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Power Curve Modelling for Wind Turbine
Using Artificial Intelligence Tools and
Pre-established Inference Criteria
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Aida A. Ferreira, and Manoel Afonso de Carvalho Jr.

Abstract—We propose a new way to develop non-parametric
models of power curves using artificial intelligence tools. One
parametric model and eight non-parametric models are devel-
oped to emulate the behavior described by the power curve of
the wind farms. A comparison between the power curve models
based on artificial neural networks (ANNs) and those based on
fuzzy logic are also proposed. Some of the power curve models
based on ANNs and fuzzy inference systems (FISs) are used as
well as two new FISs with the proposed new heuristic. An ini-
tial pre-training is proposed, resulting from the characteristics
derived from the expert inference followed by a transformation
of a fuzzy Mamdani system into a fuzzy Sugeno system. Al-
though the presented values by the error indicators are compa-
rable, the results show that the new pre-trained FIS models
have better precision compared with the ANN and FIS models.
The comparative study is conducted in two wind farms located
in northeastern Brazil. The proposed method is a relevant alter-
native to improve power curve approximation based on an FIS.

Index Terms—Wind turbine, pre-training, artificial intelli-
gence, artificial neural network (ANN), fuzzy inference system
(FIS).

[. INTRODUCTION

HE modelling of power curves is a crucial factor in

wind power operation, which contributes to different as-
pects of the operation, e.g., control and performance im-
provement of a wind turbine or a wind farm [1], [2]. There
are currently several techniques to adjust the modelling of
power curves. The methods can be either parametric or non-
parametric. The non-parametric models create a heuristic
method based on the dataset to represent the behaviors and
features of wind farms or wind turbines.
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In [3], a data-driven method for the performance analysis
of wind turbines was presented. In [4], three different opera-
tion curves were used to monitor the performance of a wind
farm: the power curve, the rotor curve, and the blade tilt
curve. Five years of historical data were used. Using wind
speed as an input variable, a database was established to con-
struct the wind power reference curves, rotor speed, and tilt
angle of the blade. In [5], parametric and non-parametric
models of power curves in wind turbines were developed.
The parametric models used four to five expressions of logis-
tic parameters. The parameters were defined using the genet-
ic algorithm (GA), evolutionary programming (EP), particle
swarm optimization (PSO), and differential evolution (DE).

In [6], an equivalent wind power model was developed
for forecasting. A summary of the available data, methodolo-
gy, and validation of results was included. In [7], to deter-
mine nominal wind speeds, wind turbines were continuously
operated at their maximum power coefficient to maximize
the annual energy production (AEP).

In [8], a new method called the alternative moment meth-
od (AMM) was introduced to estimate the parameters of the
Weibull distribution. In [9], a model based on data partition
centers was developed, and data mining was proposed to
construct the model. In [10], a control model that considered
the losses related to the tread effect in the performance of a
maximum power point tracking (MPPT) model was devel-
oped using a power curve.

In [11], the power uncertainty was estimated for a wind
turbine operating between the cut-in speed and the nominal
wind speed. In [12], the probabilistic interconnection be-
tween speed and power was demonstrated, which allowed
for a performance comparison of two plants, and it can be
used to simulate plant operations through sampling.

In [13], the impact of large offshore wind farms was mod-
elled on a large power system using realistic wind power
prediction errors and a complete model of unit commitment,
economic dispatch, and energy flow. In [14], a review of the
state-of-the-art technologies monitoring wind turbines was
conducted, including descriptions of different maintenance
strategies. In [15], an extensive review was presented in
short, medium, and long terms. In [16], a dynamic method
was introduced for determinating power curves for wind tur-
bines.

JOURNAL OF MODERN POWER SYSTEMS
AND CLEAN ENERGY



ALBUQUERQUE et al.: POWER CURVE MODELLING FOR WIND TURBINE USING ARTIFICIAL INTELLIGENCE TOOLS...

Recently, the substantial growth of the Brazilian load de-
mand is inevitable. Wind energy is one of the solutions.
However, wind speed variability introduces a random profile
in the energy matrix. Thus, over the years, heuristics and ap-
plications that seek to achieve the optimality of the control
and operation have been increasingly developed. The con-
cepts and techniques of artificial intelligence are applied to
wind forecasting in order to improve the adaptation of wind
farms and wind turbines under varying conditions.

