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Abstract——Developing the electricity market at the distribu‐
tion level can facilitate the energy transactions in distribution
networks with a high penetration level of distributed energy re‐
sources (DERs) and microgrids (MGs). However, the lack of
comprehensive information about the marginal production cost
of competitors leads to uncertainties in the optimal bidding
strategy of participants. The electricity demand within the net‐
work and the price in the wholesale electricity market are two
other sources of the uncertainties. In this paper, a day-ahead-
market-based framework for managing the energy transactions
among MGs and other participants in distribution networks is
introduced. A game-theory-based method is presented to model
the competition and determine the optimal bidding strategy of
participants in the market. Robust optimization technique is
employed to capture the uncertainties in the marginal cost of
competitors. Additionally, the uncertainties in demand are mod‐
eled using a scenario-based stochastic approach. The results ob‐
tained from case studies reveal the merit of considering compe‐
tition modeling and uncertainties.

Index Terms——Competition modeling, bidding strategy, distri‐
bution network electricity market, microgrid, uncertainty, ro‐
bust optimization.
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I. INTRODUCTION

IN recent years, the growth in the penetration level of dis‐
tributed energy resources (DERs) has led to major chang‐

es in the electricity industry, particularly in distribution net‐
works. Although the economic considerations and environ‐
mental concerns are attractive motivations, the uncoordinated
utilization of DERs may have destructive effects on the se‐
cure operation of power systems [1].

It is an important issue to manage the financial transac‐
tions related to the purchase and sale of energy in the distri‐
bution network. The energy transactions among microgrids
(MGs) and other participants in a distribution network could
be handled in a distribution network electricity market
(DNEM). To forecast the electricity market price, each par‐
ticipant requires a reliable prediction of the behavior of com‐
petitors in the electricity market to simulate the competition
process. However, in reality, the accurate information about
the marginal cost (MC) of opponents is not available; there‐
fore, the optimal bidding strategy problem is faced with un‐
certainties. The demand in the distribution network and the
wholesale electricity market (WEM) price are other uncer‐
tain parameters that affect the bidding strategy of partici‐
pants in the DNEM.

At the distribution level, the electricity market is an
emerging topic and the related details defining the structure
are still in progress. Several works have addressed the topic
in the literature trying to propose a practical structure for
trading energy and ancillary services such as reserve or reac‐
tive power in a DNEM environment [2] - [4]. The current
methods of modeling the participation of players in a day-
ahead electricity market are divided into two classes: game-
based and non-game-based methods [5]. In non-game-based
methods, the electricity market clearing process is modeled
as a price forecasting procedure without modeling the electric‐
ity market operator functions [6]. However, in game-based
methods, the performance of all participants and the electricity
market model are analyzed considering the factors that affect
the decision-making process [7].

Several methods are introduced to solve the bidding strate‐
gy of participants in the WEMs [8]-[10]. The bidding strate‐

gy is also investigated for demand-side or distribution net‐
work participants in some limited works. Reference [11] pro‐
poses an optimal bidding scheme for a demand-side resource
aggregator based on the conditional value-at-risk. A stochas‐
tic operation model for coordination of demand response ag‐
gregators and wind power producers is presented in [12]
based on day-ahead electricity market concepts. The bidding
problem of an electric vehicle aggregator in a day-ahead
electricity market is analyzed in [13], which is formulated
using a hybrid stochastic-robust optimization (RO) approach.
In [14], a look-ahead technique is proposed to optimize the
bi-level bidding strategy problem of an energy storage agent
considering the electricity market prices.

In all discussed works, uncertainty modeling plays an im‐
portant role in making the approach more practical. General‐
ly, uncertainty modeling methods are divided into two main
groups: probabilistic and non-probabilistic methods. In proba‐
bilistic methods, the input parameters of the model are ran‐
dom variables with a known probability density function
(PDF) [15]. Monte Carlo simulation and scenario generation
are the most recognized probabilistic methods [16]. The
main drawbacks of these methods are the large computation
burden and accurate estimation requirement of the PDF for
the uncertain variables [17]. The information gap decision
technique (IGDT) and RO are the most recognized non-prob‐
abilistic methods for uncertainty modeling. In the former
method, the uncertainty is modeled as an interval around the
forecasted quantity, where the interval is maximized while
setting the optimization variables [18]. In the latter method,
an uncertain interval is supposed around the forecasted pa‐
rameter (obtained from the historical data) instead of estimat‐
ing the probability of the uncertainty. The uncertainty of the
forecasted parameter is modeled in these methods without
making any assumption on its PDF [19].

In this paper, a day-ahead electricity market framework is
proposed to facilitate the integration of participants in ener‐
gy transactions within distribution networks operated by dis‐
tribution system operator (DSO). The bidding strategy prob‐
lem is formulated as a bi-level optimization problem. An in‐
complete information game-theory based approach is present‐
ed to model the competition. The uncertainty in demand is
modeled by a scenario-based stochastic optimization prob‐
lem and the RO technique is utilized to consider the uncer‐
tainty in the MC of competitors and model the incomplete
information game.

