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An Improved Fuzzy Method for Characterizing
Wind Power

Yue Xiang, Shuai Hu, Junyong Liu, and Rui Wang

Abstract——An improved fuzzy method is proposed to derive a
fuzzy number for characterizing uncertain wind power. The in‐
put measurement data are firstly converted into nested sets,
and the fuzzy number is further obtained based on nested set
transformation method. Numerical studies have demonstrated
the effectiveness and advantages of the improved fuzzy method.

Index Terms——Wind power, fuzzy method, uncertainty, nested
set.

I. INTRODUCTION

WITH the increase of wind generation, inaccurate char‐
acterizing of wind power may bring large power out‐

age or greatly impact the stable operation and effective plan‐
ning of penetrated power systems [1], [2], due to its uncer‐
tainty. It is essential for integrated energy systems to charac‐
terize the uncertainty features of wind power.

Numerous studies have been investigated for characteriz‐
ing wind power, in which probabilistic and fuzzy methods
are the most popular. Probability distribution is the basis for
the probabilistic method. However, its application is limited
by the effectiveness of generating specific probability distri‐
bution with real data and the computation complexity [3].
On the other hand, due to concise engineering linguistic ex‐
pression based on fuzzy set theory [4], the fuzzy method is
easy to be implemented, and mainly focuses on characteriz‐
ing wind power in this paper. Briefly, the fuzzy set theory
depicts the degree of an element x ∈R, which belongs to a
certain set by a discrete or continuous membership function
μ(x)∈[0,1], rather than an absolute 0 or 1 in the deterministic
set theory. A class of special fuzzy set called fuzzy number,
satisfying "x1 < x2 < x3 ∈R, μ(x2)³min(μ(x1), μ(x3)), is used
to characterize uncertainty in the fuzzy modeling. Several
methods are proposed for determining the fuzzy number,

among which the classic ones are fuzzy factor based method
(FFM) [5] and data clustering based method (DCM) [6].
However, considering the rapid real-time volatility and the
proportion growth of penetrated wind power, the subjective
selection of factor and partial data discarding in existing
fuzzy methods ignores the cumulative information of mea‐
surement data distribution.

Thus, in order to improve the accuracy of fuzzy modeling
for wind power, an improved fuzzy method is proposed. The
result is expressed as a fuzzy number, which is derived
based on nested set transformation method. The proposed
method combines the advantages of data cumulative charac‐
teristic into fuzzy modeling, and provides a more concise
and accurate method to derive the fuzzy number for charac‐
terizing wind power.

II. METHODOLOGY

Wind power, which is naturally generated according to
wind speed, etc., varies within a certain range during each
scheduling time period considering the limitation of cut-in
and cut-out speeds, but the cumulative numbers of wind
power value diversely fall in different narrowed ranges (regu‐
lar set). In other words, the wind power data can be de‐
scribed by a group of nested intervals with different “possibili‐
ty”, i.e., nested set. A nested set consists of a set of regular
sets and is marked by the index function, which can be
formed by the data with preparation. Considering the great
volume of the measurement data of aggregated wind tur‐
bines, the set of reduced time series output data set in the nth

time period, denoted as Sn, can be constructed at the sample
interval, denoted as Δt, and formulated as:

Sn ={X1X2XiXNWT
} "n= 12NC (1)

Xi ={xi1xi2xikxiNS
} "i = 12NWT (2)

where NC is the number of time period ΔT; NWT is the num‐
ber of aggregated wind turbines; NS =ΔT/Δt is the sample
number; Xi is the time series data set for the ith aggregated
wind turbines; and xik is the kth sampled data for the ith aggre‐
gated wind turbines.

