dnrs

g are
the ramp-up and ramp-down power of dispatchable DG g
during the restoration process, respectively.

The active power of RDG should be equal to the forecast‐
ing value, and the reactive power of RDG should not exceed
its maximum and minimum limits.

P RDG
gts =P RDGsn

gts (21)

QRDGmin
g £QRDG

gts £QRDGmax
g (22)

where P RDG
gts and QRDG

gts are the active and reactive power of
RDG g during period t in scenario s, respectively; P RDGsn

gts is
the forecasting active power of RDG g during period t in
scenario s; and QRDGmax

g and QRDGmin
g are the maximum and

minimum reactive power of RDG g, respectively.
All DGs should be within its rated capacity.

(P DG
gts)

2

+ (QDG
gts)

2

£ (S DG
g ) 2

(23)

The reactive power of capacitor bank (CB) depends on its
operation status.

QCB
ct = zctQ

CBN
c (24)

where QCB
ct is the reactive power of CB; zct is the operation

status of CB, which is a binary variable, and zct = 1 indicates
that CB is in operation; and QCBN

c is the rated reactive power

TABLE Ⅰ
EXAMPLE OF CORRECTION TABLE

Scenario

S1

S2

S3

S4

S5

S6

S7

Power interval

50 kW£DPPCC < 63 kW

63 kW£DPPCC < 113 kW

113 kW£DPPCC < 204 kW

204 kW£DPPCC < 254 kW

254 kW£DPPCC < 267 kW

267 kW£DPPCC < 317 kW

317 kW£DPPCC

Results of load shedding correction

Restore L1

Restore L1

Restore L1, L3

Restore L1, L3

Restore L1, L2

Restore L1, L2

Restore L1, L2, L3
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of CB.
3) Customer Comfort Constraint

In order to ensure the customer comfort, the number of
status changes of each customer is limited to less than two
times during the restoration process [30].

∑
tÎ T

| xit - xit - 1 |£ 2 (25)

V. SIMPLIFICATION OF PROPOSED OPTIMIZATION MODELS

Due to the dynamic and nonlinear constraints as well as
the binary-continuous variable, the proposed load shedding
optimization and restoration optimization are complex. In
this section, a simplified frequency response model and a lin‐
ear power flow model are presented, which are used to lin‐
earize the above two optimization models into the MIQCP
models.

A. Simplified Frequency Response Model

The maximum frequency deviation is the key index. In
this paper, an approximate model of primary frequency re‐
sponse is used to calculate the maximum frequency devia‐
tion [46]. During the transition process, the ROCOF is calcu‐
lated by the model of system frequency response as:

df/dt =DP/2H (26)

where f is the system frequency; and H is the equivalent in‐
ertia.

Since the system power is balanced again after the transi‐
tion, the initial power deficit DP ( )t0 after load shedding is

equal to the increased output of dispatchable DG during the
transition process, which is formulated as:

DP ( )t0 = ∑
gÎΩDDG

( )P DDG
g -P DDGbef

g (27)

where ΩDDG is the set of dispatchable DG.
The governor of dispatchable DG responds to the frequen‐

cy drop and increases the output. Therefore, the power defi‐
cit gradually decreases according to the ramp-up rate of
DG Rg.

DP ( )t =DP ( )t0 - ∑
gÎΩDDG

Rg ( )t - t0 (28)

When DP ( )t is equal to 0 for the first time at t = t1, the
frequency deviation is the maximum (the stationary point).
Therefore, the maximum frequency deviation during the tran‐
sition process can be approximately calculated as:

Df ( )t1 =- ∫
t0

t1{ }1
2H

é

ë
êê

ù

û
úúDP ( )t0 - ∑

gÎΩDDG

Rg ( )t - t0 dt =

1
4H

é

ë
êê

ù

û
úú∑

gÎΩDDG

( )P DDG
g -P DDGbef

g

∑
gÎΩDDG

Rg

2

(29)

Figure 2 illustrates the process of governor adjustment
and the change of frequency. It should be noted that the de‐
pendency of load on the voltage and frequency is ignored in
this model. When the voltage and frequency are reduced dur‐
ing the transition process, the load demand will also be re‐

duced, as shown in Fig. 2. As a result, this simplification
leads to an optimistic estimate of the maximum frequency

deviation ( )|| Df (t'1) < || Df (t1) , which is conducive to make a

conservative load shedding plan.