The uncertainty in the MC of participants in a DNEM is
not yet thoroughly addressed in the literature. Hence, the
main contributions of this paper are highlighted as follows.

1) A market-based framework facilitating the energy trans‐
actions within distribution networks is proposed.

2) The bidding strategy problem of participants in a
DNEM under uncertainties is formulated considering the
competition modeling.

3) An RO formulation to model the uncertainty in the be‐
havior of competitors is presented.

The rest of this paper is organized as follows. Section II
demonstrates the proposed electricity market framework and
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the formulation of the bidding strategy problem. Section III
describes the uncertainty modeling and the incomplete infor‐
mation game. In Section IV, a case study is presented and
the simulation results are illustrated. Finally, concluding re‐
marks are presented in Section V.

II. STRUCTURE MODELING AND PROBLEM FORMULATION

In this section, a framework is proposed to facilitate the
contributions of participants in a DNEM. In the proposed
model, the independent DERs, MGs and loads directly partic‐
ipate in the market, subject to the minimum capacity condi‐
tion. The retailers and other aggregators such as demand re‐
sponse aggregators (DRAs) are also eligible to participate in
the DNEM. In this model, the energy brokers (EBs) are in‐
termediate agents between the DNEM and the WEM, where
export/import energy from/to the DNEM [20]. The indepen‐
dent DERs, MGs, and EBs are the energy providers in
DNEM. Their bids are submitted to the electricity market in
the form of “bidding price-bidding quantity” pairs. Besides,
customers in this electricity market are the retailers, indepen‐
dent loads, MGs, and EBs that serve their demands in the
DNEM. The proposed DNEM clears before the starting time
of the day-ahead WEM process.

A game-based approach is utilized to model the bidding
strategy analysis. This approach models the problem as a
non-cooperative game with incomplete information. The
competition among the participants in DNEM is modeled us‐
ing the supply function equilibrium method, which enables a
electricity market participant to link its bidding price with
the bidding quantity of its product using a supply function.
Generally, the cost of a power supplier Cj is described as a
function of its generated power Pj as:

Cj = aj P
2
j + bj Pj + cj (1)

The generation MC for each supplier is obtained from the
derivative of its cost function. It is assumed that all suppli‐
ers choose their bidding price using a decision variable, i.e.,
the strategic factor, according to the following linear supply
function as:

ρ j = kj ×MCj = kj (2aj Pj + bj) (2)

Each participant has the knowledge about its own genera‐
tion costs, but this information about other participants is un‐
available. Hence, the competition among participants is mod‐
eled as an incomplete game [21]. In this paper, the competi‐
tion is first modeled as a complete game. Then, the uncer‐
tainty modeling techniques are utilized to compensate for the
lack of information on the opponents’ behavior and model
the incomplete information game.

In a complete information game, each player’s payoff
function, is commonly known to all players. Each participant
tries to maximize its profit by adopting the optimal strategic
factor. The game converges to a Nash equilibrium, where no
participant is willing to change its strategy. An iterative algo‐
rithm is utilized to find the equilibrium point. First, an initial
bid is considered using initial strategic factors. Then, each
participant updates its strategic factor to achieve the maxi‐

mum profit. This process continues until the change of the
strategic factor does not increases the profit for any of the
participants. The flowchart of the iterative algorithm is
shown in Fig. 1 [21].

The rest of this section will present the problem formula‐
tion for the deterministic case. For each participant in
DNEM, the profit is gained by subtracting the generation
cost from the revenue of sold energy as:

Rj = π j Pj -Cj Pj (3)

The DSO aims to serve the power demand of customers
with the minimum cost. Here, the DSO electricity market
clearing problem is a linear problem as:

ì

í

î

ï
ïï
ï

ï
ïï
ï

min
Pj
∑

j

ρ j Pj

s.t. ∑
j

Pj=D

P min
j £Pj £P max

j

(4)

It should be noted that the linear formulation of the DSO
electricity market clearing problem is utilized in this paper
to focus on the competition and uncertainty within the mar‐
ket. Therefore, we ignore other aspects of distribution net‐
work such as loss and AC power flow in this paper. There‐
fore, the price is the same all over the distribution network
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Fig. 1 Flowchart of iterative algorithm for complete game.
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and is named as the electricity market clearing price (MCP).
The optimal bidding strategy is a bi-level problem. At the

upper level, each participant wants to maximize the profit
through the optimal strategic factor. At the lower level, the
DSO wants to minimize the cost of energy supply in the net‐
work. This bi-level problem is presented as:
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A sensitivity-based solution method is used in each itera‐
tion to solve the optimization problem for each participant.
First, each participant chooses an initial strategic factor k init

j

and determines its initial bidding price ρ init
j using its supply

function presented in (2). The electricity market clearing
problem is solved using an estimation of strategic factors of
other participants to find the electricity market price and the
market share of all participants. Then, the participant calcu‐
lates its own profit and its sensitivity to the strategic factor
¶Rj /¶kj. If the value of this sensitivity is not zero, the opti‐
mal solution has not been reached yet. Therefore, the value
of the strategic factor is updated using (6), and the process
is repeated again up until the optimal point is reached.