One important element of wind power forecasting is a
model that attempts to reproduce the power curve of a wind
farm or machine under a given load condition when connect-
ed to an electrical network. This is the motivation for devel-
oping the models of power curves that optimally match wind
turbine performance and enhance the reliability of power sys-
tem.

II. POWER CURVES

Power curves of wind turbines represent the physical rela-
tionship between the electric power generated by the wind
turbine and the wind speed incidence at the height of the ro-
tor hub. According to the International Energy Agency
(IEA), a power curve is the functional identity of a wind tur-
bine and is defined as a performance certificate guaranteed
by the manufacturer.

A typical power curve is modeled based on three basic
characteristics: the cut-in speed, the range of wind speed
constituting the region of effective operation, and the cut-out
speed. These aspects are defined for a given height of the ro-
tor hub in the steady state without turbulence.

These three features delimit the power curve of any tur-
bine. The operation range of the turbine is established and
the minimum and maximum operation values of the average
speed and average power are defined. A schematic diagram
of a power curve can be found in Fig. SAl of Supplement
A [1].

According to [17], power curve is more important. Cou-
pled with the average wind speed and statistical distributions
such as the Rayleigh distribution, the power curve provides
the information which is indispensable in predicting the an-
nual energy yield.

Using the power curve to control a wind farm is another
generalized method, which considers the limitations of ma-
chine construction. Generally, for a wind farm, the measure-
ments are taken over a specific period. The average of the
variables is then calculated and aggregated to the wind
speed period. The average values should be appropriate ac-
cording to the local or global control analysis of the wind in-
cidence on a single wind turbine or on several wind turbines
in the wind farm.

Figure 1 shows the average power curve for a wind farm,
which represents the average range of speeds versus the aver-
age power range for all wind turbines in the wind farm.

The available wind energy that crosses the rotor of a wind
turbine can be obtained as:

PL)= 5 pAv (1)
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Fig. 1. Average speed versus average power for a wind farm.

where P, (v) is the power linked to a wind speed v; 4 is the
surface area of the turbine rotor; and p is the air density (a
typical value is 1225 kg/m?® [18]). P, is the power generated
by a wind turbine by means of the power coefficient and ef-
ficiency extracted from the wind generators:

P,=3nC,P, 2)

where C, is the non-dimensional power coefficient, which
represents the theoretical amount of mechanical force that
can be extracted by the turbine rotor; and # is the efficiency
of the wind turbine [19]. C, is an expression that relates the
blade tip speed of the turbine 4 and the blade inclination an-
gle 6 [20]. The theoretical maximum mechanical energy ex-
tracted by wind turbines is 0.5926, which is known as
Betz’s limit [21].

III. Fuzzy INFERENCE SYSTEM (FIS)

A. Mamdani FIS

The Mamdani inference model is one of the first systems
using fuzzy set theory [22]. The semantic rule which is tradi-
tionally used to process inferences with the Mamdani model
is called the maximum and minimum inference. Union and
intersection operations are used between sets of the same
form [22]. The production rules in a Mamdani model have
fuzzy relations between in antecedents and their consequents.

Considering that a fuzzy system is composed of n rules
with one of the rules represented as: if X, =4,, X,=4,, ..,
X,=A4, then Y =B, where X, are the system inputs;
A4,,4,,...,4; are the linguistic variables defined by the input
relevance function; Y, is the output; and B, is a linguistic
variable defined by the output relevance function.

B. Sugeno FIS

Fuzzy Takagi-Sugeno-Kang (TSK) inference [23] is simi-
lar to Mamdani inference in many aspects, since the two ini-
tial stages of inference, which are the fuzzification of the in-
puts and the application of the fuzzy operator, are the same
in both systems. The difference lies in the output. In a TSK
system, a tendency toward a constant or linear character can
be assumed.