B. Linear Z-bus Power Flow Model

The linear power flow models have been widely used in
optimization problems such as OPF. The widely-used linear
DistFlow model [33] may lead to the unbalanced power be‐
cause it ignores the network loss. Therefore, in this paper,
the linear Z-bus power flow model is used [47], where the
network loss is considered and SPCC can be calculated analyti‐
cally. The linear Z-bus power flow model is based on the
fixed-point interpretation of the AC power flow equations,
the process of which is as follows.

For the radial or meshed system with n nodes, firstly, the
node voltages at the adjacent period (e.g., before the black‐
out) are regarded as the reference voltage V refÎRn´ 1. Then,
the current power injections X = [ ]PT QT T

are obtained
through DMS, and the voltage V ÎRn´ 1, the voltage ampli‐
tude |V |ÎRn´ 1, the line current I ÎR l ´ 1, and the power of
PCC SPCCÎR1´ 1 can be directly calculated as:

V =MX + a (30)

|V |=KX + b (31)

I = JX + c (32)

SPCC =GX + d (33)

where M, K, J, G, a, b, c, and d are related to the reference
voltage V ref as well as the admittance matrix Y. More details
can be found in [47].

The accuracy of the linear Z-bus power flow model de‐
pends on the difference between the current value and the
reference value, and the accuracy can be improved by con‐
stantly updating the reference value with the solution value.

C. Simplification of Load Shedding Optimization

For the load shedding optimization, the dynamic con‐
straint (4) and steady constraints (5) - (8) can be linearized
through (29) and (30) - (33), respectively. For the load con‐
straints (13) and (14), V 2

i can be linearized around V ref
i

through Taylor series expansion as:

Pi =AP
i xiVi +BP

i xi (34)

Consider dependency of loads on voltage and frequency
Ignore dependency of loads on voltage and frequency

t

t

∆f

∆P

∆P(t0)

∆f(t1′)
∆f(t1)

1t1t'

0

0

t0 (Blackout
moment)

Fig. 2. Process of governor adjustment and change of frequency.
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where AP
i =P N

i
é
ë( )2V ref

i Z P
i ( )V N

i

2
+ I P

i V N
i
ù
û and BP

i =P N
i
é
ëP

P
i -

Z P
i ( )V N

i V ref
i

2ù
û.

Then, the binary-continuous variable xiVi can be linearized
through the big-M method as:

(xi - 1)M £V ax
i -Vi £ (1- xi)M (35)

-xi M £V ax
i £ xi M (36)

V ax
i = xiVi (37)

where V ax
i is the auxiliary binary variable; and M is a con‐

stant, which is set to be 1.5.
Then, the proposed load shedding optimization is formulat‐

ed as an MIQCP model (the quadratic constraint is (12)),
where the objective function is (1) and the constraints are
(4)-(12), (15), and (29)-(37).

D. Simplification of Restoration Optimization

For the restoration optimization, the steady constraints and
load constraints can be simplified similarly to those in the
load shedding optimization. The constraint (25) can be linear‐
ized with the auxiliary binary variable xax

it in the following
five inequality formulas.

xax
it £ xit + xit + 1 (38)

xax
it ³ xit + 1 - xit (39)

xax
it ³ xit - xit + 1 (40)

xax
it £ 2- xit - xit + 1 (41)

∑
tÎ T

xax
it £ 2 (42)

where xax
it = 1 indicates that the status of load i changes dur‐

ing the period t.
Then, the proposed restoration optimization is formulated

as an MIQCP model (the quadratic constraint is (23)), where
the objective function is (17) and the constraints are (5)-(8),
(18)-(24), and (30)-(42).

