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Anu Singla, Kanwardeep Singh, and Vinod Kumar Yadav

Abstract——This paper proposes a simple and practical ap‐
proach to model the uncertainty of solar irradiance and deter‐
mines the optimized day-ahead (DA) schedule of electricity mar‐
ket. The problem formulation incorporates the power output of
distributed solar photovoltaic generator (DSPVG) and forecast‐
ed load demands with a specified level of certainty. The pro‐
posed approach determines the certainty levels of the random
variables (solar irradiance and forecasted load demand) from
their probability density function curves. In this process of opti‐
mization, the energy storage system (ESS) has also been mod‐
eled based on the fact that the energy stored during low loca‐
tional marginal price (LMP) periods and dispatched during
high LMP periods would strengthen the economy of DA sched‐
ule. The objective of the formulated non-linear optimization
problem is to maximize the social welfare of market partici‐
pants, which incorporates the assured generation outputs of
DSPVG, subject to real and reactive power balance and trans‐
mission capability constraints of the system and charging/dis‐
charging and energy storage constraints of ESS. The simulation
has been performed on the Indian utility 62-bus system. The re‐
sults are presented with a large number of cases to demonstrate
the effectiveness of the proposed approach for the efficient, eco‐
nomic and reliable operation of DA electricity markets.

Index Terms——Electricity market, energy storage, market dis‐
patching, renewable energy, social welfare, solar photovoltaic
power generator.
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I. INTRODUCTION

SOLAR energy has been recognized as one of the most
potential renewable energy sources (RES) for electrical

power generation all over the world [1]. With the addition of
100 GW direct current (DC) solar photovoltaic (SPV) capaci‐
ty in 2018, the global SPV capacity stands at 505 GW (DC)
by the end of 2018 [2]. SPV has marked 55% capacity addi‐
tion of total newly installed renewable power capacity in
2018. But SPV generators are not easily dispatchable and
controllable compared with other conventional generators in
electricity market due to their stochastic power output [3],
[4]. Therefore, the large-scale integration of SPV generators
into the power grid has become one of the major challenges
to system operator (SO). The power generation of SPV gen‐
erators is a function of weather conditions such as irradiance
levels of photovoltaic (PV) modules, temperature, humidity,
and dust, and varies with the time of a day and season of a
year [3]-[5]. Their intermittent power outputs affect the sta‐
bility and security of power grid operation and aggravate the
problem of transmission congestion [6], [7].

SO desires a firm power schedule from solar power pro‐
ducer (SPP) in order to plan reliable market operation for
the day-ahead (DA) electricity market. SPP wants to maxi‐
mize its revenue in the electricity market. Thus, it is an abso‐
lute necessity to provide a firm power schedule in order to
develop a reliable DA schedule and generate an assured reve‐
nue for SPP.

Many approaches have been presented in literature to deal
with the uncertainty of stochastic generation of renewable en‐
ergy power plants such as solar and wind. References [3]
and [8] use energy storage system (ESS) to address the vari‐
ability of RES by matching the load profile. The optimal
size and operation strategies of ESS are discussed in [8] -
[10]. Scenario-based stochastic optimization technique has
been used to model the uncertainty of wind power in [11],
[12]. Soft computing techniques have been discussed in [13],
[14] to model the uncertainty based on historic data. Refer‐
ence [13] proposes a hybrid approach which is a combina‐
tion of neural network and efficient metaheuristic algorithm
to forecast the power of SPV plant. Reference [14] presents
a prediction model to forecast hourly load and electricity
prices for smart grid based on multi-stage forecast engine.
Stochastic techniques involve the generation of large number
of scenarios to model the uncertainty quite accurately. How‐
ever, the scale of computation increases with the number of
sampling scenarios, which results in huge computation bur‐
den [11], [15]. The unsymmetrical two-point estimate meth‐
od is applied to handle the uncertainties of PV modules and
wind turbine in [16] which has lower computation time than
Monte Carlo simulations. Reference [17] provides a probabi‐
listic optimization approach to model the uncertainty of
RES. The continuous probability density functions (PDFs) of
random variables of RES, i. e., the irradiance for solar and
wind speed for wind, are divided into different states, and
the probability for each state is calculated. An average value
of limits of each state, i.e., random variable, is used to deter‐
mine the expected power output. A small number of scenari‐
os are thus generated in the probabilistic optimization which

models the uncertainty with accurate probability distribution
and hence improves the computation efficiency. Probabilistic
approach is quite suitable for modeling uncertainty for re‐
newable energies such as solar and wind [16], [18]. Refer‐
ences [5] and [17] use beta PDF to model the uncertainty of
solar irradiance for distribution system. Reference [19] uses
the versatile probability distribution to model the uncertainty
of wind power. Information gap decision theory used in [20]
is a non-probabilistic approach to model the uncertainty,
which begins with an estimated value and measures the devi‐
ation of errors. Recently, robust optimization (RO) has be‐
come a popular technique to handle the uncertainty and vari‐
ability of random events [21]-[23]. RO is a deterministic set-
based approach which predicts and optimizes the worst-case
scenario set for finding the solution [15]. RO has been used
to model uncertainty of wind power in [21] and electricity
prices in [24]. A comparison of RO with stochastic optimiza‐
tion has been presented in [25], in which the RO approach
has less computation burden compared with stochastic opti‐
mization techniques. RO may be a good alternative, when
complete probabilistic data is not available [23]. However,
RO tends to optimize the worst-case scenario only, and the
solution relies on the choice of uncertainty set. The approach
may not provide the optimal schedule when good scenarios
prevail instead of the worst scenario during real-time opera‐
tion. Reference [15] presents an approach for distributed gen‐
eration planning which incorporates probabilistic features
and RO methodologies.

There are many options to incorporate SPV generator in
DA energy and ancillary service markets. But robust tech‐
niques are still required which would give reliable and opti‐
mal market dispatching without increasing the computation
burden of the optimization problem. In this paper, a simple
approach is presented to obtain a robust market dispatching
in DA market incorporating both distributed solar photovolta‐
ic generator (DSPVG) power output and load demand with
specified certainty levels. The complexity and computation
burden of SO optimization problem does not increase with
this methodology. A comparison of the proposed approach
has also been presented with the widely used RO approach.

In the present work, the stochastic SPV power generation
has been modeled by making use of the area under the PDF
curve. The upper limit is set as the maximum possible value
of the random variable, whereas the lower limit is specified.
The area obtained between the specified value and upper lim‐
it represents the certainty level of the random variable which
is at least equal to the “specified value” of variable. Hence,
SPP can specify the level of certainty of its solar power gen‐
eration bid in the DA electricity market. SPP is assumed to
be an independent power producer. SPP uses ESS as an an‐
cillary support to maximize its benefit by charging and dis‐
charging the ESS during low-price and high-price hours, re‐
spectively. The problem is formulated as a non-linear market
dispatching optimization problem for DA pool-based electric‐
ity market. The problem formulation involves social welfare
(SW) maximization of market participants incorporating self-
scheduling of DSPVG subject to standard operation con‐
straints, transmission line loading constraints, and ESS charg‐
ing/discharging constraints. The basic electricity market

structure and the area of concern of the paper is shown in
Fig. 1.

The main contribution of the paper is that the SPV genera‐
tion, which is intermittent in nature, has been modeled with
known certainty in a DA electricity market optimization
problem. In addition, certainty levels of hourly forecasted
load demands have been taken into account, which have
been modeled using cumulative density functions of Gauss‐
ian random variation of load demands. The benefits of pro‐
posed approach in the paper include: ① it assumes the SPP
of its benefits with prior known certainty; ② SO prepares
market dispatching schedule with known certainty, which
would improve the reliability of real-time operation.

The proposed approach has been simulated on the Indian
utility 62-bus system incorporating practical data of the exist‐
ing DSPVG.

The rest of the paper is organized as follows. The optimi‐
zation model of DSPVG and uncertainty modeling of hourly
load demands are discussed in Section II. The market dis‐
patching optimization problem of DA electricity market is
formulated in Section III. Results are presented and dis‐
cussed in Section IV. Conclusions are drawn in Section V.