We develop a new heuristic that uses the pre-established
inference for training and parameterizing the models of pow-
er curves. The proposed heuristic consists of an initial train-
ing that uses fuzzy inference, which is a starting point for
the parameterization of the model. This stage is performed
on fuzzy Mamdani models and is called the pre-set. The sec-
ond stage consists of the transformation of the Mamdani
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model into a Sugeno model with similar parameters as in the
previous model, which is necessary to reinforce the learning
process. In the third stage, an adaptive neuro-fuzzy inference
system (ANFIS) is used to optimize the parameters of FIS
Sugeno block with a less complex starting point than the ini-
tial point.

In the process of secondary learning, ANFIS is used to es-
tablish the best parameters of the resulting FIS through neu-
ral networks. Examples of parameters include the number of
membership functions, the types of membership functions
(Gaussian), the best arrangement at each specific interval,
the range of inference, and the number of clusters used in
the learning. The pre-trained FIS can be considered as a less
entropic set, i.e., with a better-defined clustering, than the
starting point of the system without defining the parameters.
The proposed method significantly improves learning the mod-
els of power curves, which is verified by evaluation indices.

IV. DATA ARRANGEMENT

A comparative study is conducted on two wind farms in the
coastal region of northeastern Brazil based on the historical da-
ta of supervisory control and data acquisition (SCADA). The
data are provided by the Brazilian electric system operator.

Wind farm 1 has 28 Suzlon model S88 aerogenerators of
2100 kW and 60 Hz with a rotor diameter of 88 m. They
are installed in the towers with a height of 80 m for a total
installed capacity of 70.56 MW. Wind farm 2 has 60 Suzlon
model S88 acrogenerators of 2100 kW and 60 Hz with a ro-
tor diameter of 88 m. They are installed in towers with a
height of 80 m for a total installed capacity of 126 MW.

The databases are inserted into the models through the
construction of conditioning patterns with two basic sets.
First, the learning set is used to train the models, and sec-
ond, the simulation set is used to compare the efficiency be-
tween the models. The learning set is divided into smaller
subsets called the training, testing and validation sets with
60%, 20%, and 20% of the data, respectively. The learning
set covers approximately two years in wind farm 1 and three
years in wind farm 2. The simulation is carried out over one
year for both wind farms.

After defining the learning and simulation sets, the train-
ing phase starts to train the models in order to ensure a good
approximation of the power curves for each wind farm. The
effectiveness of the learning process is verified in the simula-
tion phase. The dataset arrangement and number of patterns
are provided in Table I.

TABLE I
DATASET ARRANGEMENT AND NUMBER OF PATTERN

Duration of No. of Duration of No. of

Wind farm learning (hour) patterns simulation (hour) patterns
g (learning) (simulation)

Wind farm 1 14-22 2064 23-9 3664

Wind farm 2 10-23 3950 23-0 1390

V. POWER CURVE MODELS OF WIND TURBINE

Although the power curve provided by a manufacturer de-
scribes the relationship between the wind speed and power
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generated for a specific air density, it does not consider the
installation site or wear of the wind turbine. Therefore, it is
important to develop the models of power curves for wind
farms in operation.

In [24], no discrepancies are found between the power
curves at low wind speeds and high wind speeds. Another
important point is that due to wind speed variability, the
power curve provided by a manufacturer is an unsuitable
model to estimate the generated power since it ignores dy-
namic wind trends [25].

In [26], based on the slope method and monotonic spline
regression, two non-parametric techniques are presented to
construct power curves of wind turbines that preserve mono-
tonicity. The results show that monotonic spline regression
has the best performance because its power curve is more
similar to the theoretical one.

n [27], three advanced models of power curves for aero-
generators are evaluated based on the techniques such as the
Gaussian process (GP), random forest (RF), and support vec-
tor machine (SVM). The performance of the developed mod-
els of power curves is then compared using appropriate pre-
cision metrics. The power curve based on a GP has the high-
est tuning accuracy, while the SVM has the lowest accuracy,
although it produces acceptable results with a narrow range
of wind speed.

