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Distributed Real-time State Estimation for
Combined Heat and Power Systems

Tingting Zhang, Wen Zhang, Qi Zhao, Yaxin Du, Jian Chen, and Junbo Zhao

Abstract——This paper proposes a distributed real-time state es‐
timation (RTSE) method for the combined heat and power sys‐
tems (CHPSs). First, a difference-based model for the heat sys‐
tem is established considering the dynamics of heat systems.
This heat system model is further used along with the power
system steady-state model for holistic CHPS state estimation. A
cubature Kalman filter (CKF)-based RTSE is developed to deal
with the system nonlinearity while integrating both the histori‐
cal and present measurement information. Finally, a multi-time-
scale asynchronous distributed computation scheme is designed
to enhance the scalability of the proposed method for large-
scale systems. This distributed implementation requires only a
small amount of information exchange and thus protects the
privacy of different energy systems. Simulations carried out on
two CHPSs show that the proposed method can significantly im‐
prove the estimation efficiency of CHPS without loss of accura‐
cy compared with other existing models and methods.

Index Terms——Combined heat and power system (CHPS), cu‐
bature Kalman filter (CKF), heat dynamics, multi-time-scale
asynchronous distributed scheme, real-time state estimation
(RTSE).

I. INTRODUCTION

CONSIDERING the growing energy crisis and the envi‐
ronmental pollution, the integrated energy system

(IES), including electricity, heat, cold, gas, and other comple‐
mentary energy forms, has gained more and more attention
[1]. IES can make full use of the flexibility of various ener‐
gy systems to promote energy efficiency and reduce carbon
emissions [2]. The combined heat and power system (CHPS)
is the most widely-used IES, which consists of the power
system, the heat system, and energy conversion units such as
the combined heat and power (CHP) units. CHPS can not
only generate both power and heat, but also collect the
waste heat to achieve higher energy efficiency [3].

The online control and management of CHPS necessitate
the need to gain access to reliable and real-time system oper‐
ation states. However, due to the lack of real-time measure‐
ments and the information barrier between different energy
systems, the measurement information collected from the me‐
tering devices is incomplete and also suffers from unavoid‐
able noises. Therefore, there is an essential need to develop
state estimation for the CHPS for real-time monitoring. Al‐
though the state estimation for power system has been exten‐
sively investigated, there are few works on CHPS. In [4], a
state estimation model for CHPS considering the operation
characteristics of coupling components is first established. A
distributed bilinear state estimation method for the IES is
proposed in [5].

In practical heat systems, the temperature fluctuation at
the inlet of a pipeline slowly spreads to the outlet, causing a
time delay in heat transfer [6]. Such heat dynamics couple
the current nodal temperature with the historical ones and
the mass flow rates. In this condition, the static model,
which treats the heat transfer as a quasi-steady model, will
lead to poor estimation accuracy. Hence, the dynamic model
of the heat system should be considered in CHPS state esti‐
mation. In [7], a node method is proposed for dynamic mod‐
eling of the heat system to incorporate the discrete spatio-
temporal constraints. However, this backward induction
method is quite complicated. To address this issue, a novel
difference-based model is developed in this paper to capture
the dynamics of heat systems, where only the last historical
state snapshot is needed.

Static state estimators may obtain inaccurate state aware‐
ness if the heat dynamics are ignored. However, few studies
focus on the dynamic state estimation (DSE) for CHPS. In
[8], a two-stage state estimation approach for CHPS is em‐
ployed considering the time delay of heat transfer. In [9],
[10], an alternating estimation strategy for CHPS is pro‐
posed to handle the complicated heat dynamic constraints of
temperature. These methods incorporate the discrete spatio-
temporal constraints into the weighted least squares (WLS)
[11], yielding the so-called quasi-dynamic state estimations
(QDSEs). For power systems, a static state estimation is per‐
formed without state transition matrix. Unlike the quasi-dy‐
namic ones, the nonlinear estimators within the Kalman fil‐
ter (KF) framework can utilize both the previous states and
the current measurements to recursively estimate the system
states [12]. The extended KF (EKF) is a widely-used method
[13]. Nevertheless, it may have large linearization errors for

Manuscript received: February 4, 2020; accepted: July 10, 2020. Date of
CrossCheck: July 10, 2020. Date of online publication: October 1, 2020.

This work was supported by the Science and Technology Project of State
Grid Corporation of China (No. 52060019001H).

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

T. Zhang, W. Zhang (corresponding author), Q. Zhao, Y. Du, and J. Chen are
with the Key Laboratory of Power System Intelligent Dispatch and Control,
Ministry of Education, Shandong University, Jinan 250061, China (e-mail: em‐
ma6426579@126.com; zhangwen@sdu.edu.cn; upc_zq@163.com; djy996@126.
com; ejchen@sdu.edu.cn).

J. Zhao is with the Department of Electrical and Computer Engineering, Mis‐
sissippi State University, Starkville, MS 39762, USA (e-mail: junbo@ece. ms‐
state.edu).

DOI: 10.35833/MPCE.2020.000052

316



ZHANG et al.: DISTRIBUTED REAL-TIME STATE ESTIMATION FOR COMBINED HEAT AND POWER SYSTEMS

highly nonlinear systems. The unscented KF (UKF) employs
the unscented transformation to approximate the Gaussian
distributions of the nonlinear functions without linearization
[14]. However, it may suffer from numerical stability issues
when applied to high-dimension systems due to the nonposi‐
tive definite covariance matrix in case of inappropriate pa‐
rameters [15]. To address that, the cubature KF (CKF) [16]
is adopted in this paper.