VI. CASE STUDY

This section focuses on the simulation of the proposed
load shedding strategy and restoration strategy. For the load
shedding strategy, the effectiveness is firstly verified in Sec‐
tion VI-A. Then, by comparing with other research results,
the importance of the correction table is proven in Section
VI-B. For the restoration strategy, the effectiveness is firstly
verified in Section VI-C. Then, the effectiveness of CVR in
improving the restoration performance is compared in Sec‐
tion VI-D, and finally, the impact of the forecasting errors of
PV output is analyzed in Section VI-E.

The modified IEEE 33-node system is employed as the
simulation case, as shown in Fig. 3. The system has 32
loads, including municipal, industrial, commercial, and resi‐
dential loads. The total number of customers is 460, and
each load has a different number of customers. Municipal
loads are the most important ones, followed by industrial
and commercial loads, and finally the residential loads. The
system has two dispatchable DGs (G1 and G2), three PVs
(PV1, PV2, and PV3), and one CB. G2 is equipped with the

wood-ward diesel governor (DEGOV1) and the simplified
exciter system (SEX1) [30], which is the master DG during
the intentional island operation, and other DGs are the salve
ones. The status of the system is monitored by PMU in real
time. For simplicity, the typical CVR factors are used to rep‐
resent the effects of load CVR [40], as mentioned in Section
IV. The optimization programs are solved by GUROBI 8.1.0,
and the real-time digital simulation (RTDS) platform is used
to simulate the transition process.

A. Analysis of Proposed Load Shedding Strategy

The parameters of DG are shown in Table II. In the nor‐
mal operation, the power supply of the main grid is 2410 kW,
and the power supply of DGs is 1470 kW. Besides, the distri‐
bution system has a spinning reserve of 140 kW in G1 and G2.
Therefore, in theory, the intentional island can restore up to
1610 kW loads during the transition process. The blackout is
performed by disconnecting the circuit breaker at PCC.

Before the grid is disconnected, the load shedding optimi‐
zation proposed in Section III (LS1) is solved to obtain the
optimal load shedding plan. According to the DG output,
load demand, load priority, and the number of customers of
loads, Table III lists the load shedding plans with LS1 and
the load shedding strategy that only considers the priority
factor (LS2) [15] , where the status of 1 indicates load shed‐
ding. It can be seen that there is a total of 18 loads that can
be restored in LS1. The power of the restored load is 1605 kW,
which is close to the maximum power of DG, indicating that
the load shedding plan with LS1 makes full use of the DG
resources.

Besides, with the help of the priority factor, it can be seen
that the first-class loads are all restored with LS1, which is
in line with the goal of intentional island, and the number of
restored customers is 189. Due to the limited capacity of

TABLE Ⅱ
PARAMETERS OF DG

Item

PCC

G1

G2

PV1

PV2

PV3

CB

Node

0

19

24

7

13

29

11

P (kW)

2410

200

720

180

150

220

Q (kvar)

1204

150

525

500

S (kVA)

600

2400

545

450

660

500

DPuptr (kW)

30

110

PV1

PV3

PV2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

19 20 2118

23 2422

25 26 27 28 29 30 31 32

G2

G1

Municipal load; CB
Residential load; Industrial load; Commercial load

Fig. 3. Modified IEEE 33-node system.
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DG, it is necessary to shed part of second-class loads to en‐
sure the power balance.

