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Locomotion-based Hybrid Salp Swarm
Algorithm for Parameter Estimation of Fuzzy

Representation-based Photovoltaic Modules
Rizk M. Rizk-Allah and Aboul Ella Hassanien

Abstract——Identifying the parameters of photovoltaic (PV)
modules is significant for their design and simulation. Because
of the instabilities in the weather action and land surface of the
earth, which cause errors in measuring, a novel fuzzy represen‐
tation-based PV module is formulated and developed. In this
paper, a novel locomotion-based hybrid salp swarm algorithm
(LHSSA) is presented to identify the parameters of PV modules
accurately and reliably. In the LHSSA, better leader salps
based on particle swarm optimization (PSO) are incorporated
to the traditional salp swarm algorithm (SSA) in a serialized
scheme with the aim of providing more valuable information
for the leader salps of the SSA. By this integration, the pro‐
posed LHSSA can escape the local optima as well as guide the
seeking process to attain the promising region. The proposed
LHSSA is investigated on different PV models, i.e., single-diode
(SD), double-diode (DD), and PV module in crisp and fuzzy as‐
pects. By comparing with different algorithms, the comprehen‐
sive results affirm that the LHSSA can achieve a highly compet‐
itive performance, especially on quality and reliability.

Index Terms——Salp swarm algorithm (SSA), particle swarm
optimization (PSO), photovoltaic (PV) model, hybridization.

I. INTRODUCTION

BECAUSE of the rapid increase in air pollution caused
by generating the power using fossil fuels, and green‐

house gas emissions, industrialized countries and govern‐
ments need to rely on clean sources such as renewable ener‐
gy sources. Presently, one of the most popular and promis‐
ing renewable energy sources is solar energy (SE). SE is
converted to electrical energy using photovoltaic (PV) sys‐
tems [1]. PV components are easily deteriorated because
they operate in harsh outdoor environments, significantly af‐
fecting the efficiency of the use of SE. As a result, the pro‐
cess of designing accurate models of PV systems becomes
an important and challenging task due to the behavior evalu‐
ation of PV cells. Different mathematical models have been

introduced to describe the nonlinear performance of PV sys‐
tems [2], [3]. The most popular models are the single-diode
(SD) and double-diode (DD) models [4], [5]. The accuracy
of any model is mainly affected by adjusting the model pa‐
rameters. However, these parameters have two problems: ①
they are usually unavailable and change due to faults, vola‐
tile operation conditions, and aging; ② they have a certain
degree of uncertainty due to the measurement process.
Hence, the creation of an accurate scheme for parameter
identification is a crucial and challenging task for the effec‐
tive evaluation, simulation, and control of PV systems.

Some approaches based on deterministic techniques have
been proposed for PV parameter identification based on de‐
terministic techniques. Such approaches were developed
based on the Newton approach [6], Lambert formulation [7],
and so on [8]. However, some restrictions such as differentia‐
bility and convexity that lead to trapping in the local optima
are present in the deterministic techniques.

The advent of metaheuristic approaches has provided
promising alternative approaches for solving complex optimi‐
zation tasks [9] - [12] and overcoming the limitations of the
deterministic ones as well. Several approaches such as differ‐
ential evolution (DE) have been introduced for the parameter
identification problem [13]. In [14], artificial bee colony
(ABC) was developed for identifying solar cell parameters,
and in [15], a bacterial foraging approach (BFA) was used
for parameter estimation of solar cells and other systems
[16] - [18]. Salp swarm algorithm (SSA) is a new optimiza‐
tion approach that was proposed in [19] for solving optimiza‐
tion tasks. This algorithm is based on the behavior of salps,
which form a chain through some leaders. Furthermore,
through a rapid, coordinated change strategy, this behavior
can achieve better convergence. However, as a new ap‐
proach, SSA has some disadvantages: ① they are only guid‐
ed by leaders, which leads to unsatisfactory outcomes; ②
there is no strategy for the diversity and improving the best
location with each generation, which may lead to trapping in
the local optima. Besides, to the best of our knowledge, no
attempts in the SSA literature have been employed to solve
the parameter estimation of PV models.

Identifying the parameters of PV modules is significant
for their design and simulation. Because of instabilities in
the weather action and land surface of the earth, which
cause errors in measuring, a novel fuzzy representation-

Manuscript received: January 15, 2019; accepted: August 16, 2019. Date of
CrossCheck: August 16, 2019. Date of online publication: May 19, 2020.

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

R. M. Rizk-Allah is with the Faculty of Engineering, Menoufia University,
Shebin El-Kom, Egypt, and he is also with Scientific Research Group in Egypt,
Cario, Egypt (e-mail: rizk_masoud@yahoo.com).

A. E. Hassanien (corresponding author) is with the Faculty of Computers and
Artificial Intelligence, Cairo University, Cairo, Egypt, and he is also with Scien‐
tific Research Group in Egypt, Cario, Egypt (e-mail: aboitcairo@gmail.com)

DOI: 10.35833/MPCE.2019.000028

384



RIZK-ALLAH et al.: LOCOMOTION-BASED HYBRID SALP SWARM ALGORITHM FOR PARAMETER ESTIMATION OF...

based PV module is formulated and developed. In this sense,
the PV modules are proposed in two aspects: the first aspect
addresses crisp PV modules, while the second one concen‐
trates on fuzzy modeling of PV modules in which the input
data of terminal (output) voltage and solar cell terminal cur‐
rent are the fuzzy numbers. Through each fuzzy PV module,
the terminal (output) voltage as well as the solar cell termi‐
nal current is characterized with the membership function.
To effectively handle the crisp and fuzzy aspects of the PV
modules, this paper hybridizes the SSA with the particle
swarm optimization (PSO), in a scheme called the locomo‐
tion-based hybrid salp swarm algorithm (LHSSA), to effec‐
tively achieve robust identification of the parameters of the
PV modules. In this approach, the SSA operates as an ex‐
plorer tool for the solution vector while PSO is integrated to
modify the locations of the leader salps. The performance of
the proposed LHSSA is investigated and evaluated through
different PV models. Comprehensive results affirm that the
LHSSA exhibits superior performance compared with differ‐
ent algorithms, especially on the quality and reliability.