k new
j = k old

j + δ
¶Rj

¶kj
(6)

According to (3), the sensitivity of the profit to the strate‐
gic factor for each participant is obtained as:
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The terms ¶Pj /¶kj and ¶π j /¶kj are calculated using dual
theory and Karush-Kuhn-Tucker (KKT) conditions according
to the formulation described in details in [20]. However, the
MC of EB is equal to its purchasing price from WEM or
DNEM (λw or π j), depending on its role as an energy import‐
er or exporter. It is not affected by the amount of exchang‐
ing power in DNEM. Therefore, the payoff function and the
bidding price of an EB are formulated as (8) and (9), respec‐
tively.

Rj =± ( )π j - λw Pj (8)

ρ j = {kjλw EB is an importer

kjπ j EB is an exporter
(9)

The sensitivity of the EB profit to kj is calculated as:
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Here, the plus/minus sign implies the EB role in DNEM
as an importer/exporter. An EB is a connector between
WEM and DNEM and acts depending on the price differ‐
ence between these two markets. Therefore, in order to speci‐
fy the role of EB, it is firstly required to analyze the price of
two electricity markets separately in the absence of this con‐
nector. Considering the large size of WEM compared with
DNEM, it is supposed that the WEM price is not consider‐
ably affected by EB transactions. Thus, in order to specify
the role of EB, the DNEM is cleared without EB and then
the EB role is determined by comparing the DNEM price
with the forecasted WEM price.

Generally, the sensitivity-based solvers are faced with two
major issues in finding the solution of optimization prob‐
lems: ① procuring a local optimal solution; ② consuming
long computation time. In order to resolve these two issues,
two techniques are used in this study, i.e., passing MCP and
dynamic step size, which are introduced and described in de‐
tail in [22]. These techniques are briefly discussed here.

In the past MCP method, the search for the optimal solu‐
tion begins from the lower limit of each player’s strategic
factor k min

j . Each time the search stopping criteria is met, the
player’s bidding price at the local optimum point is com‐
pared with the MCP value. If the bidding price is lower than
the MCP, a new value will be chosen for kj so that the bid‐
ding price be slightly higher than the MCP. Therefore, the
search continues with a jump from the local optima. Also, if
the proposed price is higher than the MCP, the new value
for kj will be chosen to be slightly lower than the MCP. This
trend continues until the search reaches the upper limit of
the player’s strategic factor k max

j . The search space is ex‐
plored entirely in this method to find the optimal solution.
Therefore, the possibility of falling into local optima and los‐
ing the global optimal point is diminished.

In the dynamic step size technique, the value of δ is dy‐
namically changed proportional to the searching condition.
First, a small initial value δ init is selected for δ. Then, in
each update of kj, if the value of ¶Rj /¶kj remains unchanged,
compared with the previous update, the value of δ is dou‐
bled. In the event of observing a change in ¶Rj /¶kj the val‐
ue of δ is restored to its initial value. This technique poten‐
tially accelerates the search process while maintaining the ac‐
curacy of solutions.

III. UNCERTAINTY MODELING

The uncertain variables in the bidding strategy include de‐
mand, WEM price and the MC of participants. The demand
uncertainty is modeled using a scenario-based stochastic ap‐
proach. The WEM price is the MC of the EB and its uncer‐
tainty is modeled along with the uncertainty of the MC of
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other participants using the RO technique.

A. Modeling of Demand Uncertainty

The uncertainty in demand is realized using a scenario-
based technique. Scenarios are generated by Monte Carlo
simulation and roulette wheel mechanism (RWM) [23]. The
load demand can be represented as:

Ds =Dforecast +ΔDs (11)

The probability distribution of a random variable is repre‐
sented by a finite set of scenarios with associated probabili‐
ties. In this study, the Gaussian distribution is used to model
the demand uncertainty as [2]:

fD (D)= 1

2π σD

exp ( - ( )D- μD

2

2σ 2
D ) (12)

The distribution function for demand forecasting error is
divided into some intervals. A typical PDF for the demand
forecasting error discretized to seven intervals is shown in
Fig. 2. Each interval determines one standard deviation error
σ wide [24]. The probability for interval l is β l. Then, RWM
is utilized to generate the scenarios. In this regard, the proba‐
bilities are normalized in a way that their summation comes
to be unity. As shown in Fig. 3, each interval is linked with
an accumulated normalized probability [23].