Compared with the individual estimations for different en‐
ergy systems, combined state estimation for CHPS can ob‐
tain coordinated estimates, avoiding data mismatches on cou‐
pling units. However, due to the independent operation of
different energy systems and the requirement for privacy pro‐
tection, only limited data can be exchanged [17]. Besides,
since the CHPS is typical of large scale, a centralized com‐
bined state estimation (CCSE) is too computationally de‐
manding for practical application. Furthermore, the differ‐
ence of time resolution between the two energy systems also
challenges the implementation of the CCSE. Therefore, there
is an urgent need to design a distributed scheme for CHPS
state estimation.

This paper proposes a distributed CKF-based real-time
state estimation (CKF-RTSE) method for CHPS. Firstly, a
difference model considering the dynamic characteristics of
the heat system is established based on heat conservation.
Then, a CKF-RTSE method is proposed for the CHPS. To
deal with the time resolution issue, a multi-time-scale asyn‐
chronous distributed scheme is proposed. This allows per‐
forming real-time state estimations (RTSEs) for the power
and heat systems at different frequencies during the system
operation. These RTSEs are implemented in an asynchro‐
nous distributed manner when they need to be executed si‐
multaneously. The main contributions of this paper are sum‐
marized as follows:

1) A difference-based model for the heat system in CHPS
is developed considering both the steady and dynamic char‐
acteristics of the heat system, where only the last historical
state snapshot is required to predict the current temperatures.

2) A CKF-RTSE method for CHPS is proposed by incor‐
porating the proposed CHPS models into a CKF algorithm.
It allows tracking CHPS states and its heat dynamic process,
which facilitates real-time control and management.

3) A multi-time-scale asynchronous distributed scheme is
developed for RTSE implementation, which enhances the
computation efficiency and protects the privacy of different
energy systems while obtaining the coordinated operation
states.

The rest of the paper is organized as follows. The CHPS
model considering the thermal dynamics of the heat system
is established in Section II. The CKF-RTSE for CHPS is pro‐
posed in Section III. The multi-time-scale asynchronous dis‐
tributed scheme of the RTSE is proposed in Section IV. Sim‐
ulation results are shown in Section V. Finally, Section VI
concludes the paper.

II. CHPS MODELS CONSIDERING THERMAL DYNAMICS

A CHPS consists of the power system, the heat system,
and their coupling units. Since the time constant of the heat

system is much larger than that of the power system, the
heat system has much slower dynamics. Considering the re‐
quirement of the online control and management of CHPS,
although the measurements can be collected at a high fre‐
quency, the state estimation for CHPS is preferred for the
implementation at a minute level. Therefore, the quasi-
steady model is assumed for power system to capture bus
voltage magnitude and angle variations while the dynamic
model for the heat system is developed.

A. Models for Heat Systems

In this paper, the heat systems are described by a set of
differential and algebraic equations. In particular, the continu‐
ity of water flow, loop pressure, heat power, temperature
mixture, and heat loss [8], [18], [19] are described by alge‐
braic equations; while the thermal dynamics are described
by a set of differential equations.
1) Algebraic Equations for Heat System

1) Continuity of water flow
The mass flow of the water is governed by the rule that

the mass flow of water entering into a bus equals the sum of
the mass flow of water flowing out of the bus and the water
consumption of the bus, which can be expressed as:

Am=mq (1)

where A is the network incidence matrix that indicates the
incidence relationships among the buses and branches in the
heat system; m is the vector of mass flow inside each pipe‐
line; and mq is the vector of mass flow injected to the heat
load at each bus.

2) Calculation of loop pressure
Due to the friction inside the pipelines, the pressure head

of water drops as it flows, and the difference in pressure
head between buses will drive the flow of water in turn.
Similar to the Kirchhoff’s voltage law, the head loss around
a closed hydraulic loop must be zero, which can be de‐
scribed by:

BKfricm*|m |= 0 (2)

where B is the loop incidence matrix that shows the relation‐
ships between the closed circles and each pipeline; Kfric is

the resistance coefficient of each pipeline; ||m = ( )||mi is

used to denote the absolute value of the matrix; and * is the
Hadamard product.

3) Calculation of heat power
The heat power generated by a heat source or consumed

by a heat load can be calculated via:

Φ=Cpmq (Ts - Tr) (3)

where Φ is the heat power at each bus; Cp is the specific
heat of water; mq is a single variable of mq; and Ts and Tr

are the nodal supply and return temperatures, respectively.
4) Calculation of heat loss
Considering the heat loss, the relationship between the

temperature at the beginning and the end of the pipeline can
be expressed as:

Tend = (Tstart - Ta)e
-
λL

Cpm + Ta
(4)
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where Tend is the temperature at the end of the pipeline be‐
fore mixing; Tstart is the temperature at the beginning of the
pipeline; Ta is the ambient temperature; m is a single vari‐
able of m; λ is the heat transfer coefficient per unit length;
and L is the length of the pipeline.

5) Mixture of nodal temperature
The temperature of water flows out of a mixing bus can

be calculated through:

(∑mout)Tout =∑( )minTin (5)

where mout and min are the mass flow rates leaving and enter‐
ing the bus, respectively; Tout is the temperature of the bus
after the mixture; and Tin is the water temperature at the end
of an incoming pipeline.
2) Differential Equations for Thermal Dynamics Model

The heat energy is transmitted by hot water inside pipe‐
lines slowly. The change of the temperature at the inlet of a
pipeline will affect the outlet temperature after the time de‐
lay of water transport. Considering that most heat systems
operate at the constant flow and variable temperature (CF-
VT) in practice, the hydraulic dynamics can be ignored and
the thermal dynamics will be taken into consideration.

The thermal dynamics of the heat system are mainly re‐
flected in the heat transport delay and the heat loss in the
transition process. Based on the heat conservation law, the
partial differential equation can be expressed as [19]:

¶T
¶t

+
m
ρS

¶T
¶x

+
λ

Cp ρS
(T - Ta)= 0 (6)

where T is the temperature at any point in a pipeline; S is
the cross-sectional area of a pipeline; ρ is the density of wa‐
ter; and t and x are the time and the length from the pipeline
inlet, respectively.