The main contributions of this paper are as follows.
1) An LHSSA-based opposition learning scheme is intro‐

duced to refine the quality of leaders.
2) A PSO algorithm-based leading method is incorporated

to enhance exploitation capability and avoid trapping in the
local optima.

3) Fuzzy representation-based PV models are introduced
as a novel sight, and different level schemes are conducted.

4) The efficiency of the LHSSA is investigated by compre‐
hensive experiments and the comparison on different PV
models.

The remainder of this paper is organized as follows. Sec‐
tion II describes the formulation of the PV models. Section
III provides some basics regarding the methodology. The pro‐
posed LHSSA is developed in Section IV. The results and
the comparison of the different PV models are provided in
Section V. Finally, the conclusions and potential for future
study are exhibited in Section VI.

II. PROBLEM FORMULATION

In practice, there are different PV models that describe the
characteristics of the current-voltage performance of solar
cells and PV modules. The formulation of these models associ‐
ated with their objective functions is described in this section.

A. PV Models

1) SD Model
The SD model uses one diode that is parallel to a current

source. The structure of this model includes a current source
that is parallel to the circuit diode, one series resistor to rep‐
resent the losses of load current, and a shunt resistor to rep‐
resent the leakage current. The current of this cell is calculat‐
ed using:

IL = Iph - Id - Ish (1)

Id = Isd

é

ë
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êexp ( q ( )VL +RS IL

nkT )- 1
ù

û

ú
ú (2)

Ish =
VL +RS IL

Rsh
(3)

where IL is the terminal current of solar cell; Iph is the photo-
generated current; Id is the diode current; Ish is the shunt
branch current; Isd is the reverse saturation current; VL is the
terminal (output) voltage; Rsh and RS are the shunt and series
resistances, respectively; n is the diode ideal factor; q is the
charge of an electron (1.60217646´ 10-19 C); k is the
Boltzmann constant (1.3806503´ 10-23 J K); and T is the
temperature of the cell. According to (2) and (3), the termi‐
nal (output) current in (1) can be rewritten as:

IL = Iph - Isd
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(4)

Although the SD contains five unknown parameters
(IphIsdRSRshn), [1] and [2] have shown that this optimiza‐
tion task has high multi-modal and noisy characteristics,
thus this fact requires robust search strategies.
2) DD Model

The DD model considers two parallel diodes with a shunt
resistance and current source. The terminal (output) current
can be described as follows:

IL = Iph - Id1 - Id2 - Ish = Iph - Isd1
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(5)

where Id1 and Id2 are the first-diode and second-diode cur‐
rents, respectively; Isd1 and Isd2 are the diffusion and satura‐
tion currents, respectively; and n1 and n2 are the ideal factors
of diffusion and recombination diodes, respectively. In this
case, seven unknown parameters (IphIsd1Isd2RSRshn1n2)
need to be estimated to obtain the accurate performance of
the solar cell.
3) PV Module Model

The PV module model is structured from several solar
cells that are linked in series and/or in parallel. The output
(terminal) current can be considered as follows:

IL

Np

= Iph - Isd
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Rsh

(6)

where NS and Np are the numbers of solar cells in series and
parallel, respectively. This model contains five unknown pa‐
rameters (IphIsdRSRshn) that need to be identified.

B. Objective Function for PV Modules: Crisp Aspect

The main aim of the PV models is to minimize the differ‐
ence between the experimental and estimated data. In this re‐
gard, the error function is represented and defined by (7)
and (8) for the SD and DD, respectively.
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where x is the solution set of the unknown parameters.
To objectively evaluate the performance of the proposed

methodology, the objective function of the PV modules is
formulated by quantifying the root mean square error
(RMSE) as:

RMSE =
1
M∑k = 1

M

fk ( )VL, IL, x
2

(9)
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Iphmin £ Iph £ Iphmax

RSmin £RS £RSmax

Rshmin £Rsh £Rshmax

Isdmin £ Isd £ Isdmax
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Isd2min £ Isd2 £ Isd2max

nmin £ n£ nmax

n1min £ n1 £ n1max

n2min £ n2 £ n2max

(10)

where M is the number of experimental data; and the sub‐
scripts min and max represent the minimum and maximum
values of related variables, respectively.

The main aim of the optimization process is to minimize
the fitness function with respect to the bounds of the parame‐
ters. A smaller RMSE output implies a smaller deviation be‐
tween the experimental and simulated data by the proposed
algorithm.

C. Objective Function for PV Modules: Fuzzy Aspect

The electrical energy generated by PV modules involves
many controlled parameters such as terminal (output) volt‐
age and solar cell terminal current whose possible values are
uncertain and ambiguous due to weather fluctuations or insta‐
bilities in the measuring process. Thus, the fuzzy model of
the PV modules can be formulated as:
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min Ζ͂ =
1
M∑k = 1

M

fk ( )V͂LI͂Lx
2

s.t. (10)

(11)

where Ζ͂ is the fuzzy objective form of RMSE; V͂L is the
fuzzy terminal (output) voltage; and I͂L is the fuzzy solar cell
terminal current. δ͂ = ( )V͂LI͂L is the variable of the fuzzy pa‐

rameters that are represented as fuzzy number. Each fuzzy
number component of δ͂ is associated by its own degree of

membership function μ
δ͂
(δ) [20].

Definition 1 (fuzzy number): the fuzzy number δ͂ is a
fuzzy subset of the real line R, which is associated with the
membership function μ

δ͂
(δ) that has the following features:

1) μ
δ͂
(δ): R® [01] is continuous.

2) μ
δ͂
(δ)= 0"δÎ(-¥δ1) (δ3+¥).