Considering various parameters in power estimation by in-
cident winds, we develop nine models of power curves for-
wind turbine: two with artificial neutral networks (ANNS),
two with FIS (Mamdani), two with FIS (Sugeno), two with
FIS (Sugeno) by ANFIS, and one with the latest fuzzy mod-
els. Note that the data range is chosen to better adapt the
models of power curves with actual operation of the wind
farms, which focuses on the effective region of the power
curves between the cut-in and cut-out speeds.

A. Average Power Curve (Reference Model)

The parametric model of the average power curve is main-
ly based on the average power curve of wind farms 1 and 2.
Thus, to ensure a good approximation of the trend, a polyno-
mial function is constructed to suit the characteristics of the
average power curve. The average power curve consists of a
parametric model that determines a polynomial function, es-
tablishing the approximate average relation of the power
curve based on the given database.

The polynomial function is composed of specific, well-
known sections in the power curve. In this paper, medium
curve models are operation models, and the region is of ef-
fective operation, i.e., after the cut-in region and before the
cut-out region. Therefore, the polyfit function in MATLAB
is used to generate the medium curves. Four polynomial re-
gions are considered in each wind farm dataset, as shown in
Fig. 2. To approximate each region, we use a suitable poly-
nomial degree: degree 3 for the first 3 regions and degree 0
for the region of constant power.

The polynomial forms for each region are expressed as
follows. The equations include polynomial coefficients that
create a best fit approximation. The region names character-
ize the relationship between the points, which is specified ac-
cording to a distinctive polynomial for both wind farms.

1) Cubic region 1 of wind farm 1 is described as P, (V)=
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-0.02v* —0.89v* +4.82v—0.05.

2) Cubic region 1 of wind farm 2 is described as P, (V)=
-0.09v* +0.68v* —0.17v+0.02.

3) Cubic region 2 of wind farm 1 is described as P (V)=
—0.11v* +3.22v* —22.67v+49.48.

4) Cubic region 2 of wind farm 2 is described as P, ()=
—0.09v* +3.02v* —20.37v +43.36.

5) Cubic region 3 of wind farm 1 is described as P (v)=
1.63v° —64.48v* +851.52v—3696.9.

6) Cubic region 3 of wind farm 2 is described as P.5, (V)=
0.29v* —13.94v* +222.17v—1083.8.

7) Constant region of wind farm 1 is described as P.; (V)=
51.63.

8) Constant region of wind farm 2 is described as P., ()=
98.64.

Wind farm 1 Wind farm 2
__ 60 ¥ 150
Z2 Z
b 40 = 100
! H
ER) z 50
S )
= 0 - "R o
0 5 10 15 20 25 0 5 10 15 20 25
Wind speed (m/s) Wind speed (m/s)

* Real average power curve; ¢ Cubic region 1; » Cubic region 2

& Cubic region 3; = Constant region

Fig. 2. Polynomial approximations relative to average power curves in
wind farms 1 and 2.

B. Non-parametric Models of Power Curves Using ANNs

ANNSs are applied in the structure of two models of power
curves, and the choice of their input variables is made due
to their close correlation with wind speed. More than one
hidden layer is used in the architectures, which enhances the
approximation precision. The Levenberg Marquardt learning
algorithm is applied in ANN models, and the hyperbolic tan-
gent is used as the activation function in each layer [1].

1) PCI-ANN Model

The PCI-ANN model consists of a multi-layer perception
(MLP) neural network with the average wind speed as the in-
put and the average wind power as the output. The PCI-
ANN architectures and characteristics for wind farms land 2
are shown in Figs. SA2-4 of Supplement A.

2) PC2-ANN Model

The PC2-ANN model consists of an MLP neural network
with two inputs: the average wind speed (output) and the av-
erage wind direction. The architectures of PC2-ANN [1] for
wind farms 1 and 2 are shown in Figs. SA5-6 of Supple-
ment A, respectively. The approximation characteristics of
the networks for both wind farms are shown in Fig. SA7 of
Supplement A.

C. Non-parametric Models of Power Curves Using Fuzzy Logic

In this paper, we use the models based on three distinct
types of fuzzy systems: Mamdani inference, TSK inference,
and an ANFIS neuro-fuzzy system.