Then random numbers between 0 and 1 are produced for
random variables in the scenarios. The first interval whose
accumulated probability is less than or equal to this random
number is chosen. Then, the scenario associated to this inter‐
val is selected. This process is repeated until the anticipated
number of the scenarios is created. The normalized probabili‐
ty of the remaining scenarios is calculated as follows:

pr norm
s =

prs

∑
s= 1

Nd

prs

(13)

The solutions attained from the remaining scenarios are ac‐
cumulated according to their normalized probability to find
the expected results [23]. The expected values for the final
electricity market price and the electricity market shares can
be evaluated as:
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The simultaneous backward technique is applied to mini‐
mize the number of the scenarios [23]. The process includes
the following steps.

Step 1: consider an initial set of the scenarios S, and a set
of the scenarios that should be removed DS, which is initial‐
ly null; calculate DTss' for all scenario pairs as: DTss' = |Ds -

Ds' |, where ss' = 12Ns.

Step 2: for each scenario s, calculate DTsr =min DTss'

where ss'Î Ss' ¹ s.
Step 3: calculate PDs = prs ×DTsr for each s. Then, select

scenario d in which PDd =min PDssÎ S.
Step 4: S = S - { }d DS =DS + { }d prr = prr + prd.
Step 5: repeat Steps 2-4 until the number of the scenarios

meet the desired criteria || S = Nd.

B. Uncertainty in MC of Opponents (Modeling Incomplete
Information Game)

As mentioned in Section II, each participant calculates its
own MC using the derivative of its cost function, but the
cost function information of other opponents is confidential.
Therefore, an incomplete information game needs to be con‐
sidered in a real practical case. Consequently, an estimation
of opponents’ MC is essential to find the equilibrium point
of the game using the solution algorithm, and this is a
source of uncertainty and error.

Reference [21] presents a method for modeling incom‐
plete information game in a pool-based WEM. In this way,
all possible types of each competitor in terms of cost func‐
tion coefficients are specified, and a probability distribution
function is determined for each type. Then the problem is
solved for all possible types and the equilibrium point of the
game is extracted for all the combinations of types. The fi‐
nal equilibrium point is the weighted sum of the values ob‐
tained in each case, where the weighting factor of each type
is equal to the occurrence probability. The idea is similar to
stochastic optimization and scenario generation techniques in
uncertainty modeling. The major disadvantage of this meth‐
od is the need to determine the PDF for the cost function co‐
efficients of opponents which is very difficult to obtain and
may have relatively high error. In addition, by increasing
number of participants, a lot of computation burden will be
added to the problem-solving algorithm.

In this paper, the RO formulation is applied to the prob‐
lem in order to model the incomplete information game and
compensate the lack of information on the cost function of
opponents. In this regard, an initial guess for MC of oppo‐
nents is estimated. The uncertain parameter is supposed to
change in a known interval around the average forecasted
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Fig. 2. Discretization of PDF for demand forecasting error.
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value of the parameter obtained from historical data [16].
The key advantage of this approach is that there is no need
for a PDF for the MC of opponents. The RO technique adds
linear terms to the problem formulation and offers the oppor‐
tunity for simultaneous consideration of several uncertain pa‐
rameters without a significant increase in computation bur‐
den [19]. The original incomplete game is now interpreted
as a complete game with imperfect information, in which
each participant can follow a similar procedure to find its op‐
timal bidding strategy based on the Nash equilibrium point
of this complete game.

Generally, all accepted offers in a pool electricity market
are paid by MCP, independent of their offered prices. Thus,
we can assume that participants offer at their predicted MCP
values [25]. On the other hand, in a fully competitive mar‐
ket, the energy price in each node reflects the generation
MC in that node [26]. Therefore, the historical data for ener‐
gy price in each bus could be an initial estimation for the
MC of the participant connected to the bus. It is supposed
that these predictions are available and are the sources of un‐
certainties.

The uncertain value of MC can be formulated as:
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MC j is obtained using an estimation of energy price with

historical data. Since the RO considers the worst uncertainty,
the electricity market clearing problem can be rewritten as:

min
Pjwj {∑j
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- ---
MC j ×Pj +max∑

j

kjwjDMC +
j Pj} 0£wj £1∑

j
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The interior maximization problem could be replaced with
its dual minimization form:

min
Pjyjβ{∑j

(kj ×
- ---
MC j ×Pj)+min ( )∑

j

yj + βΓ } yj + β ³DMC +
j ×Pj

(17)

Since the worst case is considered in RO, the electricity
market clearing problem is finally formulated as:

min
Pjyjβ{∑j

(kj ×
- ---
MC j ×Pj)+ ( )∑

j

yj + βΓ } yj + β ³DMC +
j ×Pj

(18)

The budget of the uncertainty will derive the level of con‐
servatism for the decision-makers. Therefore, one can adjust
the risk willingness by setting the parameter Γ that changes
the budget of the uncertainty, without changing the model.
Once the budget of the uncertainty is zero, the problem is
deterministic. With the increase in the budget of the uncer‐
tainty, the conservatism increases to the level at which it be‐
comes an interval optimization problem, where the worst de‐
viation for all uncertain value will occur.