3) Strictly increasing on δÎ[δ1δ2].
4) μ

δ͂
(δ)= 1 for δ = δ2.

5) Strictly decreasing on δÎ[δ2δ3].
Therefore, each measured value of the terminal voltage

and solar cell terminal current can be represented by a cer‐
tain “grade of membership” that ranges from grade 0 to 1,
where 0 and 1 indicate the lowest and highest grades of
membership, respectively. Thus, each fuzzy parameter is ex‐
pressed by a given interval of real numbers, associated with
grades of membership between 0 and 1.

Definition 2 (α-level set): the α-level set (α-cut) of the
fuzzy numbers δ͂ is represented by the ordinary set Lα ( )δ͂
that contains the values of δ when the degree of membership
functions exceeds a certain level α, αÎ[01].

Lα ( )δ͂ = {δ|μ a͂ (δ)³ α} (12)

The fuzzy representation shown in Fig. 1 has been extract‐
ed according to expert suggestions or from observing weath‐
er fluctuations or instabilities in the measuring process.
Based on the α-cut concept of the fuzzy numbers, the prob‐
lem with the fuzzy parameters aspect can be converted into
a crisp aspect. The membership function μ

δ͂
(δ) which defines

the fuzzy parameter δ͂ is formulated as:

μ
δ͂
(δ)=
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1 δ = δ͂
20δ

δ͂
- 19 0.95δ͂ £ δ < δ͂

21-
20δ

δ͂
δ͂ < δ £ 1.05δ͂

0 δ < 0.95δ͂ or δ > 1.05δ͂

(13)

According to the membership function and the concept of
the α-cut level, the fuzzy parameter is transformed to a crisp
scheme through two end points which are induced by the α-
cut level, and they represent the upper and lower bounds for
the crisp parameter, as shown in Fig. 1, where δ͂L and δ͂U are
the lower and upper bounds induced by α-cut for parameter
δ, respectively. Thus, the optimization task of the PV mod‐
ules can be converted to a non-fuzzy (crisp) form as:

μ

1

0
0.95δ

α-cut level

δL~
1.05δ

~~
δ δ~

δU~

Fig. 1. Fuzzy numbers for PV modules.
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where superscripts L and U represent the lower and upper
bounds of related variables, respectively.

Definition 3 (α-global minimum): x* is defined as the α-
global minimum to the problem (14) if and only if
"xÎΨδÎ Lα ( )δ͂ :Ζ ( )x*δ* £Ζ ( )xδ , where Ψ is the feasible

region of the search space and δ* is the α-level optimal pa‐
rameter.

D. Overview of SSA

The SSA is a meta-heuristic optimization algorithm pre‐
sented in [19]. It mimics the natural behavior of salps living
in the deep parts of oceans. Salps are a type of Salpidae and
look like jelly fish with a transparent body. Salps have an in‐
telligent behavior during their navigation and foraging as a
salp chain. In this context, the SSA is a recent type of
swarm algorithm developed to model the salp chain [19]. In
the salp chain, the salp population is split into two catego‐
ries: the leader salp which is the first salp in the chain, and
the follower salps that follow the leader salp while reaching
for the food source. The position set of each salp in the
search space is xi ={xi

1xi
2...xi

d}, i = 12...N, where N is the
number of salps. Thus, the leader salp updates its position as:

x1
j = {Fj + h1 [ ]( )ubj - lbj h2 + lbj h3 ³ 0.5

Fj - h1 [ ]( )ubj - lbj h2 + lbj h3 < 0.5
(15)

where ubj and lbj are the upper and lower bounds in the jth

dimension, respectively; Fj is the position of the target
source in the jth dimension; and h1, h2, and h3 are the algo‐
rithm parameters. The first parameter h1, which is responsi‐
ble for balancing the exploration and the exploitation mecha‐
nisms, is the most important parameter, and is defined as:

h1 = 2e
- ( )4t

L

2

(16)

where t and L are the current iteration and maximum itera‐
tion, respectively. h2 and h3 are random numbers between 0
and 1 whose values are uniformly generated. Furthermore,
each follower salp updates its position based on Newton’s
law of motion using the following equation.

xi
j =

1
2
(xi

j + xi - 1
j ) 2³ i >N (17)

where xi
j is the position of the ith follower salp in the jth di‐

mension.

E. PSO

PSO is a population-based algorithm introduced in [21]. It
is inspired by the cooperative behavior of some birds, fishes,
and insects. In PSO, each particle improves its position by
considering its best personal and global positions. The posi‐
tion of each particle xi is updated as:

vt + 1
i =wvt

i + c1r1 ( )pt
i - xt

i + c2r2 ( )g t
i - xt

i (18)

xt + 1
i = xt

i + vt + 1
i (19)

where xt
i and vt

i are the current position of the ith particle and
its velocity at iteration t, respectively; pt

i is the best position
of the ith particle; g t

i is the best solution among all particles;
c1 and c2 are the cognitive and social parameters, respective‐
ly; w is the inertia weight; and r1 and r2 are the random
numbers between 0 and 1.

III. PROPOSED LHSSA ALGORITHM

The motivation behind developing the LHSSA is to
achieve two features: ① improving the locomotion of the
leader salps by memorizing the track of the leader; ② en‐
hancing the seeking process using the hybridization-based
PSO.

A. Locomotion-based Internal Memory

An internal memory is incorporated for the leader salps to
keep track of their positions. During each iteration, the best
agents between the salps and particles are saved and denoted
by personal leaders SBleader and the global leader is denoted
by SGleader.