1) PCl-fuzzy (Mamdani) Model

The PCl-fuzzy model consists of an FIS with the average
wind speed as the input and the average wind power as the
output [1]. For the learning phase, the PC1-fuzzy (Mamdani)
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model is manually constructed by trial and error to describe
the appropriate position for the pertinence function in an es-
tablished range and compare the obtained and expected val-
ues. PCl-fuzzy has one input and one output, each of which
has five logistic sigmoidal member functions derived from
the distribution of the speed in relation to the power.

The architecture of PCl-fuzzy is shown in Fig. SA8 of
Supplement A. PCl-fuzzy resulting from the learning pro-
cess related to wind farms 1 and 2 is shown in Fig. 3.

Wind farm 1 Wind farm 2
— 60 __ 100
B z
s 4 S
T 20 T 50
5] 5]
g0 g
-20 - - - : - - - y
0 s 10 15 20 0 S 10 15 20
Wind speed (m/s) Wind speed (m/s)
Fig. 3. PCl-fuzzy resulting from learning process related to wind farms 1

and 2.

2) PC2-fuzzy (Mamdani) Model

The PC2-fuzzy model is a Mamdani FIS with two inputs:
the average wind speed and the average wind direction. The
output is the average wind power. The learning stage of the
PC2-fuzzy (Mamdani) model is manually constructed by tri-
al and error to describe the appropriate position for the perti-
nence function in an established range and to compare the
obtained and expected values. Five logistic sigmoid func-
tions are used for the speeds and seven Gaussian member
functions are used for the direction. The same criterion of
the five logistic sigmoid functions is used by the output in-
ference. The architecture of PC2-fuzzy is shown in Fig. SA9
of Supplement A. Figure 4 shows the PC2-fuzzy surfaces re-
sulting from the learning process. The same heuristic is used
for both wind farms.

Wind farm 1
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Fig. 4. PC2-fuzzy surface resulting from learning process related to wind
farms 1 and 2.
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3) PCl-fuzzy (Sugeno) Model and PCIl-fuzzy (Sugeno-AN-
FIS) Model

PCl-fuzzy (Sugeno) and PCl-fuzzy (Sugeno-ANFIS) ap-
ply the wind speed as the input and the average wind power
as the output with TSK as the inference. The output is dis-
criminated by ranges. And each range obeys a specific infer-
ence function, either constant or linear.

To convert the characteristics of a Mamdani FIS into a
Sugeno FIS, the “mam2sug” transformation function in
MATLAB is applied. The transformation converts a Mamda-
ni FIS, where the inference is given by the criterion of the
maximum and minimum range, to a Sugeno FIS, whose in-
ference or output function is given by linear or constant
functions related to each range. The main difference between
the traditional Sugeno models and the models developed in
this paper is the pre-training, resulting from the use of the
“mam2sug” transformation.

After the transformation, the input data clustering be-
comes better defined, i.e., more classes of data per range of
input variables are formed. The increasing number of classes
increases the amount of information per track, which improves
the performance of the PC1-fuzzy (Sugeno-ANFIS) model and
makes it more accurate than a TSK system with standard ini-
tialization without pre-training. After the pre-training, PC1-
fuzzy (Sugeno) model is obtained without using ANFIS.

The routine for creating the fuzzy PC (Sugeno-ANFIS) is as:

1) Creation of FIS (Mamdani)

a) The learning database is initialized in FIS, and the in-
puts and outputs are loaded into it.

b) The numbers of intervals of the respective inputs and
outputs are selected by successive tests.

c) The type of member function inferred in each interval
is chosen through the correlation trend between the input
and output variables.

d) The best arrangement of the member functions in each
interval is manually adjusted by trial and error until the val-
ue of the output reaches a satisfactory approximation level.

2) Creation of pre-established inference (pre-training)

a) The “mam?2sug” transformation is used, converting the
FIS (Mamdani) into the FIS (Sugeno).

b) The learning database is started in ANFIS.

c) A satisfactory sampling radius is defined on ANFIS.

d) With the value of the sample ray, the grid partition
function is chosen. It automatically adjusts the best arrange-
ment of the member functions by interval.

e) FIS is created (Sugeno-ANFIS).