The load shedding plan with LS2 is also calculated to veri‐
fy the necessity of the proposed customer factor in load
weight. As shown in Table III, the number of restored loads
with LS2 is 18, which equals that with LS1. However, the
power of the restored load with LS2 is 1535 kW and the
number of restored customers is 174, which are significantly
lower than those with LS1, and this is because LS2 random‐
ly selects the load with same priority. For example, LS2
sheds L16 with more customers instead of L26 with fewer cus‐
tomers, which is disadvantageous to the SAIDI. In contrast,
LS1 considers more factors in the load weight such as the
number of customers. Therefore, the load shedding plan is
more reasonable and the load shedding cost is lower. For ex‐
ample, L2, L18, L20, and L21 are all second-class loads with
the same power demand, and LS1 chooses L21 that has the

least number of customers to be shed. With the help of custom‐
er factor, LS1 automatically selects the load with a small num‐
ber of customers to be shed, which is favorable to the SAIDI.

Different from the conventional RLS strategy (LS3) driv‐
en by the frequency change, LS1 is driven by the status of
the circuit breaker at PCC (i. e., the blackout event). When
the blackout occurs, the system frequencies during the transi‐
tion process with LS1 and LS3 [8] are shown in Fig. 4. It
can be seen that the frequency with LS3 has considerably
higher undershoot and overshoot compared with LS1. The
corresponding key indices during the transition process with
LS1 and LS3 are shown in Table IV, where f max and f min are
the maximum and minimum frequencies, respectively; and
V max and V min are the maximum and minimum node voltag‐
es, respectively. It can be seen that the deviations of frequen‐
cy and voltage with LS1 are smaller than those with LS3.

B. Effectiveness of Correction Table in Load Shedding

The correction table is generated according to the load
shedding plan, as shown in Table V. For simplification, only
part of the correction table is listed. It can be seen that for
60 kW£DPPCC < 165 kW, the third-class load L9 with the
largest number of customers is selected to be preferentially
restored. The reason why the second-class loads are not se‐
lected is that the power of each second-class load (L6, L7,
L21, L23, L24, and L29) is larger than 60 kW, which exceeds
the lower limit of the power interval. For -45 kW£DPPCC < 0,
L16 with the lowest priority is selected to be preferentially
shed. The results of the correction table are in line with the
principles of correction table in Section III.

Assuming that the fluctuation of PV is rapid, and the total
power of PV reduces to 508 kW and the DPPCC is -42 kW
at the moment of blackout. Therefore, L16 is additionally
shed according to the correction table. The system frequen‐
cies during the transition process with LS1 and the strategy
without correction table (LS4) [19] are compared, as shown
in Fig. 5. The corresponding key indices during the transi‐
tion process with LS1 and LS4 are shown in Table VI. Due
to the rapid fluctuation of PV, the previously calculated load
shedding plan is not suitable for the current system. There‐

0 1 2 3 4 5
48.0

48.5

49.0

49.5

50.0

50.5

Fr
eq

ue
nc

y 
(H

z)
Time (s)

 LS1 
 LS3

Blackout moment

Fig. 4. System frequencies during transition process with LS1 and LS3.

TABLE Ⅳ
KEY INDICES DURING TRANSITION PROCESS WITH LS1 AND LS3

Strategy

LS1

LS3

f max(Hz)

50.01

50.07

f min (Hz)

49.92

48.34

V max(p.u.)

1.01

1.08

V min (p.u.)

0.98

0.85

TABLE Ⅲ
LOAD SHEDDING PLANS WITH LS1 AND LS2

Load

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

L14

L15

L16

L17

L18

L19

L20

L21

L22

L23

L24

L25

L26

L27

L28

L29

L30

L31

L32

Class

Third-class

Second-class

Second-class

First-class

Third-class

Second-class

Second-class

Second-class

Third-class

First-class

Third-class

Second-class

First-class

First-class

Third-class

Third-class

Third-class

Second-class

First-class

Second-class

Second-class

Third-class

Second-class

Second-class

First-class

Third-class

First-class

First-class

Second-class

Second-class

Second-class

Second-class

Power
(kW)