By discretization based on the Lax-Wendroff method [20],
(6) can be rewritten as:

Tik + 1 + Tjk + 1 - Tik - Tjk +
mijDt

ρSij Lij

(Tjk + 1 + Tjk - Tik + 1 - Tik)+
λDt

2Cp ρSij

(Tik + Tjk + Tik + 1 + Tjk + 1 - 4Ta)= 0 (7)

where k is the kth time instant; and Tik and Tjk are the tem‐
peratures at the start and end of the pipeline ij at the kth time
instant, respectively.

Compared with the node-based model in [7], the proposed
difference-based model only needs the last historical state
snapshot of nodal supply and returns the information of tem‐
peratures. Thus, only a small amount of historical informa‐
tion is needed, simplifying the state prediction with dynamic
characteristics of the heat system considered.

B. Models for Power System

The AC power flow model is utilized, which can be ex‐
pressed as:

ì

í

î

ïï
ïï

Pi =Vi∑
j

Vj ( )gij cos θ ij + bij sin θ ij

Qi =Vi∑
j

Vj ( )gij sin θ ij - bij cos θ ij

(8)

where Pi and Qi are the active and reactive power at bus i,

respectively; Vi is the voltage magnitude of bus i; gij and bij

are the conductance and the susceptance of the branch be‐
tween bus i and bus j, respectively; and θ ij is the difference
between the phase angles of bus i and bus j.

C. Models for CHP Units

The CHP units can generate power and heat simultaneous‐
ly. According to the internal mechanism, the CHP units can
be divided into gas turbines, internal combustion reciprocat‐
ing engines, and steam turbines. In this paper, the gas tur‐
bines and steam turbines are taken as typical CHP units.

For gas turbines, the relationship between their power and
heat output is shown as:

cm =
ΦCHP

PCHP
(9)

where ΦCHP is the heat output of the CHP unit; PCHP is the
power output; and cm is the heat-to-power ratio.

For steam turbines, if the fuel consumption is constant,
the increase of the power output will result in a decrease of
heat output. Under this condition, the relationship between
the power and heat output can be expressed as:

ηs =
DΦ
DP

=
ΦCHP

Pcap -PCHP
(10)

Pcap = ηeGin (11)

where ηs is the ratio that describes the heat and power out‐
put of the CHP unit; Pcap is the maximum power output with
zero heat output; ηe is the efficiency of the CHP unit; and
Gin is the fuel input.

III. CKF-RTSE FOR CHPS

In this section, the CKF-RTSE method is proposed for
CHPS considering the heat dynamics. First, the RTSE prob‐
lem for CHPS is formulated. Then, the CKF-RTSE method
is proposed.

A. Problem Formulation of RTSE for CHPS

Although an increasing number of real-time measurements
are available such as phasor measurement units (PMUs),
there is still a lack of real-time measurements in power sys‐
tems. In this condition, the power system state estimation is
still nonlinear due to the utilization of supervisory control
and data acquisition (SCADA) and pseudo-measurements.
Hence, a nonlinear filtering method is needed to provide ac‐
curate state awareness for the CHPS.

The conventional state estimation based on WLS extracts
the current states from a single measurement snapshot. It
may get trapped in local minimum if unsuitable initial states
are utilized when severe power fluctuations occur. In this
case, the WLS-based state estimation will suffer from low
accuracy and efficiency, thus being inappropriate for CHPS
real-time monitoring. To address this issue, the nonlinear es‐
timators developed within the KF framework are preferred,
since they can leverage both previous states and current mea‐
surements to recursively estimate states, yielding higher com‐
putation efficiency without loss of accuracy.

Though the measurements can be collected at a high fre‐
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quency, the state estimator of CHPS will suffer a great deal
of unnecessary communication and computation overhead if
executed at such a frequency. In this paper, the RTSE for the
CHPS aims to provide reliable and real-time state awareness
in normal cases for advanced applications such as contingen‐
cy analysis. Under this condition, the intervals of state esti‐
mation for both the power and heat systems should be con‐
sistent with those of system operation (5-15 min), and the
measurements can be updated only when the state estima‐
tions of the power and heat systems are carried out. There‐
fore, the RTSE for CHPS is preferred to be executed every
few minutes. In this way, the operation state of CHPS can
be tracked well while avoiding the waste of computation re‐
sources.

Note that due to the distinction in time scale between the
different energy systems, the transient process of the power
system is neglected, but the slow dynamics of the heat sys‐
tem will be tracked. In other words, the dynamics of the
power system is regarded as a quasi-steady behavior while
the slower thermal dynamics of the heat system is consid‐
ered. Therefore, a forecasting-aided state estimation (FASE)
will be performed in the power system and a DSE will be
developed for the heat system.

Generally, the state-space model for a CHPS, both for the
FASE and DSE, can be formulated by a set of discrete-time
nonlinear functions as [12]:

{x͂k = f (xk - 1ukωk)
zk = h(x͂kukξk)

(12)

where xk =[xekxhk]
T and uk =[uekuhk]

T are the state and the
input vectors at time instant k, respectively, and the sub‐
scripts e and h denote the power and the heat systems, re‐
spectively; ωk and ξk are the white noise vectors of system
process and measurements, which are assumed to be white
Gaussian in this paper, and their covariance matrices are de‐
noted by Qk and Rk, respectively; f (×) is a set of nonlinear
functions relevant to the predicted states x͂k; and h(×) is a set
of vector-valued nonlinear functions relating xk to the mea‐
surement vector zk =[zekzhk]

T.
1) FASE for Power System

For the power system, its state vector xe includes the nod‐
al voltage magnitudes V and phase angles θ, i.e., xe =[Vθ]T.
The input vector ue is composed of the nodal active and re‐
active power injections. ze denotes the measurement vector
of the power system, including the real-time measurements
provided by SCADAs and PMUs, and pseudo-measurements.