The architecture of the PC1-fuzzy (Sugeno-ANFIS) model
and the trend curve resulting from the new learning process
for both wind farms are shown in Figs. 5 and 6, respectively.

: Pre-training i ¢ Learning

: : Dataset

" ¥ PCl1-fuzzy
PC-fuzzy (Mamdani) : ANFIS .| (Sugeno-ANFIS)

Speed | PC-fuzzy f P
¥ i 1| (Sugeno)|
:| Converter (mam2sug) |i : 1
Mamdani—Sugeno | f
Fig. 5. PCl-fuzzy (Sugeno-ANFIS) resulting from learning process related

to wind farms 1 and 2.
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Fig. 6. Trend curve resulting from learning process related to wind farms

1 and 2.

4) PC2-fuzzy (Sugeno) model and PC2-fuzzy (Sugeno-
ANFIS) model

PC2-fuzzy (Sugeno-ANFIS) has similar characteristics
compared with those of PCl-fuzzy (Sugeno-ANFIS), differ-
ing only in its architecture. The average wind speed and the
average wind direction are the inputs and the average wind
power is the output. The heuristic and the methods used to
define the main parameters of this power approximation
block are similar to those described in the previous fuzzy
block. Besides, after the pre-training, PC2-fuzzy (Sugeno)
model is obtained without using ANFIS. PC2-fuzzy (Sugeno-
ANFIS) and the trend surfaces resulting from the learning
process are shown in Figs. 7 and 8§, respectively. The same
heuristic is used for both wind farms 1 and 2.

Pre-training i Learning
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Fig. 7. PC2-fuzzy (Sugeno-ANFIS) resulting from learning process related
to wind farms 1 and 2.
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Fig. 8. Trend surfaces resulting from learning process related to wind
farms1 and 2.



ALBUQUERQUE et al.: POWER CURVE MODELLING FOR WIND TURBINE USING ARTIFICIAL INTELLIGENCE TOOLS... 531

Figure 8 shows that there is a variation in the behavior
when there is a variation in the direction. The behavior is al-
so evident in the Mamdani FIS models. It can thus be con-
cluded that when there is an inherent variation in the speed
and direction, the Sugeno-ANFIS model is more suitable
than the Mamdani model.

VI. MODEL EVALUATION AND RESULT ANALYSIS

A. Format for Tables

The polynomial model of the average power curve is used
as a reference in the approximation. The mean absolute error
(MAE), normalized mean absolute error (NMAE), and root
mean square error (RMSE) between the approximate power
values are calculated for the curves and their respective real
values according to the database of wind farms 1 and 2.

The power predict error e,(k), the mean absolute power
prediction error MAE,(k), the normalized mean absolute
power prediction error NMAE,(k), and the root mean square
power prediction error RMSE, (k), are calculated in (3)-(6),
which is based on the installed capacity of the wind farm
P and RMSE:

total

ep(k)=P(k)— P (k) 3)
MAE , (k)=mean(| e, (k)] (4)
NMAE, (k)= P% mean (‘ ep(k) ’) (%)
RMSE (k)= | mean (‘ e, (k) D (6)

where P (k) and P (k) are the actual and desired outputs of
the network, respectively. The gain of the respective power
curve model is calculated in (7) when it is compared with
the reference model. In this case, the polynomial parametric
model of the average power curve is:

CA,,— CA(k)

G.....(k)=100
rgﬁLA( ) CArg/‘(k)

(7
where CA,,, is the evaluation criterion of the reference model;
and CA(k) is the evaluation criterion of the proposed model.
MAE, NMAE, and RMSE can be used as the evaluation criteria.

The performance indices MAE, NMAE and RMSE are
presented in Table II, which are relative to the approxima-
tions for both wind farms. Based on the results in Tables II
and III for wind farms 1 and 2, the PC2-fuzzy model (Suge-
no-ANFIS) has a considerable advantage over the other mod-
els. Besides, the ANN models with two inputs have the sec-
ond best performance, which is due to the close correlation
of average wind direction with average wind speed.

In the proposed method, a second variable along with
wind speed is applied as the input to the models of power
curves. Two hidden layers are used in the ANN models,
which enhances the learning performance of these models.