II. DSPVG OPTIMIZATION MODEL

A. Irradiance Uncertainty Modeling

The power outputs of SPV plant are available for a limit‐
ed time of the day, i.e., during sunshine hours. It is a contin‐
uous function of weather conditions of the site such as irradi‐
ance, temperature, cloudiness, wind speed, humidity, etc.
When this stochastically available power is to be scheduled
with power grid, it becomes a challenging task for SO. This
randomness of power output needs to be modeled for prepar‐
ing firm power schedules for reliable and efficient market
operations. In this paper, the uncertainty of irradiance is
modeled using PDF, although the proposed approach may be
easily extended to other random variables. The uncertainty
of solar irradiance can be modeled by using PDFs such as
Weibull, beta, lognormal, logistics and gamma [26], where
beta PDF is best suited for simulating randomness of irradi‐
ance data [16], [26]. Hence, beta PDF f t

b (st) is used to mod‐
el irradiance st for each hour as follows [5], [16], [17], [27]:
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models the uncertainty with accurate probability distribution
and hence improves the computation efficiency. Probabilistic
approach is quite suitable for modeling uncertainty for re‐
newable energies such as solar and wind [16], [18]. Refer‐
ences [5] and [17] use beta PDF to model the uncertainty of
solar irradiance for distribution system. Reference [19] uses
the versatile probability distribution to model the uncertainty
of wind power. Information gap decision theory used in [20]
is a non-probabilistic approach to model the uncertainty,
which begins with an estimated value and measures the devi‐
ation of errors. Recently, robust optimization (RO) has be‐
come a popular technique to handle the uncertainty and vari‐
ability of random events [21]-[23]. RO is a deterministic set-
based approach which predicts and optimizes the worst-case
scenario set for finding the solution [15]. RO has been used
to model uncertainty of wind power in [21] and electricity
prices in [24]. A comparison of RO with stochastic optimiza‐
tion has been presented in [25], in which the RO approach
has less computation burden compared with stochastic opti‐
mization techniques. RO may be a good alternative, when
complete probabilistic data is not available [23]. However,
RO tends to optimize the worst-case scenario only, and the
solution relies on the choice of uncertainty set. The approach
may not provide the optimal schedule when good scenarios
prevail instead of the worst scenario during real-time opera‐
tion. Reference [15] presents an approach for distributed gen‐
eration planning which incorporates probabilistic features
and RO methodologies.

There are many options to incorporate SPV generator in
DA energy and ancillary service markets. But robust tech‐
niques are still required which would give reliable and opti‐
mal market dispatching without increasing the computation
burden of the optimization problem. In this paper, a simple
approach is presented to obtain a robust market dispatching
in DA market incorporating both distributed solar photovolta‐
ic generator (DSPVG) power output and load demand with
specified certainty levels. The complexity and computation
burden of SO optimization problem does not increase with
this methodology. A comparison of the proposed approach
has also been presented with the widely used RO approach.

In the present work, the stochastic SPV power generation
has been modeled by making use of the area under the PDF
curve. The upper limit is set as the maximum possible value
of the random variable, whereas the lower limit is specified.
The area obtained between the specified value and upper lim‐
it represents the certainty level of the random variable which
is at least equal to the “specified value” of variable. Hence,
SPP can specify the level of certainty of its solar power gen‐
eration bid in the DA electricity market. SPP is assumed to
be an independent power producer. SPP uses ESS as an an‐
cillary support to maximize its benefit by charging and dis‐
charging the ESS during low-price and high-price hours, re‐
spectively. The problem is formulated as a non-linear market
dispatching optimization problem for DA pool-based electric‐
ity market. The problem formulation involves social welfare
(SW) maximization of market participants incorporating self-
scheduling of DSPVG subject to standard operation con‐
straints, transmission line loading constraints, and ESS charg‐
ing/discharging constraints. The basic electricity market

structure and the area of concern of the paper is shown in
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problem. In addition, certainty levels of hourly forecasted
load demands have been taken into account, which have
been modeled using cumulative density functions of Gauss‐
ian random variation of load demands. The benefits of pro‐
posed approach in the paper include: ① it assumes the SPP
of its benefits with prior known certainty; ② SO prepares
market dispatching schedule with known certainty, which
would improve the reliability of real-time operation.

The proposed approach has been simulated on the Indian
utility 62-bus system incorporating practical data of the exist‐
ing DSPVG.

The rest of the paper is organized as follows. The optimi‐
zation model of DSPVG and uncertainty modeling of hourly
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uous function of weather conditions of the site such as irradi‐
ance, temperature, cloudiness, wind speed, humidity, etc.
When this stochastically available power is to be scheduled
with power grid, it becomes a challenging task for SO. This
randomness of power output needs to be modeled for prepar‐
ing firm power schedules for reliable and efficient market
operations. In this paper, the uncertainty of irradiance is
modeled using PDF, although the proposed approach may be
easily extended to other random variables. The uncertainty
of solar irradiance can be modeled by using PDFs such as
Weibull, beta, lognormal, logistics and gamma [26], where
beta PDF is best suited for simulating randomness of irradi‐
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Figure 2 represents a typical beta PDF for irradiance st.
The beta PDF is finite only in the range 0£ st £ 1 as per (1).
Also, as per the practical irradiance data available, the maxi‐
mum value of irradiance on the earth is always less than or
equal to 1 kW/m2, and its peak value happens on equator
and nearby regions [28]. Hence the variation of st in Fig. 2
is taken from 0 to 1 kW/m2.

The shape parameters β t and αt, and gamma function Γ(×)
of beta PDF are calculated using the mean value μt and the
standard deviation σ t of irradiance st for the tth hour [5],
[17], [27].

The probability of irradiance Q within the limits of st
min

and st
max during the tth hour can be determined from the area

under the curve as shown in Fig. 2, which is given by:

Q= ∫
st

min

st
max

f t
b (st)ds (2)

The area under the beta PDF curve (for stÎ[01]) is al‐
ways unity, which means that there is 100% probability of ir‐
radiance more than zero. Now, the area obtained by fixing
st

max = 1 kW/m2 and varying st
min would represent the probabil‐

ity of occurrence of st that is at least equal to st
min. Mathemat‐

ically, it can be followed from (2) that:

pm (st
pm)= ∫

st
pm

1

f t
b (st)ds 0£ st

pm £ 1 (3)

where 0£ pm £ 1. In other words, pm (st
pm) defines the certain‐

ty that st shall be at least st
pm during the tth hour. For exam‐

ple, for the DSPVG considered in the present work, the cer‐
tainty level pm = 0.4 indicates that there is 40% certainty that
the irradiance would be more than or equal to 0.62 kW/m2

at 15: 00 on a summer day, which can be mathematically
written as in (4) and shown in Fig. 3.

pm (st
pm = 0.62)= ∫

st
pm = 0.62

1

f t
b (st)ds = 0.4 (4)

Similarly, certainty levels of 50% (pm = 0.5) and 60% (pm =
0.6) indicate the irradiance to be more than or equal to 0.60
kW/m2 and 0.59 kW/m2, respectively, at the same time on
the same day.

st
pm is used to estimate the power output P t

pv (st
pm) of

DSPVG for the tth hour as given in (5) [5], [17], [27]:

P t
pv (st

pm)=Npv ×FF ×V t (st
pm) × I t (st

pm) (5)

The fill factor FF, V t (st
pm) and I t (st

pm) can be easily calcu‐

lated using equations given in [5], [17], [27]. Based on this,
SPP can notify the SO that it can certainly provide a quanti‐
ty of power P t

pv (st
pm) during the tth hour of the next day, with

its level of certainty pm (st
pm). Particularly, for the numerical

case study considered, the SPP can provide 12.41 MW,
12.18 MW and 11.95 MW with the levels of certainties of
40%, 50% and 60%, respectively, at 15:00 the next day. The
level of certainty has an inverse relationship with the quanti‐
ty of power provided by the SPP.