As mentioned above, the fast dynamics of the power sys‐
tem are neglected. Thus, the state transition in power sys‐
tems is treated as a quasi-steady behavior. In this paper, the
state transition of the power system is formulated by a load-
flow-based state prediction, which is expressed as:

xek + 1 = xek - J -1
e Due (13)

where Je is the Jacobian matrix of the power system; and Due

is the change of nodal loads obtained by load forecasting.
The real-time measurements consist of the nodal voltage

magnitude measurements, the branch current measurements,
and the active as well as reactive power flows on the branch‐
es from SCADA. The voltage magnitudes and phase angles

of the buses equipped with PMUs are also used as real-time
measurements. All the nodal active and reactive power injec‐
tions are leveraged as pseudo-measurements. Hence, the mea‐
surement functions can be expressed as follows.

1) Real-time measurements

ì

í

î

ï

ï

ï
ï
ïï
ï
ï

ï

ï

ï
ï
ïï
ï
ï

Pijmeas =ViVj ( )gij cos θ ij + bij sin θ ij -V 2
i gij

Qijmeas =ViVj ( )gij sin θ ij - bij cos θ ij +V 2
i bij

Vimeas =Vi

θ imeas = θ i

Iijmeas =
|

|

|
|

|

|

|
|
Vi -Vj

Zij

(14)

2) Pseudo-measurements

ì

í

î

ïï
ïï

Pimeas =Vi∑
j

Vj ( )gij cos θ ij + bij sin θ ij

Qimeas =Vi∑
j

Vj ( )gij sin θ ij - bij cos θ ij

(15)

where the subscript meas refers to the measurements em‐
ployed in the state estimation; θ i is the phase angle of bus i
with Vi as the corresponding complex voltage phasor; Pij and
Qij are the active and reactive power flows of branch ij, re‐
spectively; Iij is the magnitude of current of branch ij; and
Zij is the impedance of the branch between bus i and bus j.
2) DSE for Heat System

As for the heat system, the state variables include the sup‐
ply and return temperatures at each bus denoted by xh =
[TsTr]

T. The measurements are the heat energy consumed at
each bus as well as the supply and return temperatures, i.e.,
zh =[ΦTsTr]

T. Both the state transition and the measure‐
ment equations can be derived based on the model of the
heat system shown in Section II-A.

B. CKF-RTSE

The quality of the approximation of the nonlinear func‐
tions has a great impact on the performance of nonlinear esti‐
mators. A poor approximation will lead to inaccurate estima‐
tion. Due to the nonlinearity of the CHPS, especially that of
the power systems, an effective nonlinear estimator is need‐
ed.

The CKF is a useful recursive estimation method to ad‐
dress this issue. Similar to the UKF, the CKF also employs
the sampling technique to approximate the Gaussian distribu‐
tions of the nonlinear functions [15], [16], [21]. In this way,
the higher order information can be used, which enhances
the estimation precision.

The CKF involves three main steps: cubature point calcu‐
lation, time update, and measurement update, which are de‐
scribed as follows [21].
1) Cubature Point Calculation

The cubature point calculation is performed based on the
spherical-radical rule. A set of 2n cubature points are gener‐
ated with corresponding weights wi to capture the statistics,
i.e., the mean and covariance, of the previous state estimate
xk according to:

Pk = Sk S T
k (16)
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χ (i)
|k k = Skξ i + xk i = 122n (17)

ξ i = { n [ ]e
i

i = 12n

- n [ ]e
i

i = n+ 1n+ 22n
(18)

wc
i =wm

i =
1
2n

(19)

where Sk is the square-root matrix of the estimation error co‐
variance Pk at time instant k; χ (i)

|k k is the ith cubature point; ξ i

is the basic data point set; [ ]e
i

is the ith column of a unity

matrix; and wm and wc are the weights of each cubature
point for the mean and the covariance, respectively. Since
the weight wc of each cubature point keeps positive, the posi‐
tive definitiveness of the covariance matrix can be guaran‐
teed.
2) Time Update

Based on the state transition model in (12), the set of cu‐
bature points can be propagated via the nonlinear transition
function, which yields:

χ (i)
|k + 1 k = f (χ (i)

|k kk) i = 122n (20)

Then the predicted state x͂ |k + 1 k, i.e., x͂k in (12), and its co‐

variance P |k + 1 k can be calculated by:

x͂ |k + 1 k =∑
i = 1

2n

wm
i χ

(i)
|k + 1 k (21)

P |k + 1 k =∑
i = 1

2n

wc
i χ

(i)
|k + 1 k (χ (i)

|k + 1 k)
T - x͂ |k + 1 k x͂ T

|k + 1 k +Qk - 1 (22)

3) Measurement Update
With the predicted state x͂ |k + 1 k and its covariance P |k + 1 k, an‐

other set of χ _(i)
|k + 1 k can be generated similarly:

P |k + 1 k = S |k + 1 k S T
|k + 1 k (23)

χ _(i)
|k + 1 k = S |k + 1 kξ i + x͂ |k + 1 k i = 122n (24)

These cubature points are then propagated through the
measurement model in (12), which leads to:

z (i)
|k + 1 k = h(χ _(i)

|k + 1 k) i = 122n (25)

The mean of the propagated cubature points, the measure‐
ment covariance, and the cross covariance of the state and
measurement can be expressed as:

z̄ |k + 1 k =∑
i = 1

2n

wm
i z (i)

|k + 1 k (26)

P zz

|k + 1 k
=∑

i = 1

2n

wc
i z (i)

|k + 1 k (z (i)
|k + 1 k)

T - z̄ |k + 1 k (z̄ (i)
|k + 1 k)

T +Rk + 1 (27)

P xz

|k + 1 k
=∑

i = 1

2n

wc
i χ

_(i)
|k + 1 k (z (i)

|k + 1 k)
T - x͂ |k + 1 k z̄ T

|k + 1 k (28)

where the superscript zz indicates the measurement covari‐
ance; and the superscript xz indicates the cross covariance of
the state and measurement.

