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Consumer Psychology Based Optimal Portfolio
Design for Demand Response Aggregators

Yunwei Shen, Yang Li, Qiwei Zhang, Fangxing Li, and Zhe Wang

Abstract——Demand response (DR) has received much atten‐
tion for its ability to balance the changing power supply and de‐
mand with flexibility. DR aggregators play an important role in
aggregating flexible loads that are too small to participate in
electricity markets. In this work, a DR operation framework is
presented to enable local management of customers to partici‐
pate in electricity market. A novel optimization model is pro‐
posed for the DR aggregator with multiple objectives. On one
hand, it attempts to obtain the optimal design of different DR
contracts as well as the portfolio management so that the DR
aggregator can maximize its profit. On the other hand, the cus‐
tomers’welfare should be maximized to incentivize users to en‐
roll in DR programs which ensure the effective and flexible
load control. The consumer psychology is introduced to model
the consumers’behavior during contract signing. Several simu‐
lation studies are performed to demonstrate the feasibility of
the proposed model. The results illustrate that the proposed
model can ensure the profit of the DR aggregator whereas the
customers’welfare is considered.

Index Terms——Demand response (DR), aggregator, contract,
consumer psychology, multi-objective problem, Pareto optimiza‐
tion.

I. INTRODUCTION

WITH the growing concern about reducing greenhouse
gas emission to achieve a sustainable and environ‐

ment-friendly energy system, renewable energy sources
(RESs) have drawn lots of attention all over the world [1].
The increasing penetration of RESs has posed significant
challenges to the operation of power systems [2], [3] due to
the inherent characteristics of RESs, which requires a more
flexible and effective way to maintain the balance between

supply and demand [4]. Demand response (DR) can deal
with peak demand, provide reserves, and improve the system
reliability, which is a cost-effective technique to add more
flexibility to the grid [5]-[9]. In addition, the development of
the communication infrastructure, advanced metering equip‐
ment and automatic control technologies enable more in‐
volvement of DR resources to provide system services [10],
[11]. A DR aggregator plays a vital role in the interaction be‐
tween the electric utility and flexible customers. DR aggrega‐
tors can contribute to achieving peak load reduction by offer‐
ing aggregated DR service and help retail customers adjust
their electricity consumption behaviors as well as allow
them to participate in electricity markets [12].

Many works have been done from different aspects to ex‐
plore the operation of the DR aggregator. In [13], a reward-
based residential DR scheme is proposed to achieve peak
shaving and to improve the feeder voltage profile under dif‐
ferent spatial distributions of residential loads. A price-based
economic DR model is proposed in [14], which considers
customer response to prices, customer energy pattern and ag‐
gregated load dynamics. A hierarchical market model for the
interaction of the utility operator, aggregators and customers
is introduced in [15], in which a multi-objective problem is
formulated to maximize the benefits of independent system
operator (ISO), the aggregator, and customers. Usually, the
load aggregators sign contract agreement with the participat‐
ing customers which details their responsibility. In [16], an
optimization model for the DR aggregator is proposed to de‐
termine the optimal schedule of DR contracts and maximize
the payoff in the day-ahead (DA) electricity market. In [17],
a bi-level optimization model is proposed to determine the
optimal portfolio of the DR resources for the participation of
the aggregator in bulk electricity markets.

The aforementioned studies explore the implementation of
DR aggregators effectively, but neglect customers’ comfort.
Considering customer preferences, an analytical method to
control thermostatically controlled loads (TCLs) is proposed
in [18] to ensure users’ satisfaction. A hierarchical and dis‐
tributed control strategy for TCLs is proposed in [19], in
which the target assignment is self-regulated. In [20], an in‐
centive-based DR model is proposed to maximize the benefit
of electricity retailers which considers customers’ behaviors
during peak and valley time. A time-geographic diary ap‐
proach is proposed and a software called VISUAL-
TimePAcTS/energy use is designed in [21] to visualize elec‐
tricity consumption patterns in a household. A modification
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of a concept for peer-to-peer learning about residential ener‐
gy solutions is evaluated in [22] through a collective “ener‐
gy walk”. The satisficing theory is applied in [23] to model
consumers’ behaviors. The consumers’ welfare must be
greater than or equal to an aspiration level.