B. Uncertainty of Hourly Load Demands

In addition to the certainty of DSPVG power output, the
certainty of hourly forecasted load zt is another important
governing factor for establishing a robust market dispatching
schedule. In this paper, the primary purpose of uncertainty
modeling is to incorporate the minimum possible hourly
DSPVG outputs (as discussed in Section II-A) and the maxi‐
mum possible hourly load demands corresponding to the
specified certainty levels. The Gaussian PDF f t

g (zt) is used

to model the uncertainty of zt [3], [16], [29] as it is best suit‐
ed for load modeling. f t

g (zt) for the Gaussian random vari‐

able zt and the corresponding cumulative density function
φ t

g (z t
p) are expressed as:

f t
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σ t
g 2π
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g (zt)dzt -¥£ zt £¥ (7)

A typical variation of f t
g (zt) with respect to zt is shown in

Fig. 4(a), under the assumption that the maximum spread of
zt from its mean value is ±10%. This assumption is practical‐
ly true, as the available modern day load forecasting tech‐
niques are capable of producing estimates with a forecasting
error that is well within ±10% of the mean value [30]. zt is
represented in per unit and can be easily converted into actu‐
al value. |φ t

g (zt)
zt = zt

p

in (7) is shown by the shaded area of

Fig. 4(a), which represents the probability that the value of
zt lies within -¥ and z t

p. In other words, |φ t
g ( )zt

zt = zt
p

repre‐

sents the level of certainty that the maximum value of zt will
be z t

p. The variation of φ t
g (zt) with respect to zt is shown in

Fig. 4(b).
In this paper, the numerical integration function of MAT‐

LAB has been used to determine z t
p corresponding to speci‐
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fied |φ t
g (zt)

zt = zt
p

. For example, the value of z t
p is obtained

equal to 1.043 p. u. corresponding to |φ t
g ( )zt

zt = zt
p

, which

means that there is 90% certainty that the value of zt will be
less than or equal to 1.043 p.u.. Note that there is 99.86% (~
100%) certainty that the value of zt will not exceed 1.1 p.u..
The impact of incorporation of the maximum possible hour‐
ly load demands corresponding to the specified certainty lev‐
els on system performance is demonstrated in Section IV.

C. Self-scheduling of SPP

It has been assumed that SPP owns DSPVG and ESS. The
charging of ESS can be either from DSPVG or power grid
during low price hours. ESS can inject (discharge) power in‐
to the power grid during high-price hours. Hence, SPP can
self-schedule the power according to forecasted hourly elec‐
tricity market prices incorporating DSPVG power outputs
(for specified certainty level) and charging/discharging con‐
straints of ESS.

The hourly bid schedule of SPP for DA electricity market
is modeled as an optimization problem with an objective
function of revenue maximization of SPP on 24-hour time
horizon. The assumptions made in DSPVG and ESS schedul‐
ing optimization problem are: ① power output of DSPVG
and performance of ESS are taken constant during the tth

hour [8]; ② ESS is online throughout the scheduling period
[0T]; ③ the forecasted hourly electricity prices for the next-
day market have been taken.

The objective function of self-scheduling problem of SPP
is to maximize its revenue, which is mathematically repre‐
sented as:

max SPPR=∑
t = 1

T

Dt ( )λ t
pk P t

sgridk "k ÎNtÎ T (8)

P t
sgridk =P t

pvk +P t
dchgk -P t

chgk "tÎ T (9)

The various constraints of self-scheduling of SPP incorpo‐
rating DSPVG and ESS are given below.

The solar power generation is within its maximum capaci‐
ty bounded by:

P t
PVk £PPVmax "tÎ T (10)

The stored energy in ESS should be within specific limits
given as [12], [18]:

ESmin £ESt £ESmax "tÎ T (11)

where the energy stored in ESS at the tth hour is [24]:

ESt =ESt - 1 + (P t
chgηchg -P t

dchg /ηdchg) Dt "tÎ T (12)

By default, ESS does not charge and discharge during the
same time, which means that it can either charge, discharge,
or remains idle, i.e., neither charge nor discharge, during any
particular hour.

The charging and discharging power of ESS during the t th

hour is bound by [12]:

Pchgmin £P t
chg £Pchgmax "tÎ T (13)

Pdchgmin £P t
dchg £Pdchgmax "tÎ T (14)

III. FORMULATION OF DA ELECTRICITY MARKET

DISPATCHING PROBLEM

Generation companies (GENCOs) and distribution compa‐
nies (DISCOs) submit their DA hourly bids consisting of
quantity and price to SO. The cost function of real power

generation C t
i (P t

gi) of the ith GENCO during the tth hour ob‐

tained from its supply bids can be represented as a quadratic
curve, and is given as [31]:

C t
i (P t

gi)= 0.5at
gi (P t

gi)
2

+ bt
gi P

t
gi (15)

The constant term of the cost function (15) is zero, as in a
generic deregulated electricity market design, the GENCO
cannot claim for the payment when it is not supplying any
power to the power grid. Similarly, the demand benefit func‐
tion Bt

i (P t
di) of the ith DISCO during the tth hour can be ob‐

tained from its bid as [31]:

Bt
i (P t

di)= -0.5ct
di (P t

di)
2
+ bt

di P
t
di (16)

The negative sign in quadratic term of (16) signifies that
the slope of the benefit function curve decreases with the in‐
crease in power demand.

The cost function of reactive power generation C t
qi (Qt

gi) of

GENCO is obtained from reactive power capability curve of
generator, and is given as [32]:

C t
qi ( )Qt

gi =m
é

ë
êê

ù

û
úúC t

i ( )Pgimax -C t
i ( )P 2

gimax - ( )Qt
gi

2

(17)

where m usually varies between 5%-10% [32], [33].
SPP provides its hourly generation schedule along with its

certainty level. The market dispatching problem of SO has
been mathematically formulated as non-linear optimization
problem with the objective of maximization of SW of mar‐
ket participants as given by (18), subject to the operational
constraints (19)-(21), constant load power factor (22), trans‐
mission line loading limits (23), bounds on variables (24),
and constraints due to generator capability curve (25). The
mathematical representation of objective function is as fol‐
lows:

0.9
zt (p.u.) zt (p.u.)

(shaded area)
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Fig. 4. Gaussian and cumulative density functions. (a) A typical
Gaussian density function f t

g (zt) of zt. (b) Cumulative density function of zt.
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max SW =∑
t = 1

T

Dt
é

ë
êê

ù

û
úú∑

iÎNd

{ }Bt
i ( )P t

di -∑
iÎNg

{ }C t
i ( )P t

gi +C t
qi ( )Qt

gi

(18)

The social welfare function SW is represented as the de‐
mand benefit function of DISCOs minus the real and reac‐
tive power generation cost of GENCOs. The cost function of
DSPVG and ESS is not included in (18), as it includes main‐
tenance and repair costs, which are generally treated as inde‐
pendent of instantaneous power generated by them.

The mathematical representation of various constraints is
as follows. The real power balance equation is modified due
to the placement of DSPVG at the kth bus, and is given for
the ith and kth buses during the tth hour in (19) and (20), re‐
spectively.