B. Hybridization-based Iteration

Hybridization-based iteration is a straightforward approach
for executing two algorithms iteratively through a certain se‐
quence to enhance optimization performance [22]. Here,
SSA works as an explorer using (14), while PSO is responsi‐
ble for exploiting the previous leader salps to obtain more re‐
fined leaders. Thus, the modified position and velocity equa‐
tions of PSO are defined as:

vt + 1
i =wvt

i + c1r1 ( )S t
Bleaderi - xt

i + c2r2 ( )S t
Gleader - xt

i (20)

xt + 1
i = xt

i + vt + 1
i (21)

where S t
Bleaderi is the personal best for the ith particle of PSO;

and S t
Gleader is the global best of the swarm in the iteration t

of the PSO.

C. Experience-based Opposition Learning Scheme

The opposition learning scheme based on the behavior of
follower salps is developed to improve swarm diversity with
the aim of increasing exploration ability. To be specific, for
each follower salp, the opposition solution is defined as
in (22).

x′ijt = {rand ( )LBj +UBj - xijt x′ijtÎ ( )BjUBj

rand ( )LBjUBj otherwise
(22)

where x′ijt is the jth element of the ith opposition solution set
on the tth iteration; and LBj and UBj are the dynamic bounds
of the jth variable defined as:

{LBj =min ( )xijt

UBj =max ( )xijt

(23)

LBj and UBj are updated every 50 generations and if the
obtained solution does not lie within the bounds, a random
solution is generated. The flow chart of the proposed scheme
is given in Fig. 2.
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IV. EXPERIMENTAL RESULTS AND ANALYSIS

The performance of LHSSA is investigated to identify the
parameters of different PV models such as the SD, DD, and
PV module. Thus, the benchmark data set for the solar cells
and solar module is utilized [23]. To guarantee accurate com‐
parison, the bounds for the parameters are given in Table I
[23]. In this context, the superior performance of the pro‐
posed LHSSA is validated by comparing with other well-es‐
tablished algorithms [24] such as PSO, fire fly algorithm
(FFA), grey wolf algorithm (GWO), dragonfly algorithm
(DA), and standard SSA. For fair comparisons, the same
maximum number of iterations in each run with 20 indepen‐
dent runs for every problem is adopted in the comparative al‐
gorithms. Further, the parameter configurations of the com‐
pared algorithms are listed in Table II and are suggested as
in [24].

A. Results of SD Model

In this section, the comparison results of the SD model in‐
cluding the extracted parameters and RMSE are shown in Ta‐
ble III, where the best RMSE value among all comparative
algorithms is highlighted in boldface.

The results of all the comparative algorithms and the re‐
sults taken from [23] are listed in Table III, where the mean‐
ing of the abbreviations can be found in [23]. Regarding Ta‐
ble III, it can be observed that the proposed LHSSA gives
the lowest RMSE value (0.98602 mA) compared with the
other comparative algorithms. Additionally, to further empha‐
size the quality of the obtained results, the best extracted pa‐
rameters of the LHSSA are employed to replot the I-V and
P-V characteristic curves as depicted in Fig. 3. The depicted
curves show that the calculated data acquired by the LHSSA
highly coincides with the measured one based on the voltage
range. Additionally, the individual absolute error (IAE) is in‐
troduced as a quality index to determine the absolute differ‐
ence between the experiment data I tm and the simulated one
I te as in Table IV. The obtained values of the IAE are less
than 1.62×10-3 and the total sum is 2.58×10-5, which affirms
the accuracy of the parameters estimated by the LHSSA.

B. Results of DD Model

The parameters of the DD model associated with the
RMSE of the different methods are recorded in Table V. The
results of the compared algorithms are also presented in Ta‐
ble V. It is obvious that the proposed LHSSA outperforms
the comparative algorithms because it provides the best
RMSE value (0.98249 mA). The characteristic curves for I-V
and P-V of the measured data and the one estimated by the
LHSSA are depicted in Fig. 4, whereas the IAE values are
given in Table VI. Figure 4 shows that the data estimated by
the LHSSA are in good congruence with the measured data.
From Table VI, the sum of errors is 3.84×10-6 and all the
IAE values are smaller than 1.239×10-3, indicating the high
accuracy of the identified parameters.

C. Results of PV Module Model

In this model, five parameters are estimated and the
RMSE values are obtained and reported in Table VII.

Start

End

Initialize the salps randomly

Compute the fitness of salps

Record the best result

Obtain the best position F

Is the iteration
satisfied?

Is (a<b|a, b ~ U(0,1))?

N

N

Y

Y

Update the velocity and position
by (20) and (21)

Evaluate the fitness and
update gbest

Set the gbest as leader salp

Initialize PSO by followers

Update the leader and the
followers by (15) and (17)

Update the followers using
opposition by (22)

Evaluate the new salps

Update the best position F

Update h1, h2, and h3

Fig. 2. Flow chart of proposed LHSSA.

TABLE I
PARAMETERS RANGE FOR SD, DD, AND PV MODULE

Model

SD

DD

PV module

Bound

Lower

Upper

Lower

Upper

Lower

Upper

Iph (A)

0

1

0

1

0

2

IsdIsd1Isd2 (μA)

0

1

0

1

0

50

RS (Ω)

0.0

0.5

0.0

0.5

0.0

2.0

Rsh (Ω)

0

100

0

100

0

2000

nn1n2

1

2

1

2

1

50

TABLE II
PARAMETER CONFIGURATIONS FOR COMPARATIVE ALGORITHMS

Parameter

Population size PS = 20, acceleration coefficients c1 = c2 = 2,
inertia weight w: 0.2-0.9

PS = 20, initial attractiveness β0 = 1, randomization parame‐
ter α= 0.2, absorption coefficient γ= 1

PS = 20, aÎ[02]A= 2ar2 - aC = 2r1r1r2 U(01), U repre‐
sents a uniform distribution

PS = 20, w: 0.2-0.9, separation s= 0.1, alignment a= 0.1, co‐
hesion c= 0.7, food f = 1, enemy e= 1

PS = 20, h1Î[02], h2h3 Î[01]

PS = 20, acceleration coefficients: c1 = c2 = 2, inertia weight
w: 0.2-0.9, h1Î[02], h2h3Î[01]

Algorithm

PSO

FFA

GWO

DA

SSA

LHSSA
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The results of the proposed LHSSA are compared with dif‐
ferent algorithms, some of which are taken from literature
for comparison [23]. The overall IAE values are given in Ta‐
ble VIII.