In each iteration of the game, each player solves this lin‐
ear minimization problem shown in (22) for several times in
order to optimize its strategic factor and bidding price, as
shown in Fig. 1. The main equality constraint in electricity
market clearing problem is the supply-demand balance con‐
straint. The MCP, which is the bidding price of the marginal
supplier in the market, is equal to the Lagrange multiplier of
the supply-demand equality constraint. This multiplier is cal‐
culated as an auxiliary variable along with the main primary
variables in the problem. This approach is identical in both
deterministic (without RO) and non-deterministic (with RO)
states. Therefore, the electricity MCPs can be determined.

IV. SIMULATION RESULTS

The DNEM participants in our case study include an MG,
an EB, a DRA, and an independent distributed generator
(DG). Demand response is considered in the form of inter‐
ruptible load. The quadratic cost function coefficients and
the power supply limits for all participants are presented in
Table I. The electricity market data is extracted from [20]
and [27] with some modifications. In order to prevent partici‐
pants from bidding at extremely higher or lower prices than
their MC, the top and bottom boundary values for strategic
factors are assumed to be 2 and 0.8, respectively. The MC
of DG, DRA, and MG are 40 $/MWh, 80 $/MWh and 44
$/MWh respectively, based on their cost functions and gener‐
ation limits. The EB MC is variable and equal to the WEM
price each hour.

The forecasted values for DNEM demand and WEM price
in a typical day is shown in Fig. 4. The demand curve is ob‐
tained from the average daily load during a summer day for
a residential area [28]. The hourly prices are obtained from
the weighted average of accepted offering prices during sum‐
mer days in the associated service area [28].
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Fig. 4. Forecasted values for DNEM demand and WEM price.

TABLE I
PARAMETERS OF ELECTRICITY MARKET PARTICIPANTS

Generation limit

Pmax (MW)

40

20

60

40

Pmin (MW)

0

0

0

0

Cost function

C ($)

0

0

0

0

B ($/MW)

30

70

20

λw

A ($/MW2)

0.125

0.250

0.200

0.000

Participant

Name

DG

DRA

MG

EB

Index

1

2

3

4
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To determine the role of EB in the DNEM, the electricity
market is firstly cleared without EB.

Figure 5 shows the results in this case. The DNEM prices
are higher than the WEM prices for all day hours. Therefore,
the EB acts as an importer or seller in the DNEM. At 11:00,
the DRA is the marginal producer and increases the price to
its top boundary level. Also, since the demand at the time be‐
tween 15:00 and 20:00 is higher than the total capacity of re‐
maining electricity market participants, i. e. DG, DRA, and
MG, the DNEM clearing price in these hours could be ex‐
tremely higher than any other hour. However, it is limited by
k max

j and is fixed at 160 $/MWh.

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)

20
40
60
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DNEM price
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Fig. 5. DNEM clearing price in absence of EB.

In the following subsections, the numerical results are pre‐
sented and discussed in four different cases. First, the deter‐
ministic bidding strategy is analyzed in Case 1. Then in
Case 2 and Case 3, the bidding strategy problem is solved
considering the demand uncertainty and MCs, respectively.
Finally, the bidding strategy is analyzed considering all un‐
certainties in Case 4.

A. Deterministic Bidding Strategy (Case 1)

In this subsection, the results are presented without consid‐
ering the uncertainties. Figure 6 shows the final DNEM
clearing prices at the equilibrium point for different demand
values. The forecasted WEM prices are also shown in the
figure for better comparison. It is evident that after the intro‐
duction of EB, the DNEM prices are moderated compared
with Fig. 5, but are still higher than the WEM prices. This
verifies our prediction in the previous section on the role of
EB as an importer in the DNEM.

Table II shows the final values obtained for the strategic
factor and electricity market share of participants at the equi‐
librium point for different demand and WEM price levels.
For D£ 40 MW, EB is the marginal producer, because it has
the smaller MC value, and the network demand is less than
its total capacity. For 40<D£ 60 MW, initially, the EB ca‐
pacity is completely occupied. On the other hand, the lower
limit for kj prevents MG from reducing its bidding price.
Therefore, DG becomes the marginal producer and deter‐
mines the MCP by adjusting its strategic factor at 0.87.

For 60<D£ 80 MW, the DG has to fix its strategic factor
at k = 0.88. This is because by increasing k to higher levels,
the DG will force to leave its total electricity market share
to MG. Also, reducing the bidding price leads to lower profit
for the DG. Both DG and MG are the marginal producers with

equal bidding prices in this area and determine the final MCP.
For 80<D£ 100 MW, the MG increases its offering price

and loses part of its share to become the marginal producer.
This allows the MG to determine the MCP at higher prices
and earn more profit even by less electricity market share.
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Fig. 6. DNEM prices at equilibrium point in Case 1.