P t
gi -P t

di -V t
i∑

j = 1

N

V t
j ( )Gij cos ( )δ t

i - δ t
j +Bij sin ( )δ t

i - δ t
j = 0

"i = 12...Ni ¹ ktÎ T (19)

P t
gk +P t

sgridk -P t
dk -V t

k∑
j = 1

N

V t
j (Gkj cos ( )δ t

k - δ t
j +

)Bkj sin ( )δ t
k - δ t

j = 0 tÎ T (20)

DSPVG does not inject any reactive power into the power
grid. The reactive power balance equation is given by [32]:

Qt
gi -Qt

di -V t
i∑

j = 1

N

V t
j ( )Gij sin (δ t

i - δ t
j)-Bij cos (δ t

i - δ t
j) = 0

"i = 12...NtÎ T (21)

The constant power factor constraint for power consump‐
tions at the ith bus during the tth hour is given by [32]:

Qt
di =P t

di tan θ t
i "iÎN tÎ T (22)

The transmission line loading constraints for the (i-j)th line
during the tth hour can be given by [32], [33]:

S t
ij (V

t
i V t

j δ t
iδ t

j)£ Sijmax "(i - j)ÎNltÎ T (23)

The power generation, load demands, bus voltages and
load angles at the ith bus during the tth hour are bound by the
minimum and maximum limits as follows:

ì

í

î

ï

ï
ï
ïï
ï

ï

ï
ï
ïï
ï

0£P t
gi £Pgimax "iÎNgtÎ T

Qgimin £Qt
gi £Qgimax "iÎNgtÎ T

0£P t
di £Pdimax "iÎNtÎ T

0£Qt
di £Qdimax "iÎN tÎ T

Vimin £V t
i £Vimax "iÎNtÎ T

δ imin £ δ t
i £ δ imax "iÎNtÎ T

(24)

The power (real, reactive and apparent) generation con‐
straint due to generator capability curve is given by
[32], [33]:

(P t
gi)

2

+ (Qt
gi)

2

£ S 2
gimax "iÎNgtÎ T (25)

In this paper, the objective of DA electricity market dis‐
patching problem is the maximization of SW, whereas maxi‐
mizing the SPP revenue (SPPR) is the objective function of
self-scheduling problem of SPP. As self-scheduling problem
is a sub-set of DA electricity market dispatching problem,
the objective of SPP is a part of objective of electricity mar‐

ket. The SPP is a price taker and it submits its bids in the
form of hourly schedule along with the certainty levels.

In this paper, the modeling of DSPVG in the electricity
market has been explored under two options.

1) In the first option, SPP prepares hourly bids by the self-
scheduling of DSPVG and ESS with an objective to maxi‐
mize its revenue, and it submits P t

sgridk in (9) to SO for DA
electricity market.

2) In the second option, SPP submits only hourly schedule
of DSPVG power outputs (P t

pvk £PPVmax"tÎ T) without in‐
corporating ESS to SO. It provides charging/discharging and
energy storage constraints of ESS to SO along with quantity
bid of DSPVG. SO solves the market dispatching problem
incorporating the hourly schedule of DSPVG, and ESS con‐
straints. Here, P t

sgridk may differ from the first option, as the
scheduling of ESS with DSPVG would be governed by the
objective of market dispatching in the second option.

In both options, SO solves the market dispatching prob‐
lem for SW maximization. The flowchart depicting the
above procedure is shown in Fig. 5. The proposed non-linear
market dispatching optimization problem (18)-(25) is solved
in a mathematical programming language (AMPL) software
employing KNITRO solver [34].

Start

End

SPP determines DA schedule
along with certainty levels (Section II-A)

Set the option op = 1

op = op + 1

op = 1?
Y (option 1) N (option 2)

op = 2? Y

SW(1) > SW(2)?

N

Y N

SPP carries out self-scheduling
incorporating ESS constraints and

supplies hourly schedule to SO
which would maximize its SPPR

SO solves market dispatching
problem for SW maximization
incorporating hourly schedule
of DSPVG power outputs and

ESS constraints

Save SW (op) and
corresponding market dispatching

schedule and certainty levels of
schedule of SPP

SO solves market dispatching
problem for SW maximization

by incorporating hourly
schedule of SPP

Option 1 is better. SO
prepares DA market
dispatching schedule

corresponding to option 1
along with certainty level

of schedule of SPP

Option 2 is better. SO
prepares DA market
dispatching schedule

corresponding to option 2
along with certainty level

of schedule of SPP

Fig. 5. Flowchart for developing DA market dispatching schedule incorpo‐
rating hourly schedule of SPP and constraints of ESS under two options.
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IV. SIMULATION RESULTS

A. Estimated Hourly Power Generation of DSPVG

A 24 MW DSPVG located at Sri Muktsar Sahib, Punjab
State, India is considered for study in the present work. The
latitude and longitude of site are 30.47°N and 74.37°E, re‐
spectively. A total number of 228600 thin-film Cadmium Tel‐
luride type PV modules are used to form the DSPVG. Each
PV module is of 105 Wp capacity with technical specifica‐
tions given in Table I.

The meteorological data of solar irradiance and tempera‐
ture of site under study are noted from [35] for the summer
season from March to June. Solar irradiance is available
from 06:00 to 18:00 as observed from the data. Beta PDF of
irradiance is determined from (1) for each hour. The irradi‐
ance levels st

pm corresponding to certainty levels of 40%,
50%, and 60%, respectively, are determined from (3) and (4)
and hourly continuous beta PDFs.

The 50% certainty level corresponds to the mean value of
irradiance (forecasted on DA basis). The selected certainty
levels of 40%, 50%, and 60% can practically accomplish the
purpose of DSPVG modeling in DA markets as the maxi‐
mum forecasting error is within ±10% of its mean value
[13]. Although the proposed methodology is capable of in‐
corporating any foreseen level of certainty depending on the
prevailing conditions.

The DSPVG power outputs are determined for the above
certainty levels from (5) and are shown in Fig. 6. The steps
involved in analysis are coded in MATLAB environment.
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Fig. 6. DSPVG power outputs for different certainty levels.

The SPP carries out self-scheduling, i.e., option 1, with an

objective to maximize SPPR subject to the ESS constraints
(as given in Section II-C). The hourly schedule of P t

sgridk ob‐
tained for certainty levels of 40%, 50%, and 60% for the bid‐
ding in DA market is illustrated in Fig. 7. It can be observed
that ESS obtains the power for charging from the power grid
from 00:00 to 06:00. DSPVG and ESS feed the power to the
power grid from 06:00 to 19:00.

The values of SPPR obtained from (8) for 40%, 50% and
60% certainty levels are $3837.94, $3752.92, and $3668.49,
respectively. The maximum SPPR is obtained when the cer‐
tainty is 40%, which is the lowest amongst three considered
levels of certainties. Similarly, SPP determines power genera‐
tion schedules for different certainty levels and calculates its
corresponding revenues. While submitting the bid for DA
market, SPP provides its schedule P t

sgridk along with the re‐
spective certainty level.

B. Simulation Results of Market Dispatching

The market dispatching problem formulated in Section III
is simulated on Indian utility 62-bus system. The system con‐
sists of 62 buses, 19 generators, 32 loads, and 89 transmis‐
sion lines. The coefficients of generation cost bids of GEN‐
COs are taken from [36], and are given in Appendix A Table
AI. The minimum real power generation limit is assumed to
be zero. Load data and transmission line data are considered
from [36] and are appended in Appendix B Table BI and Ap‐
pendix C Table CI, respectively. A typical hourly load curve
at bus 15 depicting the mean, minimum (90% of mean), and
maximum (110% of mean) forecasted loads for DA market
is shown in Fig. 8.
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Fig. 7. Hourly schedule of P t
sgridk for different certainty levels in option 1.
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Fig. 8. Hourly load curve at bus 15.

TABLE I
TECHNICAL SPECIFICATION OF 105 WP PV MODULE

Parameter

Maximum power point voltage

Maximum power point current

Open-circuit voltage

Short-circuit current

Nominal operation temperature

Temperature coefficient of open-circuit voltage

Temperature coefficient of short-circuit current

Value

67.8 V

1.55 A

86.0 V

1.74 A

45 ℃

-0.2494 V/℃

0.0007 A/℃
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Light load is observed from 00:00 to 04:00 and it shows
an slight increase from 04:00 to 09:00 when the residential
load starts increasing. The load increases considerably from
09:00 to 16:00 and constitutes mainly industrial and commer‐
cial loads. A slight dip from 13:00 to 14:00 is due to usual
break hour followed in industrial and commercial sectors.
The peak load in the evening (from 16:00 to 21:00) is when
the commercial load starts reducing and the residential load
starts increasing. Thereafter, the load starts declining and has
its night lean. These types of load characteristics are generally
observed in the Indian electricity market. The load is assumed
to be constant during Dt.