Thereafter, the Kalman gain can be calculated as:

Kk + 1 =P xz

|k + 1 k
(P zz

|k + 1 k
)-1

(29)

Finally, the estimated state x̂ |k + 1 k + 1 and its covariance ma‐

trix P |k + 1 k + 1 can be calculated as:

x̂ |k + 1 k + 1 = x͂ |k + 1 k +Kk + 1 (zk - z̄ |k + 1 k) (30)

P |k + 1 k + 1 =P |k + 1 k -Kk + 1 P zz

|k + 1 k
K T

k + 1 (31)

IV. DISTRIBUTED RTSE FOR MULTI-TIME-SCALE CHPS

In this section, a multi-time-scale asynchronous distribut‐
ed scheme is designed for the CKF-based RTSE implementa‐
tion to enhance the computation efficiency. First, the back‐
ground of the distributed RTSE for CHPS is introduced. Sec‐
ond, a multi-frequency state estimation framework is estab‐
lished considering the different time scales of the diverse en‐
ergy systems. Third, an asynchronous parallel computation
scheme is designed for the time instant when the RTSEs of
the power and the heat systems are performed simultaneous‐
ly. Finally, the overall distributed scheme is presented.

A. Background of Distributed RTSE for CHPS

To monitor the CHPS accurately, a CCSE should be per‐
formed to obtain the coordinated operation states. However,
it confronts three main challenges.

1) Since CHPS is typical of large scale, a CCSE is very
time-consuming and inapplicable for real-time monitoring.

2) As the time scales of the diverse energy systems are
quite different, a CCSE may suffer from unnecessary compu‐
tation overhead or failure in tracking the CHPS dynamics in
case of inappropriate time interval.

3) The privacy concern of the power and the heat systems
may challenge the implementation of a CCSE for CHPS.
Since the two systems are operated independently by differ‐
ent utilities, it is quite difficult to obtain the measurement in‐
formation from the other system.

To overcome these challenges, a multi-frequency asynchro‐
nous parallel distributed scheme is proposed for the RTSE of
the CHPS based on the proposed decomposition and coordi‐
nation method. It should be noted that the multi-frequency
estimation scheme is carried out all the time for the opera‐
tion of the CHPS; while the asynchronous parallel scheme is
employed when the state estimations for both the power and
the heat systems are performed simultaneously at one time
instant. The detailed multi-frequency estimation scheme and
the asynchronous parallel scheme are introduced in the fol‐
lowing two subsections.

The system partition is a prerequisite for a distributed
state estimation. In this paper, the whole CHPS is separated
into a power system and a heat system, where the two sys‐
tems are overlapped by their coupling CHPs, as shown in
Fig. 1. However, a deeper network partition of the power or
the heat system is not considered in this paper. When the
scales of the two systems increase, they can be further de‐
composed into smaller regions based on the network parti‐
tion method proposed in [22].

Generator

CHP unit

Electrical load Heat load

Power system Heat system

Fig. 1. System partition scheme for CHPS.
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B. Multi-frequency State Estimation Framework

As mentioned above, the dynamics of the heat system are
much slower than those of the power system. When execut‐
ing the RTSE of CHPS at a unified frequency, it may fail to
track the states accurately if the execution frequency is too
low, or may suffer from a communication bottleneck with
high execution frequency. Hence, the RTSE of these two dif‐
ferent systems should be performed at different frequencies.

Since the time scale of the power system is much shorter
than that of the heat system, the FASE of the power system is
required to be carried out more frequently than the heat sys‐
tem. As shown in Fig. 2, the DSE of the heat system is per‐
formed once every few implementations of the FASE of the
power system. In this paper, considering the real-time monitor‐
ing of the CHPS in normal cases, the FASE for the power sys‐
tem will be performed every 5 min, which is consistent with
the time interval of the online dispatch and control of the pow‐
er system; while the DSE for the heat system is implemented
every 15 min. When it is time to perform the state estimations
for the two systems simultaneously (t = 3KDT, K ÎN+), an
asynchronous parallel scheme is adopted, as described in Sec‐
tion IV-C, during which the states of the heat system are esti‐
mated and updated. Otherwise, the FASE for the power system
will be carried out individually, where the states of the heat
system are kept consistent with their last updated values.

The implementation of this multi-frequency state estima‐
tion framework requires that the state estimations for the
power and the heat systems are synchronized every 3DT. To
achieve this, a buffer is employed at each local estimator for
the two systems. Besides, a short latency time is set to wait
for the measurements due to their transmission delay. For
the measurements with time stamp such as the PMU mea‐
surements, they can be easily aligned according to their time
stamps. For the measurements without time stamp such as
the SCADA measurements received during the latency time,
they will be regarded as the ones updated at the same time
instant, which will then be used for the estimation together
with those with time stamp. For future work, the event-trig‐
ger strategy [23] will be investigated to achieve the synchro‐
nous aligning, where only the measurements containing inno‐
vational information will be updated to the estimators.

C. Asynchronous Parallel Computation Scheme

When performing the state estimations of the power sys‐
tem and the heat system simultaneously, as shown in Fig. 2,
the constraints of CHPs’ power and heat generation (9) or
(10) should be satisfied, calling for data communication be‐

tween local estimators to avoid data mismatch. However,
since the power system adopts a nonlinear model while the
proposed model for the heat system is a linear one, there
may be a difference between the execution time for their in‐
dividual estimations. If the estimations are performed syn‐
chronously, a large amount of time will be wasted to wait
for the updates from each other. Therefore, an asynchronous
parallel computation scheme is proposed in this paper, which
allows to reduce the communication burden significantly.