100

90

120

60

60

200

200

60

60

45

60

60

120

60

60

60

90

90

90

90

90

90

420

420

60

60

60

120

200

150

210

60

Number of
customers

10

9

10

7

5

24

28

3

7

4

6

7

18

10

4

12

18

16

20

10

6

8

60

70

6

6

6

11

19

14

20

6

Status

LS1

1

0

0

0

1

1

1

0

1

0

1

0

0

0

1

0

1

0

0

0

1

1

1

1

0

1

0

0

1

0

0

0

LS2

1

0

0

0

1

1

1

0

1

0

1

0

0

0

1

1

1

0

0

0

0

1

1

1

0

0

0

0

0

1

1

0
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fore, there is a mismatch between the DG output and the re‐
stored load demand with LS4. Compared with LS1, the fre‐
quency with LS4 has higher undershoot and overshoot. On
the contrary, by using real-time PMU data, LS1 online cor‐
rects the load shedding plan through the correction table,
which ensures the power balance and smooth transition of
the intentional island. It can be seen from Fig. 5 that LS1
has no frequency overshoot, indicating that the load shed‐
ding is valid when the fluctuation of PV is rapid.

C. Analysis of Restoration Strategy

Assuming that the blackout duration is 1 hour and each
time period is set to be 15 min. The demand of each load
and the output of each PV follow the same profile during
the restoration process. Figure 6 lists the multipliers of load
demand and PV output in 10 dynamic scenarios (S1-S10) as
well as measurement and forecasting values of PV output
during each period (T1-T4).

The multi-period restoration plan obtained with the pro‐
posed restoration strategy (RS1) is shown in Table VII. By
increasing the outputs of G1 and G2, the number of restored
loads during T1 reaches 27, which is much larger than that
during the transition process. Besides, the first-class loads
are all restored during all periods, which is consistent with
the goal of the intentional island. Meanwhile, according to
the changes of load demand and PV output, the restoration
plan is adjusted automatically to optimize the restoration per‐
formance while maintaining the power balance. For example,
the load demand increases from 4068 kW during T1 to 4384
kW during T2, which exceeds the increase of PV output. There‐
fore, the number of restored loads is reduced during T2 to en‐
sure the power balance. In addition, during T3, the number of
the restored loads increases because the PV output increases
but load demand decreases. To sum up, with the help of the
RS1, the DG resources are optimally distributed during each
period with the optimal restoration performance.

D. Effectiveness of CVR in Improving Restoration
Performance

In order to verify the effectiveness of CVR in improving
the restoration performance, RS1 is compared with the resto‐
ration strategy without CVR (RS2) [26]. The accumulation
of restored loads with RS1 and RS2 is shown in Table VII.
It can be seen that the restoration performance with RS1 is
better than that with RS2 during all periods. In addition,
since CVR reduces the load demand and the granularity of
load demand, the load combination that is more suitable for
DG output can be found. Therefore, the restored load with
RS1 is higher than that with RS2. Moreover, taking T1 as an
example, when the DG output reaches its limit, the number
of restored loads can be further increased from 22 to 27 by
reducing the power of each customer through CVR.

TABLE Ⅴ
CORRECTION TABLE WITH LS1

Scenario



Si

Si+ 1

Si+ 2

Si+ 3

Si+ 4



Power interval



165 kW£DPPCC < 270 kW

60 kW£DPPCC < 165 kW

0 kW£DPPCC < 60 kW

-45 kW£DPPCC < 0 kW

-125 kW£DPPCC <-45 kW



Results of load shedding
correction



Additionally restore L9, L21

Additionally restore L9

Additionally shed L16

Additionally shed L2, L16



0 1 2 3 4 5
48.0

48.5

49.0

49.5

50.0

50.5
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nc
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Time (s)

Blackout moment 

 LS1
 LS4

Fig. 5. System frequencies during transition process with LS1 and LS4.