The benefit function of DISCO is taken as Bt
i (P t

di)=
bt

di P
t
di"i [31], and is assumed to be 50 $/hour. The technical

specifications of redox batteries, each with the capacity of
500 kW used as ESS in the present work, are as given in
[24] and appended in Appendix D Table DI.

The following cases are considered for analysis.

1) Case 1: Base Case Without Placement of DSPVG and
ESS in system

This case is simulated for comparison and analysis of mar‐
ket dispatching results with the proposed approach. The gen‐
eration and demand schedules are obtained, and the location‐
al marginal prices (LMPs) at all nodes are multiplied with
the weight of time intervals and arranged in decreasing order
of their values. LMPs are Lagrangian multipliers of the pow‐
er flow constraints of optimization problem. Higher value of
LMP at a node indicates congestion, and the injection of
power at this node would relieve the line from overload
[32]. The LMP mechanism is widely accepted to decide the
optimal location for DSPVG placement in system [37]. In
this case, LMP at bus 15 is the highest (21.40 $/MWh),
which is decided as optimal location for DSPVG placement.

The determination of optimal size of DSPVG may be in‐
cluded in the present work, but it would require long-term fi‐
nancial and economic considerations; whereas the present
problem formulation is for DA market which is a short-term
market dispatching problem.

2) Case 2: DSPVG Placed in System Without ESS

Both Cases 2 and 3 are simulated for all three certainty
levels of 40%, 50% and 60%, respectively, which are men‐
tioned in Section IV-A to evaluate its effect on market dis‐
patching. DSPVG is placed at bus 15. The hourly power pro‐
duction of DSPVG for each certainty level (as shown in Fig.
6) is committed in DA electricity market. By comparing the
results of Case 2 with those of Case 3, the impact of ESS
on market dispatching and SPPR is quantified.

3) Case 3: DSPVG Placed in System with ESS

The DSPVG placed at bus 15 is now integrated to ESS.
Further two sub-cases are discussed here.

Case 3A (option 2): SPP submits the hourly generation
schedule of DSPVG and its certainty level. SO incorporates
the DSPVG schedule along with ESS constraints given in
(10) - (14) in the market dispatching optimization program‐
ming to obtain the generation and demand schedules for DA
market. The injection schedule P t

sgridk at bus 15 for this case
is shown in Fig. 9.

Case 3B (option 1): SPP submits the hourly generation
schedule obtained by self-scheduling of DSPVG and ESS
and its certainty level as shown in Fig. 7. SO incorporates
the bid of SPP in market dispatching problem formulation.
This case analyses the impact of scheduling of DSPVG and
ESS by SO (i.e., Case 3A) on market dispatching and SPPR.

Figure 9 indicates that P t
sgridk changes when SO incorpo‐

rates the scheduling of DSPVG and ESS in market dispatch‐
ing optimization problem, i. e., Case 3A (option 2) from
SPP’s self-schedule, option 1 as shown in Fig. 7. In Case
3A, P t

sgridk is negative from 00:00 to 06:00, i.e., ESS draws
the charging power from power grid at low electricity prices,
and supplies the power grid from 06:00 to 21:00 at higher
prices. The charging power from the power grid remains the
same for all certainty levels.

The hourly values of SPPR obtained from market dispatch‐
ing for Cases 2 and 3 are given in Table II. The SPPR is
higher for various certainty levels in Case 3 than in Case 2
when the DSPVG power is scheduled with ESS, as observed
from Table II. This indicates that the ESS could support to
optimize the benefit of SPP. The maximum value of SPPR is
$3482.12 when it bids at 40% certainty in Case 3A. Also,
the calculated value of the revenue of SPP is larger for all
three certainty levels as given in Section IV-A than that ob‐
tained in DA electricity market as given in Table II. This is
because the SO schedules solar power in electricity market
with the objective of SW maximization.

The total SW and demand benefit of a day obtained in
Cases 1-3 are shown in Table III (deterministic load). The
SW value obtained in Case 2 is more than that in Case 1,
which shows the benefit of integration of DSPVG in the sys‐
tem. The SW increases further when DSPVG is operated
with ESS, i. e., Case 3. The total SW for various certainty
levels in Case 3A are more than its corresponding values in
Case 3B, which shows that option 2 is better than option 1.

The SW of market is more at low certainty level (i. e.,
when SPP bids more solar power), as the SO now schedules
more renewable energy generation in the system. This reduc‐
es the overall cost of generation, and results in the increase
of welfare and benefit.

The total demand benefit of DISCOs increase in Cases 2
and 3 compared with that in Case 1, which can be noted
from Table III. DISCOs have to pay less for energy con‐
sumed due to reduced spot prices in market in Cases 2 and
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Fig. 9. P t
sgridk injection schedule at bus 15 in Case 3A (option 2).
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3 compared with Case 1. The demand benefit is more in
Case 3 than in Case 2, which indicates the benefit of using
ESS with DSPVG. The demand benefit is more at 40% cer‐

tainty in respective cases, which schedule higher values of
solar power.

TABLE III
COMPARISON OF TOTAL SOCIAL WELFARE AND TOTAL DEMAND BENEFIT FOR DIFFERENT POWER SCHEDULING CASES

Load

Deterministic
load (mean

value of fore‐
casted load)

Probabilistic
load (load
certainty is

100%)

Probabilistic
load (load
certainty is

90%)

Market
indices
(×103 $)

Total
SW

Total
demand
benefit

Total
SW

Total
demand
benefit

Total
SW

Total
demand
benefit

Case 1

1883.334

2049.069

2031.326

2220.168

1948.488

2124.064

Case 2

Certainty
is 40%

1890.320

2052.244

2038.709

2223.592

1955.798

2127.433

Certainty
is 50%

1890.188

2052.185

2038.546

2223.517

1955.664

2127.367

Certainty
is 60%

1890.055

2052.126

2038.385

2223.443

1955.516

2127.297

Case 3A

Certainty
is 40%

1890.474

2052.334

2038.829

2223.668

1955.937

2127.513

Certainty
is 50%

1890.346

2052.278

2038.667

2223.593

1955.782

2127.441

Certainty
is 60%

1890.215

2052.222

2038.506

2223.519

1955.635

2127.371

Case 3B

Certainty
is 40%

1890.436

2052.318

2038.828

2223.667

1955.915

2127.507

Certainty
is 50%

1890.304

2052.259

2038.666

2223.592

1955.781

2127.440

Certainty
is 60%

1890.172

2052.200

2038.505

2223.518

1955.634

2127.370

Case 6

RO
methodology

1889.741

2052.002

2038.014

2223.287

1955.148

2127.144

TABLE II
SPPR IN CASES 2, 3, AND 6

Time

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

Total SPPR ($)

Hourly SPR ($/hour)