This paper proposes a novel multi-objective optimization
model for the aggregator to determine the contract details
for the DR services provided by end-users as well as the op‐
timal portfolio of DR contracts. The DR aggregator partici‐
pates in the DA market with the objective of maximizing its
profit and the customers’ welfare. In particular, the main
contributions of this work are as follows:

1) A DR aggregator operation framework dealing with the
interaction between the aggregator and customers is pro‐
posed, as well as the contract design which considers the in‐
terests from both the DR aggregator and the consumers.

2) A multi-objective model for the aggregator is formulat‐
ed to maximize both the profit and the customers’ welfare,
which encourages the positive enrollment of potential DR re‐
sources.

3) Consumers’ behaviors based on the consumer psycholo‐
gy are modeled considering customer preferences.

4) The design of three different DR contracts and the opti‐
mal portfolio of DR resources are described.

5) A comprehensive analysis for several case studies is
conducted, which demonstrates the feasibility of the model
and the flexibility provided by DR contracts that enables the
aggregator to participate in the electricity market.

The rest of this paper is organized as follows. Section II
presents the overall hierarchy of DR aggregator participation
in the DA market and the details of prevailing contracts that
the DR aggregator signs with customers. A mathematical
model is formulated and explained in Section III. Section IV
describes the problem reformulation and optimization algo‐
rithm. In Section V, case studies and simulation results are
discussed. Finally, the conclusion and future work are dis‐
cussed in Section VI.

II. OPERATION MODEL OF DR AGGREGATOR

In this paper, the DR aggregator provides DR services to
ISO by offering customers a set of contracts in the DA mar‐
ket. The aggregator is considered as a price-taker entity.

A. Operation Framework of DR Aggregator

The DR aggregator provides a comprehensive customer
service like an integrated energy service provider, because it
is hard for customers to evaluate their DR potentials. The
DR aggregator can perform an overall data mining of users’
behaviors based on the technical models and the social-be‐
havioral survey results [2], [24]-[26]. It is assumed that the
customers have an overall understanding of their electricity
consumption and DR capacity based on the performance
evaluation service provided by the DR aggregator.

In practice, DR aggregators can assemble a number of
flexible customers into an aggregation to participate in the
DA market with considerable weight. Figure 1 shows the op‐
eration framework of the DR aggregator.

The DR aggregator offers multiple DR contracts, which

are load curtailment (LC), load shifting (LS) and flexible
charging load (FCL) to encourage residential customers to
actively join in DR programs. These contracts are settled
well in advance and allow the aggregator to control the cus‐
tomers’ loads under certain authority. Customers sign the
contracts to receive incentives for their DR capacity. As a re‐
sult, the customer preference can be obtained and the poten‐
tial customers can be located when the DR contracts are
signed. The DR aggregator participates in the DA market to
submit DR bids according to customers’ DR contracts and
receives penalties for false bidding if the real DR services
provided by the aggregator are less than the bidding amount.
In real time, customers can choose to shift a certain propor‐
tion of the contract amount and they will receive penalties
for any performance failure. Basically, the DR aggregator
earns profit hourly once the market is cleared. The purpose
of the aggregator is to design the DR contracts and monitor
customers’ actual response to maximize the total profits.

B. DR Contracts

The DR aggregator can accumulate multiple customers
with similar characteristics of electricity consumption into a
cluster under the same DR contract. This would significantly
simplify the design of DR contracts. In this work, the DR ag‐
gregator can make the best use of the flexibility of its cus‐
tomers by scheduling three types of DR contracts, the details
of which are described below.
1) LC

LC contract indicates the conventional load curtailment
strategy. Customers participating in LC contracts agree to re‐
duce a certain amount of their electricity consumptions dur‐
ing the scheduled time window and do not shift their loads
to any other period. Suitable loads for LC contracts are
lights, air-conditioners, water heaters, and non-essential appli‐
cations.
2) LS

Loads participating in LS contracts can be partially re‐
scheduled during the scheduled time window and shifted to
off-peak hours. Suitable loads for LS contracts are air-condi‐
tioners, washing machines, and laundry dryers.
3) FCL

Customers participating in FCL contracts can choose a
preferred schedulable duration from the predetermined time
window to reduce a certain amount of their electricity con‐
sumptions. The schedulable duration can be continuous or
discrete. If the specified duration is equal to the time win‐
dow set by the aggregator, the FCL contract is the same as
the LC contract. For example, if the load control time win‐