TABLE Ⅵ
KEY INDICES DURING TRANSITION PROCESS WITH LS1 AND LS4

Strategy

LS1

LS4

f max (Hz)

50.03

50.11

f min (Hz)

49.94

49.39

V max(p.u.)

1.01

1.03

V min (p.u.)

0.99

0.92

Period
T1 T2 T3 T4

0.3

0.5

0.7

0.9

1.1

1.3

  Load demand; Measurement value of PV output
  Forecasting value of PV output

 S1; S2; S3; S4; S5
 S6; S7; S8; S9; S10 

M
ul

tip
lie

r (
p.

u.
)

Fig. 6. Multipliers of load demand and PV output.

TABLE Ⅶ
MULTI-PERIOD RESTORATION PLAN WITH RS1

Period

T1

T2

T3

T4

Load demand
(kW)

4068

4384

4272

4532

Restored load (kW)

3120

3220

3283

3256

Number of restored
loads

27

23

27

22

Number of restored
customers

348

332

347

323

Total DG output
(kW)

3208

3303

3369

3339

Restoration rate of the
first-class load (%)

100

100

100

100
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However, it should be noted that CVR should be imple‐
mented on the premise that the node voltage is within the
statutory limit. The node voltages with RS1 and RS2 during
each period are shown in Fig. 7. It can be seen that there are
two different sets of voltage curves. The node voltages with
RS2 are around 1.0 p.u., while those with RS1 are close to
0.9 p. u.. Although the node voltages with RS1 are lower
than those with RS2, they are within the limit with little im‐
pact on customers. Therefore, although CVR is limited by
the load type and voltage, the above results clearly show
that CVR can restore more loads, which provides a new
method for system operators to improve the restoration per‐
formance.

E. Impact of Forecasting Error of PV Output on Restoration

In this subsection, RS1 is compared with the restoration
strategy using the forecasting values of PV output (RS3)
[30]. It can be seen from Fig. 6 that the forecasting values
of PV output during T1, T2, and T3 are higher than the actual
output. As a result, RS3 will restore more loads based on the
forecasting values of PV. The total power demands with RS1
and RS3 (including the load demand and the network loss)
and the actual range of DG output are shown in Fig. 8. It
can be seen that the load demand with RS3 exceeds the max‐
imum DG output during T1, T2, and T3, which may threaten
the system operation. In contrast, since the forecasting error
is taken into account in the dynamic scenario, RS1 is robust
to the PV uncertainty, which ensures that the load demand is
always within the range of DG output. Therefore, it is neces‐
sary to consider the forecasting errors of PV output in order
to maintain the stable operation of the intentional island.

VII. CONCLUSION

This paper proposes a PMU-based load shedding strategy
and a CVR-based multi-period restoration strategy. Through
the combination of load shedding optimization and correc‐
tion table, the power mismatch caused by the real-time pow‐
er fluctuation of RDG during the load shedding process is
minimized, so that the intentional island can be seamlessly
transitioned with the optimal load curtailment. Besides, the
multi-period restoration plans are generated, which can effec‐
tively ensure the power balance under the drastic intermit‐
tence of PV output on a long time scale. Meanwhile, CVR
is also implemented to improve the restoration performance.
In order to verify the effectiveness of the proposed strate‐
gies, this paper takes the IEEE 33-node system as the simu‐
lation case, and the results are concluded as follows.

1) The proposed event-based load shedding strategy can
perform the optimal load shedding immediately, which has
better transient characteristics than the conventional response-
based strategy.

2) Establishing the correction table helps make the effec‐
tive load shedding plan online, which reduces the impact of
real-time fluctuation of PV.

3) During the restoration process, more customers can be
restored by reasonably reducing the load demand based on
CVR.

4) By representing the forecasting values of PV output by
dynamic scenarios, the robustness of the restoration plan is
improved.

The future work will focus on the utilization of existing
equipment as well as the consideration of time-varying CVR
effects.
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