Whereas the variables change within a certain range in the
nth time period, Xi can be rearranged to form an ordered data
set: X 'i ={x'i1x'i2x'ikx'iNs

}, satisfying "k1 <k2 =1, 2, NS ,

x'ik1
£ x'ik2

. Therefore, Sn can be converted into the set of nest‐

ed set Θn [7], which is expressed as:
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Θn ={Π1Π2Π iΠNWT
} "n= 12NC (3)

Π i ={Li (α)| αÎ[01]} "i = 12NWT (4)

L i (α):[x'ikx'i(NS + 1- k)] "i = 12NWT (5)

[x'ik2
x'i(NS + 1- k2)]Í [x'ik1

x'i(NS + 1- k1)] " k1 < k2 (6)

core= ceil (NS

2 ) (7)

α=
k

core
"k = 12core (8)

where ceil(·) is the rounding up function; L i(·) is the index
function of the nested set Πi; and Πi is the nested set com‐
posed by Li corresponding to Xi, which is graphically shown
as a group of overlapped colored line segments on the data
axis in Fig. 1, each line segment represents the relevant regu‐
lar set L i ( )α of the nested set Πi.

Considering the equivalence of fuzzy set and nested set
[8], it is graphically indicated by rearranging each regular
set L i ( )α according to α in Fig. 1. When the nested set is ob‐

tained, the discrete membership function μ i (x), i. e. the red
triangles in Fig. 1, for the ith aggregated wind turbines in the
nth time period is transformed as:

μ i (x)=Ú{α | xÎL i ( )α } xÎXi"i = 12NWT (9)

where Ú is the maximum operator.
After that, due to the formed triangular shape approxi‐

mates as shown by green dotted line in Fig. 1, and its wide‐
spread utilization in electrical engineering field [4], [5], the
triangular fuzzy number is utilized as the prototype for fur‐
ther continuous and fitting processing of μ i (x). The triangu‐
lar fuzzy number can be uniquely defined by three parame‐
ters: Ã tria = (t inf, tker , t sup), where tker is the most possible value
(membership degree is 1) of wind power, and t inf and t sup are
the least possible values (membership degree is 0). Its mem‐
bership function is expressed as:

μ
A͂tria
(x)=

ì

í

î

ï
ïï
ï

ï
ïï
ï

x- t inf

tker - t inf
t inf £ x< tker

t sup - x

t sup - tker
tker £ x£ t sup

0 others

(10)

The piecewise linear regression analysis is then used to
get the piecewise regression parameters for the left and right
parts of (10), denoted as aI

i and bI
i, aII

i and bII
i , respectively.

Finally, the fuzzy number for characterizing uncertain
power of the ith aggregated wind turbines in the nth time peri‐
od can be derived as X͂i = (t inf

i t ker
i t sup

i ).

t inf
i =-

bI
i

aI
i

(11)

t ker
i =

1
2 ( )1- bI

i

aI
i

+
1- bII

i

aII
i

(12)

t sup
i =-

bII
i

aII
i

(13)

Repeat the process for all the aggregated wind turbines,
the set of fuzzy numbers for characterizing uncertain wind
power in the nth time period can be obtained as:

S͂n ={X͂1X͂2X͂iX͂NWT
} (14)

The process during other time periods is similar, and the
flow chart of the proposed nested set based method (NSM)
is given in Fig. 2.

III. CASE STUDY

The utilized measurement output data of the aggregated

Data axis

1

α  

0

Li(1):[xicore, xi(Ns+1�core)]

M
em

be
rs

hi
p

de
gr

ee Li(α):[xik, xi(Ns+1�k)]
�

�

�

�

�

Li( core ):[xi1, xiNs
]1

xi1 ��xik xicore xi(Ns+1�core) xi(Ns+1�k) xiNs

′

′ ′ ′ ′ ′ ′

′

′ ′

′ ′

Fig. 1. Illustration for nested set and triangular shape of discrete member‐
ship function.
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Input the measurement data of aggregated
wind turbines within NC time periods; set n=1

Construct Sn in the nth time
period using (1) and (2); set i=1

Form the unit nested set Πi for the ith
aggregated wind turbines using (4)-(8)

Calculate the discrete membership function for
the ith aggregated wind turbines using (9)

Calculate the piecewise regression parameters
ai , bi , ai , bi  for the ith aggregated wind turbinesI ⅡI Ⅱ

Calculate the fitted parameters for the ith
aggregated wind turbines using (11)-(13)

i = i +1

n = n +1

i > NWT?

n > NC?