When performing the local state estimations simultaneous‐
ly, the local CKF-RTSEs are performed individually by us‐
ing the measurements within their systems. When the CKF-
RTSE in one system has converged, the power or heat out‐
puts of the CHPs, P̂CHPe or Φ̂CHPh, will be calculated using
their state estimates. Thereafter, the outputs will be trans‐
formed into the equivalent ones in the other energy form,
Φ̂CHPe or P̂CHPh, and then transferred to the estimators in the
other system as augmented measurements. This can be used
for another iteration of local estimations. The global conver‐
gence criterion for the two systems can be expressed as:

max | P̂CHPe - P̂CHPh |< εe (32)

max | Φ̂CHPh - Φ̂CHPe |< εh (33)

where εe and εh are the thresholds of the difference of power
and heat generation for the CHPs attained from different lo‐
cal estimators, respectively.

The proposed asynchronous parallel computation scheme
for the RTSE of CHPS is illustrated in Fig. 3.

D. Overall Distributed Scheme for RTSE of CHPS

By combining the aforementioned techniques, a multi-
time-scale asynchronous distributed scheme is developed for
the RTSE of CHPS, which is presented in Algorithm 1.

The implementation of the proposed method in reality
calls for the availability of the measurements and the infor‐
mation interchange between these two systems. As for the
availability of the measurements, with the development of
technology, more real-time measurement devices are in‐
stalled in the CHPS [24]. With additional pseudo-measure‐
ments, the system observability for the CHPS can be guaran‐
teed. As for the information interchange, by adopting the pro‐
posed distributed scheme, only a small volume of informa‐
tion, i. e., the power and the heat output of the coupling
units, needs to be exchanged between the two systems.
Therefore, it is feasible to implement the state estimation in
the CHPS.

V. CASE STUDY

The proposed distributed CKF-RTSE method is tested on
a 26-bus CHPS. A 65-bus CHPS is also used to demonstrate
its scalability. The tests are run on a 4-core 3.3 GHz laptop
based on MATLAB R2017b.

To evaluate the effectiveness of the proposed method, the
following indices are used:

RMSE =
1
M∑i = 1

M 1
n∑j = 1

n

|| x̂jest - xjreal

2

(34)

Power
system state
estimation

Heat
system state
estimation

Power
system state
estimation

Heat
system state
estimation

Power
system state
estimation

Power
system state
estimation

t
ΔT ΔT ΔT

3ΔT
Perform in an asynchronous
parallel manner as described

in Section IV-C.

Fig. 2. Multi-frequency state estimation framework.
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SH

SM
=

1
M∑i = 1

M 1
m∑j = 1

m ( )h(x̂jest)- h(xjreal)

σ j

2

1
M∑i = 1

M 1
m∑j = 1

m ( )zjmeas - h(xjreal)

σ j

2
(35)

ηeffic =
Tc - Td

Tc

´ 100% (36)

where RMSE is the root-mean-square error for state estima‐
tion; M is the number of Monte Carlo simulations, which is
set to be 200 for each test; n is the number of state vari‐
ables; x̂jest and xjreal are the estimated and true values of the
state xj, respectively; SM and SH are the average value of the
weighted residuals of the RTSE data and the measurement
errors, respectively; SH SM is the magnitude of the residuals
of the estimates relative to the true values [10], and a small‐
er value corresponds to lower residuals of the estimation re‐

sults and more accurate state estimation results; σ i is the
standard deviation of measurement noise for the ith measure‐
ment; m is the number of measurements; ηeffic is the efficien‐
cy improvement when distributed RTSE is applied instead of
a centralized one; and Tc and Td are the execution time for
centralized and distributed RTSE methods, respectively.

The 26-bus CHPS consists of a 13-bus power system, two
CHP units, and a 13-bus heat system, as shown in Fig. 4,
whose parameters can be found in Appendix A.

Two CHPs are installed in the CHPS. CHP1, which is a
gas turbine, is placed on bus 3 in the power system and bus
12 in heat system, respectively. CHP2, which is a steam tur‐
bine, is placed on bus 2 in the power system and bus 13 in
heat system, respectively. It is assumed that the supply tem‐
perature for each heat source is 100 ℃ while the outlet tem‐
perature (return temperature before mixing) at each heat load
is 50 ℃. The measurement deployment can be found in Ta‐
ble I. The proposed RTSE is implemented every 5 min for

Power system; Heat system; Coupling unit

113
1

2

3

4

5 6

7 8

9 10

11
12

CHP1

4

2 5 6 7
8

910

11

12 13

3

CHP2

Fig. 4. Schematic diagram of 26-bus CHPS.
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End
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Calculate cubature points

Update time

N

Update measurement

Calculate power outputs PCHP,e and equivalent
heat outputs ΦCHP,e of CHPs using xe    

Obtain exchanged information
from heat system PCHP,h

ˆ

max  PCHP,e − PCHP,h  < εe?ˆˆ

ˆ
ˆ

Send ΦCHP,e to heat systemˆ

Calculate cubature points

Update time

N

Update measurement

Calculate heat outputs ΦCHP,h and equivalent
power outputs PCHP,h of CHPs using xh   

Obtain exchanged information
from power system ΦCHP,e

ˆ

max  ΦCHP,h − ΦCHP,e  < εh?ˆˆ

ˆ
ˆ

Send PCHP,h to power systemˆ

Fig. 3. Asynchronous parallel computation scheme for RTSE of CHPS.