TABLE IV
IAE OF LHSSA FOR EACH MEASUREMENT ON SD MODEL

Item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Measured
voltage (V)

-0.2057

-0.1291

-0.0588

0.0057

0.0646

0.1185

0.1678

0.2132

0.2545

0.2924

0.3269

0.3585

0.3873

0.4137

0.4373

0.4590

0.4784

0.4960

0.5119

0.5265

0.5398

0.5521

0.5633

0.5736

0.5833

0.5900

Measured
current (A)

0.7640

0.7620

0.7605

0.7605

0.7600

0.7590

0.7570

0.7570

0.7555

0.7540

0.7505

0.7465

0.7385

0.7280

0.7065

0.6755

0.6320

0.5730

0.4990

0.4130

0.3165

0.2120

0.1035

-0.0100

-0.1230

-0.2100

Calculated
current (A)

0.7640

0.7626

0.7613

0.7601

0.7590

0.7580

0.7571

0.7561

0.7551

0.7536

0.7513

0.7473

0.7401

0.7273

0.7069

0.6752

0.6307

0.5719

0.4996

0.4136

0.3175

0.2121

0.1022

-0.0087

-0.1255

-0.2084

IAE

-0.0000872

-0.0006600

-0.0008500

0.0003500

0.0009500

0.0009600

-0.0000911

0.0008600

0.0004100

0.0003400

-0.0008900

-0.0008500

-0.0016200

0.0006200

-0.0004700

0.0002200

0.0012400

0.0010700

-0.0006100

-0.0006500

-0.0010100

-0.0001500

0.0012500

-0.0012800

0.0025100

-0.0015200
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-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

Voltage (V)

Cu
rre

nt
 (A

)

Experimental data 
Model curve

-0.2-0.3 -0.1 0 0.2 0.4 0.60.1 0.3 0.5
-0.2

-0.1

0

0.1

0.2

0.3

0.4

Voltage (V)
(b)

(a)

Po
w

er
 (W

)

 

Experimental data 
Model curve

Fig. 3. Comparison between experimental and simulated data obtained by
LHSSA for SD model. (a) I-V characteristics. (b) P-V characteristics.

TABLE III
COMPARISONS WITH VARIOUS ALGORITHMS FOR SD MODEL

Algorithm

Proposed LHSSA

PSO

FFA

GWO

DA

SSA

IJAYA

JAYA

GOTLBO

LETLBO

LBSA

CLPSO

BLPSO

DE/BBO

CMM-DE/BBO

IADE

IGHS

ABSO

Rs (Ω)

0.03640

2.22040×10-16

0.01540

0.02970

2.22040×10-16

4.73800×10-4

0.03640

0.03640

0.03630

0.03630

0.03640

0.03610

0.03590

0.03640

0.03640

0.03621

0.03610

0.03659

Rsh (Ω)

53.7185

1.1489

47.0033

32.6211

1.1489

5.6237

53.7595

54.9298

53.3664

53.7429

54.1083

54.1965

60.2845

55.2627

53.8753

54.7643

53.2845

52.2903

Iph (A)

0.7607

0.8368

0.5697

0.7652

0.8368

0.7443

0.7608

0.7608

0.7608

0.7608

0.7609

0.7608

0.7607

0.7605

0.7608

0.7607

0.7608

0.7608

Isd (μA)

0.32300

2.22000×10-8

3.09000

1.10700

2.22000×10-8

11.02000

0.32280

0.32810

0.32970

0.32597

0.32583

0.34302

0.36620

0.32477

0.32384

0.33613

0.34350

0.30623

n

1.48170

1.00000

1.89920

1.61860

1.00000

1.98690

1.48110

1.48280

1.48330

1.48210

1.48200

1.48730

1.49390

1.48170

1.48140

1.48520

1.48740

1.47878

RMSE (mA)

0.98602

19.58100

141.63000

222.86000

222.86000

39.90600

0.98603

0.98946

0.98856

0.98738

0.99125

0.99633

1.02720

0.99922

0.98605

0.98900

0.99306

0.99124
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It is clear that the proposed LHSSA outperforms the other
algorithms as it gives the best RMSE value (2.42507×10-3)
among all the compared algorithms. The comparison shows
that the LHSSA performs well. Due to space limitations, the
I-V and P-V characteristics are not depicted. The obtained
IAE values are all smaller than 4.837×10-3 and the total sum
of error is 4.3172×10-5. The parameters with high accuracy
are achieved again by the LHSSA.

TABLE V
COMPARISONS WITH VARIOUS ALGORITHMS FOR DD MODEL

Algorithm

Proposed LHSSA

PSO

FFA

GWO

DA

SSA

IJAYA

JAYA

GOTLBO

LETLBO

LBSA

CLPSO

BLPSO

DE/BBO

CMM-DE/BBO

IGHS

ABSO

Rs (Ω )

0.036740

2.220400×10-16

2.220400×10-16

0.048295

2.220400×10-16

5.613300×10-4

0.037600

0.036400

0.036500

0.036500

0.036500

0.036700

0.036600

0.038500

0.036000

0.036900

0.036600

Rsh (Ω )

55.4824

1.1487

1.1904

22.6562

1.1489

1.9814

77.8519

52.6575

53.4058

54.3021

56.0524

57.9422

61.1345

58.4018

57.9882

53.8368

54.6219

Iph (A )

0.76080

0.83680

0.86410

0.76170

0.83680

0.83910

0.76010

0.76070

0.76080

0.76080

0.76070

0.76070

0.76080

0.76060

0.76070

0.76080

0.76077

Isd1 (μA )