TABLE II
BIDDING STRATEGY RESULTS FOR CASE 1 (DETERMINISTIC)

PEB (MW)

30

40

40

40

40

40

40

40

40

40

10

20

30

PMG (MW)

0

0

0

0

17.1

22.3

10.0

20.0

60.0

60.0

60.0

60.0

60.0

PDRA (MW)

0

0

0

0

0

0

0

0

0

0

20

20

20

PDG (MW)

0

0

10.0

20.0

12.9

17.7

40.0

40.0

10.0

19.0

40.0

40.0

40.0

KEB

1.39

1.27

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

2.00

2.00

2.00

KMG

0.80

0.80

0.80

0.80

0.80

0.80

1.45

1.45

0.80

0.80

0.80

2.00

0.80

KDRA

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.81

0.82

2.00

KDG

0.80

0.80

0.87

0.87

0.88

0.88

0.88

0.88

1.59

1.59

1.60

0.80

0.80

MCP ($/MWh)

31.97

31.92

34.80

34.80

35.20

35.20

63.80

63.80

63.60

63.60

142.00

162.00

190.00

λw ($/MWh)

23.0

25.0

27.0

29.0

31.5

34.0

37.0

42.0

47.0

54.0

71.0

81.0

95.0

D (MW)

30

40

50

60

70

80

90

100

110

119

130

140

150
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This trend is reversed in 100<D< 120 MW where the DG
increases its kj and becomes the marginal producer to in‐
crease the MCP. For D³ 120 MW, the network demand is
higher than the total capacity of the DG, MG, and EB.
Therefore, the capacity of DRA is called to satisfy the de‐
mand. The EB bids at its maximum allowable price accord‐
ing to the kj limits. This leads to higher MCP values and in‐
creases the profit for all electricity market participants, al‐
though the EB leaves part of its market share for others.

B. Demand Uncertainty (Case 2)

Seven PDF intervals are considered in this case for gener‐
ating 200 demand scenarios according to the PDF segmenta‐
tion presented in Fig. 2. Then the number of demand scenari‐
os is trimmed down to seven, indexed by d1 to d7, using the
simultaneous backward scenario reduction method. The ag‐
gregated results from solving the bidding strategy for differ‐
ent demand and WEM price levels are presented in Table III
considering the demand uncertainty.

The demand uncertainty in bidding strategy changes the
results obtained at two demand levels (D = 40 MW and D =
90 MW). In order to observe the effect of the demand uncer‐

tainty on the bidding strategy results, the obtained results in all
seven scenarios for these two cases are shown in Table IV. In
both cases, d4 represents the deterministic case.

C. MC Uncertainty (Case 3)

According to (22), Γ and ΔMCj
+ are effective parameters

in the RO method considering the uncertainty of competi‐
tors’ behavior. In this section, the sensitivity of results to
these two parameters is separately analyzed. The allowed
margin for MC variation is assumed proportional to the fore‐
casted MC of competitors (DMC +

j = α
- ---
MC j).

The MC of the DG, DRA and MG are 40 $/MWh, 80

$/MWh and 44 $/MWh, respectively. The MC of EB is
equal to the WEM price or λw. Table V shows the effect of Γ
on the results for several demand samples. The value of α is
fixed to be α= 0.3.

The results obtained for Γ = 0 represent the deterministic
case. The results presented in Table V show that considering
the MC uncertainty leads to major changes in the outcomes
of the bidding strategy in all cases. For D= 40 MW and D=

TABLE III
BIDDING STRATEGY RESULTS CONSIDERING DEMAND UNCERTAINTY

PEB (MW)

30.0

39.2

40.0

40.0

40.0

40.0

38.4

40.0

40.0

40.0

PMG (MW)

0

0

0

0

17.1

22.3

11.8

20.0

60.0

60.0

PDRA (MW)

0

0

0

0

0

0

0

0

0

0

PDG (MW)

0

0.8

10.0

20.0

12.9

17.7

39.8

40.0

10.0

19.0

KEB

1.39

1.20

0.80

0.80

0.80

0.80

0.81

0.80

0.80

0.80

KMG

0.80

0.80

0.80

0.80

0.80

0.80

1.42

1.45

0.80

0.80

KDRA

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

KDG

0.80

0.80

0.87

0.87

0.88

0.88

0.88

0.88

1.59

1.59

MCP ($/MWh)

31.97

32.38

34.80

34.80

35.20

35.20

58.94

63.80

63.60

63.60

λw ($/MWh)

23.0

25.0

27.0

29.0

31.5

34.0

37.0

42.0

47.0

54.0

D (MW)

30

40

50

60

70

80

90

100

110

119

TABLE IV
RESULTS OBTAINED IN 7 DEMAND SCENARIOS WITH D = 40 MW AND D = 90 MW

D (MW)

40

90

λw ($/MWh)