Algorithm 1: multi-time-scale asynchronous distributed RTSE of CHPS

1:

2:

3:

4:

5:

6:

7:

8:

Initialize k = 1. Obtain the initial states and perform network partition.

for k = 1 to kmax do
Determine whether it is time to perform RTSEs for the power and

the heat systems simultaneously.

if k = 3K, K ÎN+ then

Perform RTSEs for the power and the heat systems simultaneous‐
ly in an asynchronous parallel manner as described in Section
IV-C.

else

Perform RTSEs for the power system individually.

end if

end for
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the power system and every 15 min for the heat system dur‐
ing a 24 hour simulation period. The time step in the follow‐
ing figures is chosen as 5 min. The load scaling factor of the
power system for one day can be found in [25] while that of
the heat system is demonstrated in Fig. 5. The noises for re‐
al-time measurement and pseudo-measurement follow Gauss‐
ian distributions, whose triple standard deviations are set to
be 1% and 20% of their true values, respectively. The thresh‐
olds of the individual estimations for both the power system
and heat system are set to be 1´ 10-4; while that of global
consistency is set to be 1´ 10-3.

A. Comparison Among Different State Estimation Algorithms

To verify the validity of the proposed CKF-RTSE method,
tests are carried out on the 26-bus CHPS using different esti‐
mation methods, as listed in Table II. The comparison of the
state estimates among these methods for one Monte Carlo
run is demonstrated in Figs. 6-9.

The corresponding statistical results in terms of RMSE as
well as execution times over 200 Monte Carlo runs are pre‐
sented in Table III. The comparison of SH SM is shown in
Fig. 10.

TABLE I
MEASUREMENT DEPLOYMENT FOR 26-BUS CHPS

System

Power
system

Heat
system

Measurement type

PMU

SCADA

Pseudo-measurement

Nodal temperature

Pseudo-measurement

Variable

Vbus , θbus

Pbranch

Ibranch

Vbus

Pbus

Ts, Tr

Ф

Measurement location

Bus 2

Lines 4-5 and 9-10

Lines 6-7 and 8-12

Bus 3

All buses

Buses 1, 7, 9, and 12

All buses
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Fig. 5. Load scaling factor for heat system.

TABLE II
FIVE DIFFERENT STATE ESTIMATION METHODS FOR COMPARISON

Method

Static state estimation (SSE)

Quasi-dynamic state estimation 1
(QDSE1) [8]

Quasi-dynamic state estimation 2
(QDSE2)

EKF-RTSE

CKF-RTSE

Estimation
algorithm

WLS

WLS

WLS

EKF

CKF

Modeling of heat system

Without heat dynamics

Heat dynamic model
based on node method [7]

Proposed difference-based
heat dynamic model

Proposed difference-based
heat dynamic model

Proposed difference-based
heat dynamic model
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Fig. 6. Estimated and true values of voltage magnitude of bus 7.
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Fig. 7. Estimated and true values of voltage angle of bus 7.
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Fig. 9. Estimated and true values of return temperature of bus 7.
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It can be found that compared with other methods, the
proposed CKF-RTSE has the best performance in terms of
computation accuracy. Leveraging CKF, the states of the
heat system can be estimated recursively during the simula‐
tion process. Moreover, by employing sampling techniques,
the nonlinearity can be handled without linearization. This al‐
lows utilizing both the previous and the current measure‐
ments to estimate the system operation states. With the de‐
veloped heat dynamic model and the dynamic estimator, the
proposed CKF-RTSE can accurately track the system dynam‐
ic behavior caused by load fluctuations, yielding better per‐
formance than the others. Note that the estimation results of
QDSE2 are close to or even better than those of QDSE1.
The latter adopts the widely-used node method to build the
thermal dynamic model. Therefore, the validity of the pro‐
posed difference-based model for CHPS to describe the heat
dynamic characteristics is verified.

Besides, the DSE methods, the EKF-RTSE and CKF-
RTSE, have better computation efficiency than the SSE and
QDSEs. The reason is that by incorporating state prediction,
the EKF-RTSE and CKF-RTSE can leverage better initial
states for the filtering stage, which facilitates the conver‐
gence of the state estimation. However, CKF-RTSE is less
efficient than EKF-RTSE. This is because 2n cubature points
need to be propagated, and the implementation of a CKF is
more computationally expensive than that of an EKF.

B. Comparison of Numerical Stability

To show the superiority of proposed CKF-RTSE over
UKF-based one in numerical stability, simulations are car‐
ried out by using UKF estimators [14] with different scaling
parameters. The tuning parameters α for the three UKF esti‐
mators are set to be 0.1, 0.5, and 1, respectively; while the
other parameters β and κ are set to be 0. The comparison of
the estimation accuracy in terms of RMSE for one Monte
Carlo run among the three UKF estimators and the proposed
CKF-RTSE is shown in Figs. 11-14.
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Fig. 11. RMSE for voltage magnitude.
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Fig. 10. Average SH SM values for different methods.
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Fig. 12. RMSE for phase angle.
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Fig. 13. RMSE for supply temperature.

TABLE III
COMPARISON OF PERFORMANCE BASED ON DIFFERENT METHODS

Method

SSE

QDSE1

QDSE2

EKF-RTSE

CKF-RTSE

Average RMSE (10-3 p.u.)