Derive the fuzzy number for output power of
the ith aggregated wind turbines in the nth time period

Output the fuzzy number for uncertain
power of all aggregated wind turbines

Fig. 2. Flow chart of proposed NSM.
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wind turbines per minute within 24 hours for case study are
provided in [9]. Let ΔT = 1 hour, Δt = 1 min. The results of
characterizing wind power using a fuzzy number (t inf, tker , t sup)
for each time period are given in the last column of Table I
to show the advantages of the proposed NSM, compared
with results by FFM and DCM that are given in the second
and third columns of Table I.

As shown in Table I, the values of tker at each time period
with the three fuzzy methods are almost the same. However,
it is quite different in terms of tinf and tsup. Taking the 12th

hour as an example, the fuzzy number for characterizing
wind power by NSM is X͂NSM =(0.53, 0.58, 0.62)MW, which
indicates the power output of wind power is around 0.58 MW.
More quantitatively, the fluctuation range would be within
(0.53, 0.62)MW and the most possible value is 0.58 MW, the
membership degrees of others can be calculated by using (10).
Compared with the results with FFM and DCM, which are
X͂FFM =(0.52, 0.58, 0.64)MW and X͂DCM =(0.55, 0.58, 0.61) MW,
although the central value is still 0.58 MW, the characterized
fluctuation ranges of wind power are different. The above in‐
dicates the proposed NSM method could keep the stability
of the mean value of fuzzy numbers, but vary in the fluctua‐
tion characterizing by magnified or narrowed tinf and tsup.
Moreover, the improvement by the proposed method would
be compared and explained by the following data matching

index.
The coverage degree (CD), i.e., the ratio of the data range

covered in the results to the whole data range, and the over-
coverage degree (OCD), i.e., the ratio of the data range not
covered in the results to the range of results, are designed to
quantitatively evaluate the characterization performance of
the results, which can be calculated by:

CDi =
min(max(Xi)t sup

i )-max(min(Xi)t inf
i )

max(Xi)-min(Xi)
(15)

OCDi = 1-
min(max(Xi)t sup

i )-max(min(Xi)t inf
i )

t sup
i - t inf

i

(16)

The completeness of characterization performance is repre‐
sented by CD, and a higher CD means a better complete‐
ness. The non-conservation of characterization performance
is represented by OCD, and a lower OCD means better non-
conservation. The closer the CDÎ[0,1] is to 1 and
OCDÎ[0,1] is to 0, the better characterization performance
would be, i.e., the best performance is attained when CD = 1
and OCD = 0.

As can be seen from the CD and OCD values with differ‐
ent methods in Fig. 3(a), FFM corresponds to high OCD val‐
ues, which reaches 0.2095 in the worst case (the 21th hour)
while NSM and DCM keep at 0. As shown in Table I, the re‐
sults of tinf and tsup with FFM are always the smallest and
largest ones. This phenomenon is due to the subjective selec‐
tion of empirical factor when FFM is applied, so that the re‐
sult is conservative. DCM corresponds to low CD values,
which are 33% and 41% lower than NSM and FFM in aver‐
age, respectively. As shown in the third column of Table I,
the results of tinf and tsup of DCM are always the largest and
smallest ones. The result with DCM is incomplete because
of the data discarding in the clustering process.

Delightedly, the results of the proposed NSM holds both
relatively higher CD and lower OCD values compared with
FFM and DCM. Taking the 24th hour as an example, fuzzy
numbers are shown in Fig. 3(b), namely X͂FFM= (0.57, 0.63,
0.69)MW, X͂DCM= (0.59, 0.62, 0.65)MW, and X͂NSM= (0.58,
0.63, 0.67)MW, respectively. Although the central values are
nearly the same as mentioned above, the fluctuation ranges
of fuzzy numbers obtained with different methods are di‐
verse. Specifically, FFM enlarges the variation of wind pow‐
er and DCM is insufficient to characterize it because of the
low data utilization, while the proposed NSM could main‐
tain a low conservation without losing the integrity due to
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Fig. 3. CD and OCD values with different methods and fuzzy numbers at
the 24th hour. (a) CD and OCD values. (b) Fuzzy number.