0.7473

2.2204×10-10

2.2204×10-10

8.3152×10-3

2.2204×10-10

2.2204×10-10

0.0050

0.0061

0.1389

0.1739

0.2487

0.2584

0.2719

0.0012

0.3537

0.9731

0.2671

Isd2 (μA )

0.2259

2.2204×10-10

2.2204×10-10

2.4189×10-10

2.2204×10-10

3.9483

0.7509

0.3151

0.2621

0.2266

0.2744

0.3862

0.4351

0.3722

0.0256

0.1679

0.3819

n1

2.0000

1.0000

1.8384

1.1862

1.0000

1.9963

1.2186

1.8436

1.7254

1.6585

1.8817

1.4625

1.4674

1.8791

1.4907

1.9213

1.4651

n2

1.4515

1.0000

1.3378

1.5192

1.1676

1.8427

1.6247

1.4788

1.4658

1.4578

1.4682

1.9435

1.9662

1.4956

1.8835

1.4281

1.9815

RMSE (mA)

0.98249

222.86000

226.05000

6.61280

222.86000

82.60300

0.98293

0.98934

0.98742

0.98565

0.98751

0.99894

1.06280

1.02550

1.00880

0.98635

0.98344
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Fig. 4. Comparison between experimental and simulated data obtained by
LHSSA for DD model. (a) I-V characteristics. (b) P-V characteristics.

TABLE VI
IAE OF LHSSA FOR EACH MEASUREMENT ON DD MODEL

Item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Measured
voltage (V)

-0.2057

-0.1291

-0.0588

0.0057

0.0646

0.1185

0.1678

0.2132

0.2545

0.2924

0.3269

0.3585

0.3873

0.4137

0.4373

0.4590

0.4784

0.4960

0.5119

0.5265

0.5398

0.5521

0.5633

0.5736

0.5833

0.5900

Measured
current (A)

0.7640

0.7620

0.7605

0.7605

0.7600

0.7590

0.7570

0.7570

0.7555

0.7540

0.7505

0.7465

0.7385

0.7280

0.7065

0.6755

0.6320

0.5730

0.4990

0.4130

0.3165

0.2120

0.1035

-0.0100

-0.1230

-0.2100

Calculated
current (A)

0.7639

0.7626

0.7613

0.7602

0.7591

0.7581

0.7572

0.7562

0.7552

0.7537

0.7514

0.7473

0.7400

0.7272

0.7069

0.6752

0.6308

0.5720

0.4998

0.4137

0.3175

0.2121

0.1022

-0.0088

-0.1255

-0.2084

IAE

0.0000165

-0.0006200

-0.0008400

0.0003300

0.0008900

0.0008800

-0.0001900

0.0007600

0.0003200

0.0002800

-0.0009100

-0.0008000

-0.0015100

0.0007500

-0.0003500

0.0002900

0.0012400

0.0010100

-0.0007100

-0.0007300

-0.0010500

-0.0001200

0.0013400

-0.0012100

0.0025400

-0.0016300

390



RIZK-ALLAH et al.: LOCOMOTION-BASED HYBRID SALP SWARM ALGORITHM FOR PARAMETER ESTIMATION OF...

D. Statistical Measures and Convergence Behavior

In this subsection, statistical measures are calculated for
the proposed and comparative algorithms over 20 indepen‐
dent runs and are recorded in Table IX. These measures in‐
clude the mean RMSE that quantifies the average accuracy
and also confirms the stability of the algorithm runs, and St.
dev that represents the standard deviation of the RMSE val‐
ues that defines the reliability of the parameter estimation.
For each model, the overall best RMSE values among the
comparative algorithms are highlighted in boldface. Table IX
demonstrates that the proposed LHSSA performs much bet‐
ter than all the other comparative algorithms for all the mod‐
els in terms of reliability and accuracy. In this regard, the
convergence curves for the comparative algorithms are de‐
picted in Fig. 5 and the box-plot representations are used to
show the distribution of the results obtained by those algo‐
rithms over 20 independent runs, as shown in Fig. 6. It is
noted that the LHSSA has a faster convergence rate than the
other algorithms in all models.

E. Study of Fuzzy Representation

The imprecise descriptions of the solar cell models are of‐
ten caused by weather fluctuations or instabilities in the mea‐
suring process. Thus, new insight from the operating point
of view is presented by incorporating this impreciseness us‐
ing the fuzzy concept in the solar cell models. The fuzzy
number representation is illustrated in Section II. Additional‐
ly, the fuzzified value is transformed into a crisp value based
on the α-cut level, using upper and lower bound values.

A searching process is carried out to identify the optimal
values for the parameters in terms of the α level. This strate‐
gy is investigated on the SD, DD and PV module models at
different levels, but the results are reported for α= 0.8 only
due to space limitation. The estimated parameters are record‐
ed in Tables X-XII. The convergence curves and box plot
are demonstrated for the DD model only due to space limita‐
tion in Figs. 7 and 8, respectively. The statistical measures
for these models are also listed in Table XIII.

F. Effects of α-level Schemes on RMSE

In order to clear the effects of the α-level schemes on
RMSE, three cases are considered (α= 1α= 0.8α= 0.4) as in
Fig. 9, where α= 1 represents the crisp case. Based on the
obtained results, the RMSE is affected by the vagueness as‐
pect induced by the α-level cut. Finally, we hope that this pa‐
per will inspire researchers in studying the uncertainty as‐
pect of different solar cell performances, which is caused by
various factors such as shading, weather changes and so on.

V. CONCLUSION

In this paper, a novel LHSSA is presented to accurately es‐
timate the parameters of PV models. In the LHSSA, the stan‐
dard SSA is conducted to search globally and explore the dif‐
ferent areas in the search space. Afterwards, PSO is em‐
ployed to guide the SSA leaders with the aim of eliciting the
promising area. Additionally, a learning scheme based on the
follower behavior is introduced with the aim of improving
the population diversity. In this regard, the SSA emphasizes
on the diversification while PSO focuses on the intensifica‐
tion.