DR aggregator

Customers

DR
contracts

DA market

ISO

LC

LS

FCL

Penalty Penalty
BidDesign

Clear
Sign

Fig. 1. Operation framework of DR aggregator.
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dow planned by the aggregator is from 08:00 a.m. to 12:00 p.
m. and the preferred schedulable duration of one customer is
2 hours, this customer can be enrolled in the DR program in
any 2 hours from 08:00 a.m. to 12:00 p.m.. Suitable loads
for FCL contracts are pool filters, plug-in electric vehicles
and high efficiency particulate air (HEPA) filters.

III. PROBLEM FORMULATION

The operation of the DR aggregator is to design and dis‐
patch the DR contracts, which optimize its own profit. To
achieve this, the DR aggregator needs to account for the cus‐
tomers’ satisfaction because the more customers are enrolled
in DR events, the more revenues the aggregator can gain
from the DA market. This problem can be formulated as a
multi-objective optimization model in which both the profit
of the DR aggregator and the customers’ welfare are maxi‐
mized.

A. Profit of DR Aggregator

The DR aggregator profits by bidding DR capacity in the
DA market and paying the customers based on the DR con‐
tracts. The objective of the DR aggregator is to maximize its
profit R as shown in (1), which is subjected to (2) - (4) and
the contract constraints in the profit model of the DR aggre‐
gator.

max R=∑
tÎ T
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where subscripts k1, k2, k3 are the customer types, k1ÎK lc,
k2ÎK ls, k3ÎK fcl, and K lc, K ls, K fcl are the total numbers of
LC, LS, FCL contracts, respectively; T is the set of simula‐
tion time slots; Lbid is the bid of the aggregator for offering
DR service in DA market; ρda is the electricity price of DA
market; Clc, Cls and Cfcl are the total costs of LC, LS and
FCL contracts, respectively; PenA is the penalty to the aggre‐
gator; PenC is the penalty to the customers; Penlc , Penls and
Penfcl are the penalties to the customers enrolled in LC, LS
and FCL contracts, respectively; qlc , qls and qfcl are the al‐
lowed dispatch capacities of LC, LS and FCL contracts, re‐
spectively; qlc,R , qls,R and qfcl,R are the real dispatch power of
LC, LS and FCL contracts, respectively; and εA is the penal‐
ty coefficient to the aggregator.

The objective function (1) represents the payoff of the DR
aggregator. The income consists of two parts: the revenue
for bidding in the DA market and the penalty to customers
for their inadequate response. The expenditure is the total
cost of paying the customers for their response based on the
contracts and the penalty from ISO for the false bidding.
The decision variables are the unit price of LC contract ρlc ,
the unit price of LS contract ρls and the allowed dispatch ca‐
pacity of FCL contract qfcl . According to (2), it is ensured
that the bidding amount in the DA market does not exceed

the total amount of load reduction capacity in the contracts.
To ensure fair competition on the market, the DR aggregator
will be penalized by the ISO if the real DR service provided
by the aggregator is less than the bidding amount. It is as‐
sumed that the DR aggregator is equipped with interval me‐
ters recording electricity usage which must be sufficient to
provide the ISO with hourly, one-minute, or real-time load
data as applicable to the wholesale market [27]. As a result,
a penalty function (3) is introduced. Similarly, customers
will also be penalized for inadequate response as shown in
(4), which will be discussed in Section III-B.

The contract constraints in the profit model of the DR ag‐
gregator are specifically elaborated in this paper. The execu‐
tion of LC, LS and FCL contracts are presented in detail as
follows.

1) The LC contract can be modeled as:

C lc
tk1
= qlc

tk1
ρ lc

tk1
"tÎψ lc"k1 (5)

ρ lcmin
tk1

£ ρ lc
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£ ρ lcmax

tk1
"tÎψ lc"k1 (6)

where ψ lc is the scheduling hour for the LC contract.
The cost of LC contract is determined by (5). The maxi‐

mum and minimum values of the unit price of LC contract
are limited by (6).

2) The LS contract can be modeled as:

C ls
tk2
= qls

tk2
ρ ls

tk2
"tÎψ lsp"k2 (7)
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Under LS contract, customers allow the aggregator to
shift their loads from period ψ ls,p to period ψ ls,v .