Case 2

Certainty is
40%

0

0

0

0

0

0

29.88

38.96

63.03

338.13

412.98

463.46

478.19

450.77

421.59

351.23

249.30

85.22

24.77

0

0

0

0

0

3407.51

Certainty is
50%

0

0

0

0

0

0

26.50

42.64

60.89

330.61

406.46

458.99

473.84

445.79

415.47

344.97

241.58

78.38

20.18

0

0

0

0

0

3346.30

Certainty is
60%

0

0

0

0

0

0

23.39

45.36

58.75

322.98

399.76

454.39

469.28

440.61

409.18

338.65

233.86

71.85

16.19

0

0

0

0

0

3284.25

Case 3A

Certainty is
40%

-2.13

-2.13

-2.13

-2.13

-5.92

-5.92

48.25

40.19

56.21

338.13

412.98

463.46

478.19

450.77

421.59

351.23

249.30

85.22

49.22

28.87

28.87

0

0

0

3482.12

Certainty is
50%

-2.13

-2.13

-2.13

-2.13

-5.92

-5.92

47.82

43.61

54.01

330.61

406.46

458.99

473.84

445.79

415.47

344.97

241.58

78.38

44.64

28.87

28.87

0

0

0

3423.55

Certainty is
60%

-2.13

-2.13

-2.13

-2.13

-5.92

-5.92

47.30

46.08

52.00

322.98

399.76

454.39

469.28

440.61

409.18

338.65

233.86

71.85

40.68

28.87

28.87

0

0

0

3364.00

Case 3B

Certainty is
40%

-2.75

-2.10

-2.32

-1.35

0

-5.92

-5.92

29.88

38.96

63.03

355.50

423.80

474.22

490.05

450.77

432.35

366.88

249.30

85.22

24.77

0

0

0

0

3464.37

Certainty is
50%

-3.01

-2.50

-1.32

-1.68

-5.92

-5.92

26.50

42.64

60.89

346.27

417.87

473.46

483.43

445.79

427.44

359.14

241.58

78.38

20.18

0

0

0

0

0

3403.22

Certainty is
60%

-3.35

-2.05

-1.65

-1.47

-5.92

-5.92

23.39

45.36

58.75

339.06

411.44

464.64

479.46

440.61

421.72

355.33

233.86

71.85

16.19

0

0

0

0

0

3341.3

Case 6

RO
methodology

-2.13

-2.13

-2.13

-2.13

-5.92

-5.92

47.69

45.56

49.16

299.73

368.81

417.27

430.69

404.83

377.11

312.91

219.06

72.96

46.67

28.87

28.87

0

0

0

3129.83
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The hourly LMPs at bus 15 for Cases 1 and Case 3A are
shown in Fig. 10. The injection of real power P t

sgridk by
DSPVG and ESS at bus 15 reduces its hourly LMPs as illus‐
trated for Case 3A for the certainty of 50% in Fig. 10. The
weighted LMP at bus 15 has reduced to 19.39 $/MWh from
21.40 $/MWh in Case 1. It further reduces to 19.25 $/MWh
when the certainty level is 40%. The reduction in values of
LMPs, i. e., nodal prices with integration of DSPVG and
ESS in power grid, indicates the relief of congestion in trans‐
mission lines.

The hourly load demand uncertainty has been modeled us‐
ing Gaussian PDF, as shown in (6). The impact of incorpora‐
tion of load demand uncertainty on the performance of the
market dispatching has been analysed considering two load
certainty levels of 100% and 90% in the optimization pro‐
gramming. The hourly load obtained for the system for the
certainty level of 100% in (7) indicates that there is 100%
certainty that the load would be maximum 110% of its mean
forecasted value. Similarly, the hourly loads for the certainty
level of 90% are obtained from (7). The simulation results
for SW and demand benefit are given in Table III. With the
increase of load demand due to the incorporation of its cer‐
tainty levels, the corresponding benefits of market partici‐
pants, as well as the SW and demand benefit also get in‐
creased. These results clearly demonstrate the robustness of
the proposed approach for the incorporation of certainty lev‐
els of forecasted load demands.

4) Case 4: Optimal Placement of Multiple DSPVGs

After a DSPVG is placed at the optimal location (bus 15),
the highest LMP occurs at bus 39. Hence, bus 39 is the right
candidate for placing another DSPVG. In Case 4, two
DSPVGs are placed in the system, firstly at bus 15 (i. e.,
DSPVG) and then at bus 39 (i.e., DSPVG1 having the same
rated capacity and technical specifications as of DSPVG,
which is 24 MW). Due to spatial distribution, DSPVG1 may
have different power output schedules, and consequently,
vary certainty levels from DSPVG. The market dispatching
for such a system can be assimilated as Case 4A when SPP
provides schedules with 40% certainty for DSPVG and 60%
certainty for DSPVG1 (Fig. 6) and and vice versa in Case 4B.
The P t

sgridk schedules of DSPVG and DSPVG1 in both cases
are demonstrated in Fig. 11.

The SW/demand benefit obtained in Cases 4A and 4B are
higher than that in Cases 3A and 3B of single DSPVG, re‐
spectively. The market benefit increases with optimally
placed multiple DSPVGs in the system but incremental de‐
crease of benefits.

The electricity prices may vary at different buses due to
the congestion in the system. The hourly LMPs for buses 15
and 39 are shown in Fig. 12 for different power scheduling
cases: ① base case; ② when DSPVG is located at bus 15;
③ when DSPVG (at bus 15) and DSPVG1 (at bus 39) are
placed, i. e., Case 4A. SPP earns more revenue of $3365.34
for DSPVG than DSPVG1 with $1496.37 in Case 4A due to
high prices at its location (i. e., bus 15 in Fig. 11). Similar
trend of SPPRs for DSPVG and DSPVG1 ($3363.66 and
1564.23, respectively) is also observed in Case 4B.

The penetration of distributed generation can be approxi‐
mately 20% of total installed capacity of the system [31].
The integration of DSPVG in the system reduces LMPs as il‐
lustrated for buses 15 and 39 in Fig. 11. LMPs reduce re‐
markably at bus 15, Case 3A, with certainty of 40% when
only one DSPVG is placed in the system. The LMPs at bus
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Fig. 11. Variation in P t
sgridk of spatially distributed SPV generators. (a)

Case 4A. (b) Case 4B.
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Fig. 10. Effect of injecting power by DSPVG+ESS on LMPs at bus 15.
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Fig. 12. Variation of hourly LMPs with multiple DSPVGs.

554



SINGLA et al.: OPTIMIZATION OF DISTRIBUTED SOLAR PHOTOVOLTAIC POWER GENERATION IN DAY-AHEAD ELECTRICITY MARKET...

39 also decrease, but the reductions obtained are not of the
same order as obtained at bus 15. Further reduction in LMPs
at bus 15 is decreased when one more DSPVG1 gets inte‐
grated in the system, as shown for Case 4A in Fig. 12.
Hence, increasing the number of SPV generators may be
beneficial but incremental benefit drops.

5) Case 5: Effect of Initial State of Charge (SOC) of ESS
on P t

sgridk

DSPVG draws the power from power grid during 00:00 to
06:00 to charge the ESS when the LMPs are comparatively
lower, and injects power from 06:00 to 21:00 (by discharg‐
ing of ESS and/or power output of DSPVG) in the power
grid when LMPs are relatively higher, as shown in Fig. 9.
The initial SOC of ESS influences the power drawing sched‐
ule from 00.00 to 04:00 only. When the initial SOC of ESS
is 1 MW to 2 MW, ESS draws charging power from the
power grid during 00:00 to 04:00 when the electricity prices
are low, whereas it supplies the power grid for initial SOC
of 3 MW to 4 MW as shown in Fig. 13(b). After 04:00, ESS
storage becomes the same in all considered cases of the ini‐
tial SOC. From 04:00 to 06:00, the prices reduce further as
shown in Fig. 13(a), and P t

sgridk becomes negative, i. e., ESS
draws the same amount of power from the power grid. Fur‐
ther, from 06:00 to 21:00, P t

sgridk schedules remain the same
for the given certainty level, which is independent of initial
SOC. The impact of initial SOC of ESS on power drawing
schedule by varying initial SOC from 1 MW (quarter-
charged) to 4 MW (full-charged) in the steps of 1 MW is
shown in Fig. 13(b).

6) Case 6: Optimization with RO Methodology

The market dispatching problem is also solved with the
widely used RO methodology [21]-[25]. The uncertainty set
of irradiance is obtained from historic data. The degree of

conservativeness is taken as ³ 13 and ⩽24, which is an inte‐
ger value that denotes the maximum number of intervals
with the worst value of irradiance [24]. In this paper, the
worst-case scenario of irradiance modeled by RO is taken as
90% of the mean forecasted value. The results obtained are
given in Tables II and III.

A comparison of the proposed approach in the paper is
made with RO in terms of performance indices such as SP‐
PR, SW and demand benefit. It can be seen from the results
of Tables II and III that SPPR, SW and demand benefit ob‐
tained with the RO methodology are less than the respective
values obtained in all power scheduling cases considered in
the proposed approach. Thus, the proposed approach gives
better market dispatching results than the RO methodology,
though the computation time of the proposed approach and
RO would remain the same.