25

37

D Scenario

d1

d2

d3

d4

d5

d6

d7

d1

d2

d3

d4

d5

d6

d7

MCP ($/MWh)

31.75

31.75

31.75

31.92

34.80

34.80

34.80

35.20

35.20

35.20

63.80

63.80

63.80

63.80

KDG

0.80

0.80

0.80

0.80

0.87

0.87

0.87

0.88

0.88

0.88

0.88

0.88

0.88

0.88

KDRA

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

KMG

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

0.80

1.45

1.45

1.45

1.45

1.45

KEB

1.27

1.27

1.27

1.27

0.80

0.80

0.80

0.96

0.96

0.80

0.80

0.80

0.80

0.80

PDG (MW)

0

0

0

0

1.2

2.0

2.6

33.3

33.9

40.0

40.0

40.0

40.0

40.0

PDRA (MW)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

PMG (MW)

0

0

0

0

0

0

0

50.8

51.6

7.3

10.0

12.7

14.5

15.8

PEB (MW)

37.4

38.0

38.8

40.0

40.0

40.0

40.0

0

0

40.0

40.0

40.0

40.0

40.0
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80 MW, this change appears when Γ = 1. For D= 119 MW
and D= 130 MW, the results remain unchanged until Γ = 2.
For Γ > 2, there is usually no change in the results compared
with Γ = 2. Therefore, Γ = 2 seems to be a proper value for
considering the MC uncertainty. Table VI shows the sensitiv‐

ity of results to ΔMC +
j (or α) considering the uncertainty of

competitors’ behavior. Here, the value of Γ is constant and
equal to 2 in all cases. The value of α is changed between 0
and 0.2. The results obtained for α= 0 represent the determin‐
istic case.

D. Uncertainties of Demand and MC (Case 4)

Table VII shows the solution of the bidding strategy con‐
sidering the uncertainty of demand and MC simultaneously.
For the MC uncertainties of competitors, the RO parameters
are set to be Γ = 2 and α= 0.2 based on the results obtained

in Case 3.
To show how capturing uncertainties in the bidding strate‐

gy affects the results, the outcomes of Case 1 and Case 4
are graphically compared in Figs. 7-9. In Fig. 7, the DNEM
price at the equilibrium point is shown for Case 4 and Case

TABLE V
EFFECT OF Γ ON BIDDING STRATEGY RESULTS

D (MW)

40

80

119

130

λw ($/MWh)

25

34

54

71

Γ

0

1

2

>2

0

1

2

>2

0

1

2

>2

0

1

2

>2

MCP ($/MWh)

31.93

53.88

53.88

53.88

35.20

69.74

69.74

69.74

63.60

63.60

80.00

80.00

142.00

142.00

88.00

88.00

KDG

0.80

1.62

1.62

1.62

0.88

1.14

1.14

1.14

1.59

1.59

2.00

2.00

1.59

1.59

0.80

0.80

KDRA

0.80

0.82

0.82

0.82

0.80

0.91

0.91

0.91

0.80

0.80

1.29

1.29

0.80

0.80

0.93

0.93

KMG

0.80

1.47

1.47

1.47

0.80

1.83

1.83

1.83

0.80

0.80

0.80

0.80

0.80

0.80

2.00

2.00

KEB

1.27

2.00

2.00

2.00

0.80

2.00

2.00

2.00

0.80

0.80

0.80

0.80

2.00

2.00

0.80

0.80

PDG (MW)

0

0

0

0

17.7

40.0

40.0

40.0

19.0

19.0

40.0

40.0

40.0

40.0

40.0

40.0

PDRA (MW)

0

0

0

0

0

0

0

0

0

0

0

0

20

20

20

20

PMG (MW)

0

0

0

0

22.3

0

0

0

60.0

60.0

60.0

60.0

60.0

60.0

30.0

30.0

PEB (MW)

40

40

40

40

40

40

40

40

40

40

19

19

10

10

40

40

TABLE VI
EFFECT OF ΔMC +

j ON BIDDING STRATEGY RESULTS

D (MW)

40

80

119

130

λw ($/MWh)

25

34

54

71

α

0

0.05

0.10

0.15

0.20

0

0.05

0.10

0.15

0.20

0

0.05

0.10

0.15

0.20

0

0.05

0.10

0.15

0.20

MCP ($/MWh)

31.93

50.85

51.47

52.11

52.72

35.20

69.96

74.36

77.88

68.00

63.60

80.00

80.00

80.00

80.00

142.00

142.00

142.00

142.00

82.28

KDG

0.80

1.31

1.37

1.43

1.49

0.88

1.83

2.00

2.00

1.05

1.59

2.00

2.00

2.00

2.00

1.59

1.67

0.80

0.80

0.80

KDRA

0.80

0.80

0.80

0.80

0.80

0.80

0.92

0.94

0.88

0.80

0.80

1.04

1.09

1.14

1.19

0.80

0.88

0.80

0.82

0.86

KMG

0.80

1.19

1.24

1.30

1.36

0.80

1.59

1.69

1.77

1.74

0.80

0.80

0.80

0.80

0.80

0.80

0.80

1.59

1.71

1.87

KEB

1.27

2.00

2.00

2.00

2.00

0.80

2.00

2.00

2.00

2.00

0.80

0.80

0.80

0.80

0.80

2.00

2.00

2.00

2.00

0.80

PDG (MW)