3) The FCL contract has a fixed schedulable duration Td,
which represents the total hours of load dispatch. Thus, the
FCL contract can be modeled as:

C fcl
tk3
= ρfclqfcl

tk3
"tÎ T"k3 (9)

∑
tÎ T
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where ρfcl is the unit price of FCL contract, which is fixed
and determined by the aggregator; and vfcl is the binary vari‐
able that indicates the status of FCL contract.

The cost of FCL contract is given by (9). The dispatch pe‐
riod of the FCL contract is set to be within the schedulable
duration Td by (10) and (11). The maximum and minimum
dispatch power provided by the customers in FCL contract is
limited by (12).

B. Customers’ Welfare

The DR aggregator can obtain comprehensive information
about users’ electricity consumption and DR capacity by
equipping local smart meters. In the long run, the DR aggre‐
gator negotiates the details of the DR contracts with custom‐
ers to encourage them to enter into the DR program. The ob‐
jective of the customers is to maximize their welfare as
shown in (13), which is subjected to (14)-(19) and the con‐
tract constraints in the customers’ welfare model.
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where Dislc, Disls and Disfcl are the dissatisfactions of custom‐
ers caused by LC, LS and FCL contracts, respectively; μlc ,
μls and μfcl are the dissatisfactory coefficients of customers in
LC, LS and FCL contracts, respectively; and ε lc, ε ls and ε fcl

are the penalty coefficients. The penalties to customers in
LC, LS and FCL contracts are given by (14), (15) and (16),
respectively. Obviously, it will cause inconvenience on the
customers’ daily life when they provide DR service through
the contracts. Customer dissatisfaction should be considered
in their welfare model, and it depends on the real dispatch
power. The dissatisfaction function of the customers in LC,
LS and FCL contracts can be modeled by quadratic equa‐
tions [15] which are given by (17), (18) and (19), respective‐
ly.

In this paper, the consumer psychology [28] - [31] is ap‐
plied to describe the consumers’ behavior. It is assumed that
the allowed dispatch capacities of LC and LS contracts are
determined by customers, which follow the consumer psy‐
chology. As shown in Fig. 2, ρ i is the unit price for load dis‐
patch in the DR contract and qi is the allowed dispatch ca‐
pacity [31]. There exists a lower limit of the incentive to
each customer. When the unit price for load reduction is less
than the lower limit ai, the customer does not sign the con‐
tract because the incentive is too small. This region is called
the insensitive area. When the unit price continues to in‐
crease and exceeds ai, the customer is willing to enroll in
the DR contract and the allowed dispatch power is approxi‐
mately proportional to the unit price offered by the aggrega‐
tor [24]. This region is called the responsive area. The gradi‐
ent γ i in the responsive area represents the sensitivity of the
customer to the price offered in the DR contract. Mean‐
while, there exists an upper limit of the response capacity
which means after the unit price reaches the saturation stimu‐
lus value bi, regardless how high the unit price is, the re‐
sponse remains the same because the customer does not
want to further compromise their comfort levels. This region
is called the saturation area.

Then, the relationship between the allowed dispatch capac‐
ity qi in the contract and the unit price ρ i can be described
as follows.

qi =
ì

í

î

ïï
ïï

0 0£ ρ i < ai

γ i (ρ i - ai) ai £ ρ i < bi

qimax ρ i ³ bi

(20)

In addition, considering customer preferences, it is as‐
sumed that the actual dispatch load in the real-time stage
can be a portion of the allowed dispatch capacity in the con‐
tract and the portion follows the normal distribution. Howev‐
er, the customers will be penalized for their failure of perfor‐
mance.

The contract constraints in the customers’ welfare model
are specifically elaborated as follows.

1) The allowed dispatch capacity in LC contract is given
by (21) based on the consumer psychology. According to
(22), the actual dispatch load in the real-time stage is part of
the allowed dispatch capacity in the contract and the portion
αlc follows the normal distribution.
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where alc and blc are the upper limit and the lower limit of
the incentive in LC contract, respectively; and γ lc is the gra‐
dient.