The problem formulated has been implemented on win‐
dows 7 operation system with Intel core i3 CPU processor,
2.3 GHz frequency and 4 GB RAM. The scale of its compu‐
tation with the proposed approach is provided in Table IV.
The number of δ t

i variables for the span of 24-hour time in‐
terval is 24, which is less than the number of variables of
voltage, as one bus is chosen as slack bus where the value
of δ t

i is fixed.

Table V presents the computation time obtained with dif‐
ferent cases for various certainty levels of DSPVG output
and load demand. The computation burden shows negligible
increase with change in initial state of ESS. As shown in Ta‐
ble V, there is almost negligible increase (in ms) in computa‐
tion burden in different cases with respect to the base case.
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Fig. 13. Hourly LMPs and impact of initial state of ESS on power draw‐
ing schedule during 00:00 to 06:00 hours at bus 15 in Case 3A with certain‐
ty of 50%. (a) Hourly LMPs. (b) Impact of initial state of ESS on power
draw schedule.

TABLE IV
SCALE OF COMPUTATION OF PROBLEM FORMULATED WITH PROPOSED

APPROACH

Variable or constraint type

P t
gi

Qt
gi

P t
di

Qt
di

V t
i

δt
i

P t
sgridk

P t
chg

P t
dchg

ESt

P t
pvk

Total No. of variables

Power balance constraints

Power generation capability
curve constraint

Line flow limits

Power factor constraint

ESS & DSPVG constraint

Bounds on variables

Total No. of constraints

No. of variables or constraints

With 1 DSPVG

456

456

1488

1488

1488

1464

24

24

24

24

24

6960

912

456

2136

1488

48

13920

18960

With 2 DSPVGs

456

456

1488

1488

1488

1464

48

48

48

48

48

7080

912

456

2136

1488

96

14160

19248
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The computation burden of RO methodology for determinis‐
tic load, 90% load certainty, and 100% load certainty comes
out to be 4.212 s, 4.306 s, and 4.243 s, respectively. This
clearly demonstrates the computation efficiency of the pro‐
posed approach.

7) Summary of Results

The effectiveness of the proposed approach is thus anal‐
ysed in terms of electricity market indices such as SW, nod‐
al prices/LMPs, and economic benefits to SPP and DISCOs/
consumers. Discussion on the results can be summed as:

1) Impact of ESS on scheduling of solar generation
The results of Case 3 shows the impact of ESS in solar

generation scheduling in DA market (refer to Tables II and
III). SW, demand benefit and revenue of SPP are more in
Case 3 compared with Case 2 for all three certainty levels.
Hence, ESS integrated with DSPVG provides additional sup‐
port in optimizing solar generation in DA electricity market.
Further, the initial SOC of ESS influences its charging from
power grid when the electricity prices are low.

2) Solar power bid schedule
As SPP goes for higher certainty level, the availability of

power from DSPVG will be reduced. The results for 40%-
60% certainty in Cases 2 and 3 indicate the influence of so‐
lar power bid schedule on electricity market operations. The
market indices vary with certainty levels, and are higher for
40% certainty in both Cases 2 and 3. This indicates that
scheduling higher solar power is more advantageous to the
system and market participants. Both SPP and SO are aware
of certainty associated with solar generation scheduling in
DA market, hence, the market dispatching takes place with a
certain level of confidence.

3) Scheduling of DSPVG and ESS
The market indices are better in Case 3A (option 2) com‐

pared with those in Case 3B (option 1).
4) Effect of multiple DSPVGs
The penetration of several DSPVGs in the system im‐

proves electricity market indices, but the incremental benefit
decreases.

5) Correlation among certainty levels of DSPVG outputs
and load demands

In this paper, the power system is modeled by specified

levels of DSPVG outputs and forecasted loads during the
whole time span of 24 hours. In Table III, the results are re‐
ported for various topologies corresponding to 40%, 50%,
and 60% certainty levels for DSPVG outputs, and 90% and
100% certainty levels for forecasted loads. The DA market
dispatching schedule obtained with a particular topology (of
certainty level of DSPVG outputs and forecasted load during
24 hours) will be robust for all the DA market dispatching
schedules obtained with topologies with lower certainty lev‐
els. This is due to the fact that the decrease in certainty lev‐
els of DSPVG outputs and forecasted load would lead to the
increase in DSPVG outputs and the decrease in load, which
results in the improvements in power system performance.

As future work, a correlation among different topologies
of certainty levels of DSPVG outputs and forecasted load
may be extended on hourly basis. Point estimation and sce‐
nario reduction methods [29] may be used for further im‐
proving the system performance.

V. CONCLUSION

This paper presents an efficient way to model and sched‐
ule the stochastic solar PV generation for DA pool based
electricity market. SPP specifies the certainty level of its
DSPVG generation bid to SO. The effectiveness of the pro‐
posed methodology is discussed in Section IV-B. The bene‐
fits of the proposed approach are summarized as follows.

1) The proposed methodology is beneficial for the SPP, as
it can submit its bid with the predetermined level of certain‐
ty, which, correspondingly, is able to get assured revenues.

2) With the proposed methodology, the SO knows the lev‐
el of certainty of DSPVG generation in DA market. Hence,
it would improve the reliability of electricity market during
real-time operation.

3) The performance of the proposed methodology is better
than the RO approach, which solves the worst-case scenario.

4) As future work, the certainty levels of DSPVG sched‐
ule can be quantitatively linked with the availability of oper‐
ation and spinning reserves. Qualitatively, it means that SO
can go with the lower level of certainty, i. e., higher power
output of DSPVG, if higher reserves are available with it,
and vice-versa.

APPENDIX A

The generator data including the cost coefficients and gen‐
eration limits are listed in Table AI [36].

APPENDIX B

The load data are listed in Table BI [36].

APPENDIX C

The line data are listed in Table CI [36].

APPENDIX D

The technical specifications of ESS are listed in Table
DI [24].

TABLE V
COMPUTATION TIME FOR DIFFERENT CASES WITH PROPOSED APPROACH

Load type

Deterministic
load (mean value
of forecasted load)

Probabilistic load
(load certainty is

100%)

Probabilistic load
(load certainty is

90%)

Case

2

3A

3B

2

3A

3B

2

3A

3B

Computation time (s)

Certainty is
40%

3.900

4.212

4.025

3.760

4.181

3.744

3.806

4.368

3.775

Certainty is
50%

3.900

4.243

4.072

3.713

4.274

3.760

3.697

4.384

3.728

Certainty is
60%

3.931

4.243

4.040

3.791

4.259

3.760

3.744

4.415

3.619
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TABLE BI
LOAD DATA

Bus No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Load

P (MW)

0

0

40

0

0

0

0

109

66

40

161

155

132

0

155

0

0

121

130

80

0

Q (Mvar)

0

0

10

0

0

0

0

78

23

10

93

79

46

0

63

0

0

46

70

70

0

Bus No.

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Load

P (MW)

64

0

58

0

116

85

63

0

77

51

0

46

100

107

20

0

166

30

25

92

30

Q (Mvar)

50

0

34

0

52

35

8

0

41

25

0

25

70

33

5

0

22

5

5

91

25

Bus No.

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Load

P (MW)

25

109

20

0

0

0

0

0

0

0

248

0

94

0

0

0

0

0

0

93

Q (Mvar)

5

17

4

0

0

0

0

0

0

0

78

0

29

0

0

0

0

0

0

23

TABLE AI
GENERATOR DATA: COST COEFFICIENTS AND GENERATION LIMITS

Generator (i)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Generator bus No.