TABLE I
FUZZY NUMBER OBTAINED WITH DIFFERENT METHODS

T (hour)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Fuzzy number (MW)

FFM

(0.43, 0.48, 0.53)

(0.51, 0.57, 0.63)

(0.49, 0.54, 0.59)

(0.49, 0.54, 0.59)

(0.50, 0.56, 0.62)

(0.46, 0.51, 0.56)

(0.57, 0.63, 0.69)

(0.58, 0.64, 0.70)

(0.49, 0.54, 0.59)

(0.49, 0.54, 0.59)

(0.47, 0.52, 0.57)

(0.52, 0.58, 0.64)

(0.56, 0.62, 0.68)

(0.54, 0.60, 0.66)

(0.51, 0.57, 0.63)

(0.55, 0.61, 0.67)

(0.54, 0.60, 0.66)

(0.58, 0.64, 0.70)

(0.54, 0.60, 0.66)

(0.54, 0.60, 0.66)

(0.54, 0.60, 0.66)

(0.50, 0.56, 0.62)

(0.50, 0.55, 0.61)

(0.57, 0.63, 0.69)

DCM

(0.44, 0.47, 0.50)

(0.55, 0.58, 0.62)

(0.52, 0.55, 0.58)

(0.50, 0.54, 0.57)

(0.53, 0.56, 0.58)

(0.49, 0.51, 0.54)

(0.60, 0.63, 0.66)

(0.61, 0.64, 0.67)

(0.51, 0.55, 0.58)

(0.51, 0.54, 0.56)

(0.49, 0.52, 0.54)

(0.55, 0.58, 0.61)

(0.59, 0.62, 0.65)

(0.58, 0.60, 0.63)

(0.54, 0.57, 0.60)

(0.58, 0.61, 0.66)

(0.57, 0.60, 0.63)

(0.61, 0.64, 0.68)

(0.57, 0.60, 0.63)

(0.57, 0.60, 0.64)

(0.57, 0.60, 0.63)

(0.53, 0.56, 0.59)

(0.52, 0.55, 0.58)

(0.59, 0.62, 0.65)

NSM

(0.43, 0.48, 0.52)

(0.53, 0.56, 0.63)

(0.50, 0.55, 0.59)

(0.49, 0.54, 0.59)

(0.52, 0.56, 0.61)

(0.47, 0.51, 0.55)

(0.58, 0.63, 0.68)

(0.60, 0.63, 0.69)

(0.50, 0.54, 0.59)

(0.50, 0.53, 0.58)

(0.47, 0.52, 0.56)

(0.53, 0.58, 0.62)

(0.58, 0.61, 0.66)

(0.56, 0.60, 0.65)

(0.53, 0.57, 0.62)

(0.57, 0.61, 0.67)

(0.56, 0.60, 0.65)

(0.59, 0.65, 0.69)

(0.55, 0.60, 0.65)

(0.55, 0.59, 0.66)

(0.56, 0.60, 0.64)

(0.52, 0.56, 0.61)

(0.50, 0.56, 0.59)

(0.58, 0.63, 0.67)
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the cumulative feature consideration of the measurement data.
The above analysis fully indicates that the proposed im‐

proved fuzzy method could keep the similar qualitative char‐
acterization results and improve the accuracy through the ob‐
tained fuzzy number. Furthermore, the influence of sample
interval Δt on fuzzy numbers using the proposed NSM is al‐
so explored. CD and OCD values with different sample inter‐
vals are shown in Fig. 4(a). It can be seen that the trend of
CD slightly decreases while that of OCD increases more as
Δt grows, which means the characterization performance has
a slightly better completeness and worse non-conservation
with a larger interval. For instance, as fuzzy numbers at the
24th hour shown in Fig. 4(b), tker at each Δt is very close, but
tinf gets smaller and tsup gets larger as Δt increases. That is,
with a shorter sample interval, the accuracy of the results
can be further enhanced, while the computation burden in‐
creases as well.

IV. CONCLUSION

This letter presents an improved data-driven fuzzy method
for characterizing wind power. It greatly helps improve the
accuracy for estimating wind power, due to the cumulative
feature consideration of measurement data distribution, com‐
pared with other fuzzy methods. The obtained fuzzy num‐
bers could further be integrated into specific applications to
strengthen the robust operation and planning of wind power
integrated system.
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