The significant difference between the error indicators for
wind farms 1 and 2 is important to be noted, which indi-
cates that the behavior of most of the algorithms on the
same dataset is similar. When a dataset can be easily ex-
plained by the models, all of the error indicators are low as

shown in Table II. However, when the dataset is difficult to
be explained, all of the error indicators are high as shown in
Table III, regardless of the algorithm used.

TABLE 11
PERFORMANCE OF MODELS OF POWER CURVES IN WIND FARM 1

Model MAE (MW) NMAE (%) RMSE (MW)
PCI1-ANN 1.84 2.61 3.58
PC2-ANN 1.59 2.26 2.09

PCl-fuzzy (Mamdani) 1.73 2.45 2.21
PC2-fuzzy (Mamdani) 1.87 2.65 2.37
PC1-fuzzy (Sugeno) 2.02 2.86 247
PC2-fuzzy (Sugeno) 1.82 2.58 2.31
PCl-fuzzy (Sugeno-ANFIS) 1.67 2.37 2.11
PC2-fuzzy (Sugeno-ANFIS) 1.57 2.22 2.00
Nmemveane s as s

TABLE III

PERFORMANCE OF MODELS OF POWER CURVES IN WIND FARM 2

Model MAE (MW) NMAE (%) RMSE (MW)
PC1-ANN 3.28 2.60 427
PC2-ANN 3.34 2.65 4.37

PC1-fuzzy (Mamdani) 3.79 3.01 5.18
PC2-fuzzy (Mamdani) 3.59 2.85 4.67
PC1-fuzzy (Sugeno) 3.57 2.83 4.76
PC2-fuzzy (Sugeno) 3.54 2.81 4.66
PC1-fuzzy (Sugeno-ANFIS) 3.27 2.59 4.26
PC2-fuzzy (Sugeno-ANFIS) 3.19 2.49 4.13
Average power curve 337 267 434

(reference model)

Similar behavior occurs for the Sugeno-ANFIS models
since ANFIS is responsible for deep learning by defining the
best parameters of the pre-trained FIS. The optimal search
accomplishes the influence of neuro-fuzzy inferences in the
training process, thus the performances of these models are
improved.

Figures 9, 10, and 11 are the bar diagrams that clearly ex-
press MAE, NMAE, and RMSE of the models for the in-
ferred power curves of both wind farms. Tables IV and V
present the gains of the proposed models of power curves
over the polynomial model of the average power curve. The
results represents the clear advantage of the pre-established
inference models, i.e., the PC2-fuzzy (Sugeno-ANFIS) and
PCI1-fuzzy (Sugeno ANFIS) models.

These gains are described by MAE, NMAE, and RMSE
indices of 50.65%, 50.65%, and 46.68%, respectively. For
wind farm 2, the PC1-fuzzy (Sugeno-ANFIS) and PC2-fuzzy
(Sugeno-ANFIS) models have the best results, as indicated
by the MAE, NMAE, and RMSE of 5.26%, 6.78%, and
4.70%, respectively.

Another relevant result is the advantage of the models
with two correlated inputs, which is expected due to the
greater amount of information provided to the fuzzy block.
The presence of some negative gains indicates lower perfor-
mance in relation to the reference model.
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Fig. 9. MAE of simulation set for models of active power curves in wind
farms 1 and 2.
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Fig. 10. NMAE of simulation set for models of active power curves in
wind farms 1 and 2.
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Fig. 11. RMSE of simulation set for models of active power curves in
wind farms 1 and 2.