1

2

5

9

14

17

23

25

32

33

34

37

49

50

51

52

54

57

58

agi ($/MW2h)

0.0070

0.0055

0.0055

0.0025

0.0060

0.0055

0.0065

0.0075

0.0085

0.0020

0.0045

0.0025

0.0050

0.0045

0.0065

0.0045

0.0025

0.0045

0.0080

bgi ($/MWh)

6.80

4.00

4.00

0.85

4.60

4.00

4.70

5.00

6.00

0.50

1.60

0.85

1.80

1.60

4.70

1.40

0.85

1.60

5.50

Pgimax (MW)

300

450

450

100

300

450

200

500

600

100

150

50

300

150

500

150

100

300

600

Qgimin (Mvar)

0

0

-50

0

-50

-50

-50

-100

-100

0

-50

0

-50

-50

-50

-50

0

-50

-100

Qgimax (Mvar)

450

500

500

150

300

500

250

600

50

150

200

75

300

200

550

200

150

400

600

Note: values of agi and bgi are considered to be the same for "tÎ T.
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TABLE CI
LINE DATA

Line
No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

From
bus

1

1

1

1

1

1

2

2

3

4

14

4

13

12

12

11

4

5

6

7

5

11

16

17

21

22

23

23

25

25

25

27

29

20

12

13

14

14

14

24

24

41

40

41

42

To bus

2

4

14

10

9

6

6

3

4

15

15

14

14

13

11

10

5

6

7

8

8

16

17

21

22

23

24

25

28

26

27

29

30

23

20

17

19

18

16

45

41

45

41

42

43

Series impedance (p.u.)

R

0.00305

0.00716

0.00548

0.01569

0.00229

0.00411

0.00168

0.00289

0.00381

0.00411

0.00520

0.00411

0.01315

0.01537

0.01905

0.00686

0.00716

0.00575

0.00030

0.00049

0.00575

0.01406

0.00343

0.01850

0.01371

0.00396

0.00305

0.00126

0.01062

0.00941

0.01173

0.00533

0.02058

0.02042

0.01981

0.01563

0.00707

0.00135

0.00396

0.01219

0.01554

0.00335

0.00609

0.00076

0.00914

X

0.01565

0.03678

0.02813

0.08061

0.01174

0.02113

0.00861

0.01487

0.01957

0.02113

0.02669

0.02113

0.06754

0.07897

0.09783

0.03522

0.03678

0.01478

0.00157

0.00168

0.01478

0.07223

0.01761

0.09548

0.07043

0.02035

0.01565

0.00650

0.05554

0.04828

0.06026

0.02739

0.10573

0.10487

0.10174

0.08030

0.03631

0.00693

0.02035

0.06261

0.07993

0.01712

0.03130

0.00391

0.04696

Half-line charging
susceptance (p.u.)

0.01445

0.03397

0.10392

0.07443

0.01084

0.01951

0.00795

0.01373

0.01807

0.01951

0.02464

0.01951

0.06237

0.07292

0.09033

0.03252

0.03397

0.00309

0.00578

0.08612

0.00309

0.06670

0.06504

0.08816

0.06504

0.07516

0.01445

0.00600

0.05037

0.04459

0.05565

0.02529

0.09763

0.09684

0.09395

0.07415

0.03353

0.02558

0.01879

0.05781

0.07371

0.01590

0.02891

0.01445

0.04336

Line
No.

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

From
bus

42

39

39

38

38

34

34

34

35

33

32

30

40

32

32

32

32

36

37

46

44

59

60

61

62

58

58

55

57

57

56

52

52

51

51

51

48

48

49

49

47

47

60

58

To bus

44

42

37

34

34

37

33

35

32

32

31

31

30

36

37

34

46

46

46

44

59

61

61

62

25

61

60

58

58

56

58

61

53

55

53

54

54

50

50

48

48

46

12

12

Series impedance (p.u.)

R

0.01417

0.00686

0.00229

0.01044

0.01076

0.01990

0.01737

0.00701

0.00036

0.01676

0.01787

0.00992

0.00716

0.00305

0.02200

0.00396

0.02095

0.01828

0.00104

0.01676

0.00884

0.00922

0.00244

0.01499

0.01383

0.00335

0.00411

0.00670

0.00183

0.00152

0.00259

0.01127

0.01132

0.01417

0.01190

0.00407

0.01254

0.00066

0.00670

0.00366

0.01371

0.00792

0.01365

0.01211

X

0.07278

0.03522

0.01174

0.05361

0.05525

0.01022

0.08922

0.03600

0.00184

0.08609

0.09180

0.05095

0.03678

0.01565

0.11301

0.02035

0.10761

0.09391

0.00536

0.08609

0.04539

0.04735

0.01252

0.07701

0.07106

0.01722

0.02113

0.03443

0.00939

0.00783

0.01330

0.05791

0.05815

0.07278

0.06112

0.02090

0.06441

0.00337

0.03443

0.01878

0.07043

0.04070

0.07012

0.06222

Half-line charging
susceptance (p.u.)

0.06721

0.03252

0.01084

0.04950

0.05102

0.09438

0.08258

0.03324

0.00679

0.07949

0.08477

0.04705

0.03397

0.01445

0.10435

0.07516

0.09937

0.08672

0.01980

0.07949

0.04191

0.04372

0.04625

0.07111

0.06562

0.06359

0.01951

0.03180

0.00867

0.00723

0.01229

0.05348

0.05369

0.06721

0.05644

0.01930

0.05948

0.01242

0.03180

0.06938

0.06504

0.03758

0.06475

0.05745
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Value

0.95

0 MW

1 MW

1 MWh

4 MWh

559



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 9, NO. 3, May 2021

Nanak Dev Engineering College, Ludhiana, India, in 2007. She is currently
pursuing the Ph. D. degree in electrical engineering at I. K. Gujral Punjab
Technical University, Kapurthala, India. She has been working as an Associ‐
ate Professor at Chitkara University, Punjab, India. Her industry work expe‐
rience includes design of mini/small hydro power plants. She has 20 years
of teaching experience. She is an Energy Auditor certified by Bureau of En‐
ergy Efficiency, Ministry of Power, India. She has delivered several expert
lectures in short-term training programmes (STTPs). She has published pa‐
pers in International Journals and conferences. Her research interests include
power system deregulation and operation, distributed generation, renewable
energy systems, SPV cells, and energy management.

Kanwardeep Singh received the B.E. degree in electrical engineering from
Giani Zail Singh Campus, College of Engineering & Technology, Bathinda,
India, in 1996, and M.Tech. degree in electrical engineering with specializa‐
tion in power systems from Regional Engineering College, Kurukshetra
(presently National Institute of Technology, Kurukshetra), India, in 2000. He
obtained Ph.D. degree from Indian Institute of Technology (IIT), Roorkee,
India, under Quality Improvement Programme scheme of All India Council
for Technical Education, New Delhi, India, in 2010. He is serving as an As‐
sociate Professor and Head in Department of Electrical Engineering of Guru
Nanak Dev Engineering College, Ludhiana, India. He has published and re‐
viewed many research papers in reputed international/national journals and
conferences. He has delivered expert lectures during many conferences and

continuing education programmes. His research interests include transmis‐
sion open access, reactive power management, distributed generator place‐
ment, renewable energy, transmission expansion planning, and demand re‐
sponse based electricity pricing systems.

Vinod Kumar Yadav received the B.Tech. degree in electrical engineering
from Institute of Engineering and Technology, Bareilly, India, in 2003, the
M. Tech. degree in power system engineering from National Institute of
Technology, Jamshedpur, India, in 2005, and the Ph. D. degree in power sys‐
tem engineering from Indian Institute of Technology, Roorkee, India, in
2011. Since 2011, he is associated with various technical universities and in‐
volved in teaching electrical engineering. Currently, he is an Associate Pro‐
fessor of Electrical Engineering Department, Delhi Technological University
(previously Delhi College of Engineering), Delhi, India. He has received
Commendable Research Award from Delhi Technological University on
March 13, 2020, and also received Best Teacher Award from National Edu‐
cation Association, Uttar Pradesh, India, on October 1, 2016. He has re‐
ceived best paper award in International Conference on Electrical and Elec‐
tronics Engineering held at National Power Training Institute, Faridabad, In‐
dia, in 2020, and he is also an active member of professional bodies such as
IEEE and International Association of Engineers. He has published around
90 papers in reputed journals and conferences. His research interests include
optimization of renewable energy systems, power system planning and opti‐
mization, distributed generation and smart grid.

560