2) The execution of LS contract can be modeled as fol‐
lows.
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where als and bls are the upper limit and the lower limit of
the incentive in LS contract, respectively; and γ ls is the gradi‐
ent. Under LS contract, customers allow the aggregator to
shift their loads from period ψ ls,p to period ψ ls,v .

3) The allowed dispatch capacity of FCL contract is with‐
in the limitation offered by the customer, which is given by
(11) and (12). Since the schedulable duration is flexible, the
customers enrolled in the FCL contract give full authority to

bi iai

q

ρ

Insensitive
area

Responsive
area

Saturation
area

qi

i

, max

iγ

Fig. 2. Relationship between allowed dispatch capacity and unit price
based on consumer psychology.
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the DR aggregator to control their loads. Thus, the actual dis‐
patched load in the real-time stage is exactly the same as the
capacity in the FCL contract, which is given by (25). As the
dispatch duration is relatively small and flexible, the dissatis‐
faction caused by the FCL contract can be ignored, as
shown in (26).

qfclR
tk3

= qfcl
tk3

"tk3 (25)

Disfcl
k3
= 0 (26)

IV. SIMULATION PROCEDURE

A. Model Reformulation

According to the above problem formulation, it is clear
that the consumer psychology will pose piecewise linear con‐
straints, which is a common issue for most of the optimiza‐
tion algorithms. In this paper, the piecewise constraints are
dealt with by introducing extra 0-1 integer variables. Equa‐
tions (21)-(24) can be reformulated as shown in (27)-(36).
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function; and M is a self-defined large number. Constraints
(27), (32) ensure that qlc
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one segment of the piecewise function. Constraints (29),
(34) confine ρ lc

tk1
and ρ ls

tk2
within ai and bi in the responsive

area. These two constraints will be non-binding by the use
of M in the saturation area. Constraints (30), (35) enable ρ lc

tk1

and ρ ls
tk2

to be larger than bi in the saturation area. The equiv‐

alency of (20)-(24) and (27)-(36) can be easily demonstrated
by enumerating all the binary variables introduced.

B. Obtain Pareto Front Using Non-dominated Sorting Genet‐
ic Algorithm II (NSGA-II)

After the reformulation, the proposed problem becomes a
multi-objective integer optimization model. The Pareto front
can present the trade-offs between each objective [32]. Con‐

ventional scalarization methods like the weighted sum meth‐
od may fail due to non-convexity. Equations (7) and (9) will
lead traditional integer programming methods like branch
and bound to infeasible regions. Therefore, the NSGA-II is
applied to obtain the Pareto front for its efficiency and ease
of implementation [33]. Each solution in the Pareto front so‐
lution set has its own advantages over the others. However,
some solutions are prone to benefit one particular objective.
According to (37) - (41), an optimal solution P* can be ob‐
tained to guarantee fairness, where P is a solution from the
solution set Sol [15], [34].

P* = arg max
PÎ Sol

min (Rmax -R(P)

Rmax -Rmin

Smax - S(P)

Smax - Smin ) (37)

Rmax = max
PÎ Sol

R(P) (38)

Rmin = min
PÎ Sol

R(P) (39)

Smax = max
PÎ Sol

S(P) (40)

Smin = min
PÎ Sol

S(P) (41)

V. SIMULATION RESULTS

In this section, several case studies are presented. This pa‐
per aims to show how the DR aggregator participates in the
DA market based on the multi-objective optimization model
while considering the customers’ welfare reflected as DR
contracts. The price forecasting approach is considered out
of the scope of this paper [16], [17], [23], [35]. In terms of
the DA market prices, the historical data from PJM in 2017
is used in the model [36], as shown in Fig. 3.

For simulation purpose, customers are aggregated into sev‐
eral typical representative consumer types. It is assumed that
customers of the same type respond to the incentives from
the aggregator in the same way. The proposed multi-objec‐
tive problem for the DR aggregator is implemented in MAT‐
LAB 2014 and runs in a computer with an Intel i7-3720 pro‐
cessor and 8 GB RAM.