TABLE IV
GAINS IN RELATION TO REFERENCE MODEL WIND FARM 1

Gain MAE  Gain-NMAE Gain-RMSE

Viode! (%) (%) (MW)
PC1-ANN 42.03 42.03 4.71
PC2-ANN 49.95 49.95 44.27

PC1-fuzzy (Mamdani) 45.69 45.69 41.07
PC2-fuzzy (Mamdani) 42.76 42.76 38.44
PCl1-fuzzy (Sugeno) 36.51 36.51 34.28
PC2-fuzzy (Sugeno) 42.76 42.76 38.44
PCl-fuzzy (Sugeno-ANFIS) 47.47 47.47 43.73
PC2-fuzzy (Sugeno-ANFIS) 50.65 50.65 46.68

The performance of the models of power curves on the
simulation dataset is shown in the power responses accord-
ing to Tables IV and V. The simulated power curves for
wind farms 1 and 2 are shown for all models except the
fuzzy Sugeno models, due to their low performance as
shown in Fig. 12.
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TABLE V
GAINS IN RELATION TO REFERENCE MODEL WIND FARM 2

Gain MAE  Gain-NMAE Gain-RMSE

Model %) %) MW)
PCI-ANN 2.67 2.67 1.59
PC2-ANN 0.87 0.87 —-0.83

PCl-fuzzy (Mamdani) -12.56 —-12.56 -19.39

PC2-fuzzy (Mamdani) -5.10 -5.10 -7.56

PCl1-fuzzy (Sugeno) -6.01 -6.01 -9.69

PC2-fuzzy (Sugeno) -5.10 -5.10 -7.56
PCl1-fuzzy (Sugeno-ANFIS) 2.86 2.86 1.74
PC2-fuzzy (Sugeno-ANFIS) 5.26 6.78 4.70

Wind farm 1 Wind farm 2
60 P 120
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; 40 / E 80

= 30 & = 60

o - (5]

Z 20 / £ 40

3 )

£ 10 20

0 5 10 15 20 0 ] 5 10 15 20
Wind speed (m/s) Wind speed (m/s)

= PCI-ANN; < PC2-ANN; » PCl-fuzzy (Mamdani); = PC2-fuzzy (Mamdani)
» PC1-fuzzy (Sugeno); + PC2-fuzzy (Sugeno)
PC1-fuzzy (Sugeno-ANDIS); » PC2-fuzzy (Sugeno-ANDIS)

Fig. 12. Responses of power curves for entries of simulation dataset.

The small and similar errors are achieved in the devel-
oped models. Small differences may have an impact on the
power forecasting, the generation dispatching from other
sources, the cost of the generator system, and the finances of
the wind farm owner. The energy quantity saved by the pro-
posed methods is shown in Tables II and III. The best model
saves 0.02 MW (in MAE) more than the second best model
in wind farm 1 and 0.08 MW (in MAE) in wind farm 2.

VII. CONCLUSION

In this paper, a new method is proposed to improve the
performance of approximation models of power curves. Pre-
established inference is applied, resulting from the conver-
sion of a Mamdani FIS into a Sugeno FIS.

The results indicate that the pre-training is effective in
terms of improving the power curves because it selects the
clusters with a pre-defined organization tendency. And the re-
sult database has less data entropy, which is a decisive factor
in obtaining satisfactory results in the learning process.

Two wind farms are studied. The reference model is a
polynomial parametric model of the average power curve.
The performance evaluation shows that the proposed fuzzy
model outperforms the others. The pre-inference criteria im-
proves the performance of the fuzzy models in this paper
compared with that of other models. Moreover, the models
presenting the best performance are those with two inputs:
the average wind speed and the average wind direction. The
choice of these variables is based on the study on correlation.

The gains obtained by the new models in relation to the
average power curve (the reference model) are particularly
satisfactory for wind farm 1, where the gains in MAE,
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NMAE, and RMSE indices of the highest pre-established in-
ference models are 50.65%, 50.65%, and 46.68%, respectively.

For wind farm 2, due to better wind speed and direction
data, the pre-established inference models also have positive
gains in MAE, NMAE, and RMSE indices, which are
5.26%, 6.78%, and 4.70%, respectively. However, they are
much more modest in relation to the gains for wind farm 1.

The proposed models exhibits better performance com-
pared with those in [12] and [10]. NMAE can be approxi-
mated in the range of 2.9% to 5.5% in [10] and 1.0% to
14% in [12], whereas the models developed are in the range
of 2.2% to 4.5% for wind farm 1, and 2.3% to 3.0% for
wind farm 2. In [12] and [10], the models address the power
in kW. While in this paper, the models address the power in
MW. The results are quite satisfactory when considering the
installed capacity of the wind farms.
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