TABLE VII
RESULTS AMONG COMPARATIVE TECHNIQUES ON PV MODULE

Algorithm

Proposed
LHSSA

PSO

FFA

GWO

DA

SSA

IJAYA

JAYA

GOTLBO

LETLBO

LBSA

CLPSO

BLPSO

DE/BBO

CMM-DE

PS

SA

Rs (Ω)

0.0334

0

0

0.0005

0

0

1.2016

1.2014

1.1995

1.2015

1.2010

1.1978

1.2002

1.1969

1.2013

1.2053

1.1989

Rsh (Ω)

27.2773

2000.0000

586.7000

1064.5000

2000.0000

1931.5000

977.3700

1022.5000

969.9300

974.6100

987.7800

1017.0000

992.7900

1015.1000

981.9800

714.2800

833.3300

Iph (A)

1.0305

1.1741

1.4650

1.0467

1.0484

1.3032

1.0305

1.0302

1.0307

1.0306

1.0305

1.0304

1.0305

1.0303

1.0305

1.0313

1.0331

Isd (μA )

3.4822

3046.3000

226590.0000

680.5200

765.8700

54173.0000

3.4703

3.4931

3.5124

3.4705

3.4901

3.6131

3.5176

3.6172

3.4823

3.1756

3.6642

n

1.3517

2.8761

9.1139

2.3241

2.3616

5.3692

48.6298

48.6531

48.6766

48.6301

48.6513

48.7847

48.6815

48.7894

48.6428

48.2889

48.8211

RMSE
(mA)

2.4250

77.5850

220.4100

23.5320

23.8810

144.9300

2.4251

2.4278

2.4266

2.4251

2.4252

2.4281

2.4252

2.4283

2.4251

11.8000

2.7000

TABLE VIII
IAE OF LHSSA FOR EACH MEASUREMENT ON PV MODULE

Item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Measured
voltage (V)

0.1248

1.8093

3.3511

4.7622

6.0538

7.2364

8.3189

9.3097

10.2163

11.0449

11.8018

12.4929

13.1231

13.6983

14.2221

14.6995

15.1346

15.5311

15.8929

16.2229

16.5241

16.7987

17.0499

17.2793

17.4885

Measured
current (A)

1.0315

1.0300

1.0260

1.0220

1.0180

1.0155

1.0140

1.0100

1.0035

0.9880

0.9630

0.9255

0.8725

0.8075

0.7265

0.6345

0.5345

0.4275

0.3185

0.2085

0.1010

-0.0080

-0.1110

-0.2090

-0.3030

Calculated
current (A)

1.02912

1.02738

1.02574

1.02411

1.02229

1.01993

1.01636

1.01049

1.00063

0.98455

0.95952

0.92284

0.87260

0.80728

0.72834

0.63714

0.53622

0.42951

0.31877

0.20739

0.09616

-0.00833

-0.11095

-0.20926

-0.30088

IAE

0.0023800

0.0026200

0.0002600

-0.0021100

-0.0042900

-0.0044300

-0.0023600

-0.0005000

0.0028700

0.0034500

0.0034800

0.0026600

-0.0001000

0.0002200

-0.0018400

-0.0026400

-0.0017100

-0.0020100

-0.0002700

0.0011100

0.0048400

0.0003300

-0.0000538

0.0002600

-0.0021200
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TABLE IX
STATISTICAL MEASURES OF DIFFERENT TECHNIQUES FOR THREE MODELS

Model

SD

DD

PV
mod‐
ule

Algorithm

LHSSA

PSO

FFA

GWO

DA

SSA

IJAYA

JAYA

GOTLBO

LETLBO

LBSA

CLPSO

BLPSO

DE/BBO

CMM-
DE/BBO

LHSSA

PSO

FFA

GWO

DA

SSA

IJAYA

JAYA

GOTLBO

LETLBO

LBSA

CLPSO

BLPSO

DE/BBO

CMM-
DE/BBO

LHSSA

PSO

FFA

GWO

DA

SSA

IJAYA

JAYA

GOTLBO

LETLBO

LBSA

CLPSO

BLPSO

DE/BBO

CMM-
DE/BBO

RMSE (mA)