0

0

0

0

0

17.7

0

0

0

40.0

19.0

19.0

19.0

19.0

19.0

40.0

40.0

40.0

40.0

40.0

PDRA (MW)

0

0

0

0

0

0

0

0

20

20

0

0

0

0

0

20

20

20

20

20

PMG (MW)

0

0

0

0

0

22.3

40.0

40.0

20.0

0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

30.0

PEB (MW)

40

40

40

40

40

40

40

40

40

20

40

40

40

40

40

10

10

10

10

40
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1, for five different hours of the day. The results show that
the uncertainty might have a significant effect on the final
electricity market price. The difference between the results
obtained for definite and uncertain cases depends on the de‐

mand level, the WEM price, and the MC of competitors.
This difference is observed for D= 40 MW, D= 80 MW, and
D= 119 MW in Fig. 7.

In addition to the effect of the demand uncertainty, by
adopting a conservative strategy by participants considering
the MC uncertainty, the expected electricity market prices
will increase. To clarify this, the results obtained for the fi‐
nal strategic factor of participants at the equilibrium point
with and without considering the uncertainties are compared
in Fig. 8.

For D= 40 MW, D= 80 MW, and D= 119 MW in the fig‐
ure, the risk-averse nature of the RO method usually forces
the participants to estimate the MC of opponents in higher
values compared with the deterministic case. This increases
the bidding prices for all participants and leads to higher
MCP levels in the DNEM. The difference in strategic factors
and bidding prices will change the electricity market share
of players. The effect of considering uncertainties on the fi‐
nal market share of DNEM participants is illustrated in Fig.
9. For D= 40 MW, there is no difference in the electricity
market share results, because the entire electricity market is
at the disposal of the EB considering the MC and market de‐
mand. However, the results obtained for D= 80 MW, D= 119
MW, and D= 130 MW verify that by taking uncertainties in‐
to account, the final expected electricity market shares can
be changed.

V. CONCLUSION

In this paper, a game-theory-based method is utilized to
determine the optimal bidding strategy of participants in a
DNEM under uncertainties. The RO method is applied to
capture the uncertainties in the WEM price as well as the
MC of participants. In addition, a scenario-based stochastic
approach is used to model the demand uncertainty. The bid‐
ding strategy is modeled as a bi-level problem. An iterative
algorithm is implemented to find the Nash equilibrium of
the game. A sensitivity-based solution methodology is formu‐
lated in detail to solve the bi-level optimization problem of
each participant in each iteration of the algorithm. The simu‐
lation results presented in four different cases have verified
the merit of the proposed approach in modeling the competi‐
tion among electricity market participants in the presence of
uncertainties. It is shown that considering uncertainty in the
behavior of competitors and demands will cause fundamen‐
tal changes in the competition process and lead to totally dif‐
ferent outcomes. In fact, adopting a conservative strategy

TABLEVII
BIDDING STRATEGY RESULTS CONSIDERING ALL UNCERTAINTIES

D (MW)

40

80

100

119

130

λw ($/MWh)

25

34

42

54

71

MCP ($/MWh)

53.43

69.95

63.80

76.14

142.00

KDG

1.49

1.14

0.80

0.80

0.80

KDRA

0.83

0.91

0.80

1.14

2.00

KMG

1.36

1.83

1.45

1.45

0.80

KEB

2.00

2.00

0.80

1.41

2.00

PDG (MW)

0.2

40.0

40.0

40.0

40.0

PDRA (MW)

0

0.4

0

0

0

PMG (MW)

0

0

20.0

60.0

60.0

PEB (MW)

39.8

39.6

40.0

19.0
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Fig. 7. Effect of uncertainties on DNEM clearing price.
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Fig. 8. Effect of uncertainties on final strategy of DNEM participants. (a)
D = 40 MW. (b) D = 80 MW. (c) D = 119 MW. (d) D = 130 MW.
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Fig. 9. Effect of uncertainties on final share of DNEM participants. (a) D =
40 MW. (b) D = 80 MW. (c) D = 119 MW. (d) D = 130 MW.

and risk averse nature in the RO method leads to an increase
in strategic factors and bidding prices, which increases the
expected electricity market price and will in turn change the
electricity market shares of participants compared with the
deterministic case.
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and risk averse nature in the RO method leads to an increase
in strategic factors and bidding prices, which increases the
expected electricity market price and will in turn change the
electricity market shares of participants compared with the
deterministic case.
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