A. Base Case

The number of customer types in the three contracts k1, k2

and k3 are 3, 3, 1, respectively. The allowed dispatch capaci‐
ties of LC and LS contracts of different types of customers
are shown in Fig. 4. The real response coefficients αlc and
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Fig. 3. DA expected price for DR aggregator.
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αls follow the normal distribution as shown in Fig. 5. In
terms of the FCL contract, the maximum dispatch power
qfcl, max is 85 MW and the schedulable duration Td is 3 hours.
The unit price of the FCL contract is 17 $/MW. The penalty
coefficients to the aggregator and customers are 5 and 3, re‐
spectively. The dissatisfaction coefficient of customers is
0.1 [15].

Using the NSGA-II, the Pareto front for the DA market
model can be generated. Figure 6 gives an example of the
Pareto front. It explains the interaction between the two ob‐
jectives. An optimal solution p* can be chosen based on (37)-
(41) to ensure fairness. As shown in Fig. 6, the selected opti‐
mal solution is located in the center of the Pareto front
graphically, which means that a fair design can be achieved
through the proposed multi-objective model.

The optimal schedules for the three DR contracts are
shown in Fig. 7 as well as the hourly DA market prices. The
daily optimal profit of the DR aggregator is $41358.65 and
customers’ welfare is $48902.13. None of the contracts are

scheduled at hours 1-6, 8-9, 11-16 and 22-24, when the DA
market price is relatively small and the DR aggregator does
not bid DR services in the market. The scheduled quantity
of the LS contract is larger than the others at hours 7, 17
and 20, since the unit price of the LS contract is higher than
that of the others. Although the unit price of the LC contract
is higher than that of the LS contract, the scheduled quantity
is smaller because the customers in the LS contract are set
to be more sensitive to price incentives. The FCL contract is
scheduled at hours 10, 19 and 21 owing to the limit of 3-
hour schedulable duration.

B. Impact of Bidding Strategy of DA Aggregator

In the proposed model, it is assumed that the DR aggrega‐
tor has full information about the DA market. It can predict
the demand balance and DA prices with high accuracy to
make a proper bidding strategy. The impact of the bidding
strategy of DR aggregator is investigated. The other parame‐
ters such as the DA prices and the response of customers re‐
main the same as in the base case. The data of different bid‐
ding strategies are presented in Table I. At the rest hours
which are not listed in Table I, the bidding amounts are zero.

The optimal schedules for DR contracts in cases 1 and 2
are shown in Fig. 8 and Fig. 9, respectively. In case 1, the
daily optimal profit of the DR aggregator and the custom‐
ers’ welfare are $42683.94 and $55567.79, respectively,
while those in case 2 are $39658.23 and $48534.44, respec‐
tively. With different bidding strategies, the composition of
contracts changes significantly. For example, at hour 18, the
bidding amount of the DR aggregator in the base case is 463
MW while it is 350 MW in case 1 and 149 MW in case 2.
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Fig. 7. Optimal schedules of three DR contracts.
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TABLE I
BIDDING AMOUNT OF DIFFERENT HOURS

Time (hour)

7

10

17

18

19

20

21

Bidding amount (MW)

Base case

438

256

441

463

401

301

383

Case 1

396

552

478

350

431

343

441

Case 2

318

435

453

149

590

571

105
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Compared with the base case, the scheduled amount of LS
contracts increases greatly and the FCL contract is put into
use in case 1 while only the LS contract is scheduled at that
time.

C. Impact of Sensitivity of Customer Response

The impact of the sensitivity of customer response is in‐
vestigated. In case 3, customers are set to be more sensitive
to the price incentives than they are in the base case, which
means the slopes of the consumer psychology curves are
larger; while in case 4, customers are set to be less sensitive
to the price incentives than in the base case. The allowed dis‐
patch capacities of LC and LS contracts of different custom‐
er types in case 3 and case 4 are shown in Fig. 10. The oth‐
er parameters such as the DA prices and the bidding strategy
of the DR aggregator remain the same as in the base case.

The optimal unit prices of the DR contracts in the base
case, case 3 and case 4 are listed in Table II. In case 3, at
hours 10, 17-19 and 21, the unit prices of the LC contract
are lower than those in the base case since customers are
more sensitive to the pricing and they respond with less in‐
centive. Similarly, the unit prices of the LS contract at hours
7, 17-20 are smaller than those in the base case. The excep‐
tions at the rest hours exist because the aggregator needs to
reach the bidding amount as well as consider the customers’
welfare. By contrast, in case 4, at hours 7, 17 and 20, the
unit prices of the LC contract are higher than those in the
base case, while at hours 7, 10 and 17-19, the unit prices of
the LS contract are higher than those in the base case. This
is because customers are less sensitive to the pricing and
they need more incentives for the DR service. The unit pric‐
es in case 4 reach the maximum value 30 $/MW several

times because the limit of customer response is at 30 $/MW.