Min

0.98602

19.58100

141.64000

222.86000

222.86000

39.90600

0.98603

0.98946

0.98856

0.98738

0.99125

0.99633

1.02720

0.99922

0.98605

0.98249

222.86000

226.06000

6.61290

222.86000

82.60300

0.98293

0.98934

0.98742

0.98565

0.98751

0.99894

1.06280

1.02550

1.00880

2.42500

77.58500

220.41000

23.53200

23.88100

144.93000

2.42510

2.42780

2.42660

2.42510

2.42520

2.42810

2.42520

2.42830

2.42510

Mean

0.98602

212.69000

225.21000

222.86000

222.86000

121.35000

0.99204

1.16170

1.04500

1.03330

1.14660

1.05810

1.31390

1.29480

1.04860

0.98337

230.57000

244.84000

159.45000

222.86000

147.24000

1.02690

1.17670

1.14750

1.08690

1.25450

1.14580

1.48210

1.55710

1.54870

2.42500

202.35000

242.59000

99.18200

213.11000

186.23000

2.42890

2.45370

2.47540

2.44070

2.46740

2.45490

2.43790

2.46160

2.42520

Max

0.98602

222.86000

241.84000

222.87000

222.86000

222.86000

1.06220

1.47830

1.20670

1.15930

1.48620

1.31960

1.79280

2.22580

1.34750

0.98602

299.95000

266.29000

222.87000

222.86000

165.79000

1.40550

1.47930

1.39470

1.48700

1.73430

1.54940

1.74110

2.40420

2.05890

2.42500

274.25000

261.92000

274.29000

274.25000

246.43000

2.43930

2.59590

2.56380

2.58210

2.53440

2.54330

2.48830

2.52560

2.42680

St.dev

6.269700×10--10

45.454000

20.333000

4.254900×10-3

1.042400×10-13

44.665000

1.403300×10-2

0.187960

0.502180

0.469460×10-2

0.134820

7.485400×10-2

0.211660

0.250740

8.167900×10-2

1.494500×10--3

24.378000

11.980500

102.160000

1.072200×10-4

24.236000

0.098325

0.193560

0.113300

0.153600

0.222360

0.143670

0.177890

0.362970

0.294130

3.525700×10-9

87.493000

15.209000

120.820000

96.186000

37.828000

3.775500×10-3

3.456300×10-2

2.938800×10-2

2.949000×10-2

2.910900×10-2

2.581000×10-2

1.372400×10-2

2.925100×10-2
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Fig. 5. Convergence curves for two models. (a) SD model. (b) DD model.
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Fig. 6. Boxplot representations of RMSE for SD model and DD model.
(a) SD model. (b) DD model.
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The proposed LHSSA is investigated on different PV mod‐
els, i.e., SD, DD, and PV module models. Comprehensive re‐
sults affirm that LHSSA is able to obtain highly competitive
performance in comparison with other algorithms, especially
in terms of quality and reliability. In future work, we will
study the effect of shading on the performance of the PV
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Fig. 7. Convergence curves for DD model at α= 0.8.

TABLE XI
ESTIMATED PARAMETERS IN FUZZY ENVIRONMENT (DD MODEL) WHEN

α= 0.8

Algo‐
rithm

PSO

FFA

GWO

DA

SSA

LHS‐
SA

Rs (Ω )

2.2204×
10-16

2.2204×
10-16

1.4317×
10-2

2.3572×
10-16

1.6169×
10-2

2.2561×
10-2

Rsh (Ω )

100.0000

1.1034

73.9081

2.7496

4.6353

65.3882

Iph

(A )

0.7426

0.8331

0.7673

0.6802

0.8661

0.7539

Isd1

(μA )

13.238

2.220×
10-10

12.968

3.754×
10-10

4.672×
10-3

2.024

Isd2

(μA )

2.220×
10-10

2.220×
10-10

8.489×
10-10

2.818×
10-10

12.827

2.220×
10-10

n1

2.00

1.50

2.00

1.06

1.54

1.71

n2

2.00

1.11

1.43

1.04

1.97

1.00

RMSE
(mA)

29.05

222.72

8.66

251.53

65.54

0.12

TABLE XII
ESTIMATED PARAMETERS IN FUZZY ENVIRONMENT (PV MODULE) WHEN

α= 0.8

Algorithm

PSO

FFA

GWO

DA

SSA

LHSSA

Rs (Ω )

2.2204×
10-16

2.2204×
10-16

2.2204×
10-16

2.2204×
10-16

1.3802×
10-4

0.0220

Rsh (Ω )

2000.0000

548.3519

905.2461

1659.3036

1703.3602

1999.9620

Iph
(A )

1.2169

1.1426

1.0513

1.0943

1.3011

1.0324

Isd
(μA )

6938.000

88576.000

795.350

76921.000

38435.000

65.662

n

3.3448

7.3094

2.3831

6.7461

4.8604

1.7777

RMSE
(mA)

91.95800

212.37000

19.14200

194.71000

136.25000

0.49438
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Fig. 8. Box plot for RMSE over 20 runs for DD α= 0.8.

TABLE XIII
STATISTICAL MEASURES AMONG DIFFERENT TECHNIQUES FOR THREE

MODELS UNDER FUZZY ENVIRONMENT (α= 0.8)

Model

SD

DD

PV
module

Algo‐
rithm

PSO

FFA

GWO

DA

SSA

LHSSA

PSO

FFA

GWO

DA

SSA

LHSSA

PSO

FFA

GWO

DA

SSA

LHSSA

RMSE (mA)

Min

220.77000

189.52000

217.92000

228.64000

116.52000

0.10029

29.05000

222.72000

8.65650

251.53000

65.54200

0.11987

91.95800

212.37000

19.14200

194.71000

136.25000

0.49438

Mean

231.40000

227.43000

218.65000

273.31000

161.67000

0.25622

219.53000

238.44000

118.91000

11504.00000

137.93000

0.27267

213.75000

246.50000

47.80500

354.88000

196.20000

0.69770

Max

300.55000

242.79000

219.02000

295.14000

208.19000

0.34823

302.33000

251.02000

219.85000

111420.00000

198.67000

391.31000

276.93000

264.59000

266.10000

441.70000

254.81000

0.90773

SD

24.33200

146.71000

0.36142

23.96100

23.10600

0.07818

74.49600

9.48900

105.79000

35109.00000

45.38300

0.07176

720.69000

14.30600

76.81400

96.89600

51.95600

0.13615

TABLE X
ESTIMATED PARAMETERS IN FUZZY ENVIRONMENT (SD MODEL) WHEN

α= 0.8

Algorithm

PSO

FFA

GWO

DA

SSA

LHSSA

Rs (Ω)

2.2204×
10-16

0.0181

4.3206×
10-16

2.6996×
10-3

0.0269

2.2204×
10-16

Rsh (Ω)

1.1058

75.4861

1.1224

1.0181

1.6612

36.5013

Iph (A)

0.841825

0.949916

0.832974

0.899220

0.863027

0.766241

Isd (μA)

2.2204×
10-10

8.5959

1.7551×
10-9

4.8877×
10-10

4.3412

14.1930

n

2.0000

1.9143

1.9233

1.0000

1.8747

1.9995

RMSE
(mA)

220.77000

189.52000

217.92000

228.64000

116.52000

0.10029
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modules. Additionally, some other modification will be de‐
veloped, dealing with more complex renewable energy prob‐
lems and studying the use of the rough set theory for deal‐
ing with different PV models. Finally, we hope that this pa‐
per will inspire researchers in studying the uncertainty as‐
pect of solar cell performances.
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