In case 3, the daily optimal profit of the DR aggregator and
the customers’ welfare are $36562.23 and $51892.05, respec‐
tively, while those in case 4 are $40719.36 and $ 49916.45, re‐
spectively. The profit of the DR aggregator in case 3 increas‐
es because customers are willing to reduce their load with
less incentive which is also the reason for the decrease of cus‐
tomers’ welfare. Similarly, the customers’ welfare increases
in case 4 because there is greater incentive.

Customers respond to the price incentive with different
sensitivities, thus affecting the composition of the scheduled
contracts. The optimal schedules for the three DR contracts
of cases 3 and case 4 are shown in Fig. 11 and Fig. 12, re‐
spectively. Compared with the base case, in case 3, at hours
7 and 19, the scheduled amount of LC contracts increases
and at hours 17, 18 and 21, the scheduled amount of LS con‐
tracts increases greatly. The FCL contract is put into use at
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Fig. 10. Consumer psychology curves of different customer types in LC
and LS contracts of case 3 and case 4. (a) Customer response in LC con‐
tract of case 3. (b) Customer response in LS contract in case 3. (c) Custom‐
er response in LC contract of case 4. (b) Customer response in LS contract
in case 4.
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Fig. 8. Optimal schedules of three DR contracts in case 1.
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Fig. 9. Optimal schedules of three DR contracts in case 2.

TABLE Ⅱ
UNIT PRICES OF DR CONTRACTS

Time
(hour)

7

10

17

18

19

20

21

Unit price of base
case ($/MW)

LC

18.4

20.1

20.2

30.0

23.9

9.9

30.0

LS

29.9

0.0

25.0

21.6

16.5

25.6

13.3

FCL

17

17

17

17

17

17

17

Unit price of case 3
($/MW)

LC

29.5

0.0

12.6

12.5

22.9

12.1

10.9

LS

12.7

14.9

22.4

21.5

13.0

16.3

19.5

FCL

17

17

17

17

17

17

17

Unit price of case 4
($/MW)

LC

22.4

12.5

24.2

30.0

21.1

17.2

30.0

LS

30.0

14.4

30.0

26.0

19.5

18.6

15.5

FCL

17

17

17

17

17

17

17
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hours 18 and 21. In case 4, at hour 10, the scheduled
amount of LC contracts increases and at hours 19 and 21,
the scheduled amount of LS contracts increases as well. The
changes in the sensitivity of customer response influence the
detailed pricing and the scheduling of the DR contract, but it
is very complicated because many factors related to the prof‐
it of both the aggregator and customers are considered in the
proposed model.

VI. CONCLUSION

This paper proposes an optimization model for DR aggre‐
gators to determine the optimal contract strategy for maxi‐
mizing their profit and customers’ welfare. In this model,
three types of DR contracts, namely LC contracts, LS con‐
tracts and FCL contracts, are considered for customers. In
terms of the responsive load, consumer behaviors are innova‐
tively modeled through the consumer psychology in order to
reveal the relationship between the incentives and the expect‐
ed customer response. Besides, the actual response of cus‐
tomers is represented by stochastic programming. The pro‐
posed model is a multi-objective integer-programming mod‐
el, which is solvable for an evolutionary algorithm after re‐
formulating. It can be implemented to provide guidelines for
the aggregators to design the DR contracts when participat‐
ing in the energy markets. Several case studies are per‐
formed to investigate the feasibility and practicability of the
proposed model. The results demonstrate that the proposed
model is able to yield enough revenues for the DR aggrega‐
tor while the customers’ welfare is also ensured.

In future study, more details of the DR contracts such as
energy storage will be considered. Also, in order to broaden
the application of this work, the participation in real-time

markets will be introduced into the proposed model. Finally,
future work might also explore other alternative ways to
model consumers’ behaviors of different consumer types.
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Fig. 11. Optimal schedules of three DR contracts in case 3.
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Fig. 12. Optimal schedules of three DR contracts in case 4.
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