V

1.671

1.653

1.659

0.462

0.031

θ

1.632

1.644

1.631

0.663

0.099

Ts

8.631

5.485

4.817

3.042

3.011

Tr

4.619

4.032

3.164

2.721

1.503

Average execution
time (s)

1.211

1.509

1.325

0.256

0.454
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Fig. 14. RMSE for return temperature.
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It can be found that the UKF estimator with α= 0.1
(UKF1) halts its operation at 14:25 (the 173rd time step) be‐
cause of the unavailability of the square-root covariance,
while the UKF with α= 0.5 (UKF2) also has reduced accura‐
cy. This indicates that the parameters of UKF have a great
impact on its performance, especially its numerical stability.
If appropriate parameters are utilized, the UKF can obtain
state estimates with good accuracy, as shown by the perfor‐
mance of the UKF with α= 1 (UKF3). Otherwise, the UKF
may have poor accuracy or even encounter numerical insta‐
bility since its estimation error covariance matrix Pk may fail
to keep positive definite. Besides, the appropriate parameters
are not generally applicable and have to be tailored in each
case, which brings difficulties to the application of the UKF.
On the contrary, the CKF can ensure the positive definitive‐
ness of Pk, and thus has better numerical stability than the
UKF. In a sense, the CKF can be regarded as a particular
case of the UKF, whose scaling parameters satisfy α= 1,
β = 0, and κ = 0 [26].

C. Sensitivity Analysis of Estimation Accuracy to Measure‐
ment Noises

Different levels of noises are added to the measurements
to analyze the sensitivity of the proposed method to measure‐
ment noises. The test results are shown in Table IV, where
the RMSE is used as the evaluation index. It can be ob‐
served that the proposed CKF-RTSE method has good ro‐
bustness to measurement noises. The reason is that the use
of developed differential equations allows to predict the sys‐
tem states one-step ahead and the prediction information in‐
creases the measurement redundancy. The latter is one of the
most important factors to enhance the robustness of a meth‐
od against measurement noises.

D. Scalability of Proposed RTSE for CHPS

To verify the scalability of the proposed method, the tests
on different CHPSs with diverse scales are carried out, name‐
ly the 26-bus CHPS and a 65-bus CHPS comprising a modi‐
fied IEEE 33-bus distribution system [27] and the 32-bus
Barry Island district heating network [28]. Three CHPs are
installed in the 65-bus CHPS. CHP1, which is a gas turbine,
is placed on bus 7 in the power system and bus 1 in the heat
system. CHP2, a steam turbine, is placed on bus 24 in the
power system and bus 31 in the heat system. CHP3, which
is also a gas turbine, is placed on bus 32 in the power sys‐
tem and bus 32 in the heat system. The measurement config‐
uration can be found in Table V.

The comparison results between the proposed distributed
CKF-RTSE (D-RTSE) and its centralized counterpart (C-
RTSE) are shown in Table VI. It is observed that the pro‐
posed method achieves much higher computation efficiency,
i.e., 39.95% less computing time than the centralized one in
the 26-bus system. This is expected as the distributed imple‐
mentation allows to simplify the scale of the whole problem.
That benefit can be further highlighted for larger-scale sys‐
tems, i. e., over 50% less computation time compared with
the centralized one in the 65-bus CHPS. A side effect is the
slight reduction of estimation accuracy of the proposed meth‐
od since only measurements within their own systems are
leveraged. Nevertheless, the proposed method can gain high
computation efficiency without loss of accuracy.

VI. CONCLUSION

This paper proposes a distributed CKF-RTSE method for
the real-time monitoring of CHPS. The proposed method can
significantly improve computation efficiency without loss of
estimation accuracy. Important conclusions are summarized
as follows:

1) A difference-based model is derived for the heat system
to describe its heat dynamic characteristics, making it feasi‐
ble to predict the system states based on the last state snap‐
shot.

2) A CKF-RTSE method is proposed for CHPS consider‐
ing heat dynamics. Compared with the static and the quasi-
dynamic state estimations, it can significantly improve the
accuracy and efficiency of CHPS state estimation.

3) The computation burden is relieved by the proposed
asynchronous multi-time distributed implementation scheme.
Meanwhile, the privacy of different energy systems can be
protected.

In our future works, the measurement placement problem
of the CHPS will be investigated. The event-trigger strategy
will also be considered to achieve the synchronous align‐
ment of measurements.

TABLE VI
PERFORMANCE OF CKF-RTSE IN DIFFERENT COMPUTATION SCHEMES

Test
system

26-bus

65-bus

Method

D-RTSE

C-RTSE

D-RTSE

C-RTSE

Average RMSE (10-3 p.u.)

V

0.031

0.028

0.140

0.123

θ

0.099

0.076

0.476

0.420

Ts

3.011

2.713

2.173

1.875

Tr

1.503

1.281

3.938

3.407

Average execution
time (s)

0.454

0.756

2.503

5.348

ηeffic

(%)

39.95

53.20

TABLE V
MEASUREMENT CONFIGURATION FOR 65-BUS CHPS

System

Power
system

Heat
system

Measurement type

PMU

SCADA

Pseudo-measurement

Nodal temperature

Pseudo-measurement

Variable

Vbus , θbus

Pbranch

Ibranch

Vbus

Pbus

Ts, Tr

Ф

Measurement location

Buses 2 and 12

Lines 6-7, 20-21, and 24-25

Lines 16-17 and 29-30

Buses 17 and 30

All buses

Buses 2, 7, 15, 19, and 28

All buses

TABLE IV
COMPARISON WITH DIFFERENT LEVELS OF NOISES

Noise level (%)

Real-time measurement

1

5

Pseudo-measurement

20

50

20

50

Average RMSE (10-3 p.u.)

V

0.031

0.033

0.037

0.040

θ

0.099

0.112

0.123

0.126

Ts

3.011

3.223

7.562

9.051

Tr

1.503

1.584

5.405

7.712
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APPENDIX A

The parameters for the 26-bus CHPS can be found in
[29], which are listed in detail in Tables AI-AIV.

REFERENCES

[1] J. Wu, J. Yan, H. Jia et al., “Integrated energy systems,” Applied Ener‐
gy, vol. 167, pp. 155-157, Apr. 2016.

[2] A. Shabanpour-Haghighi and A. R. Seifi, “An integrated steady-state
operation assessment of electrical, natural gas, and district heating net‐
works,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp.
3636-3647, Sept. 2016.

[3] J. Gustafsson, J. Delsing, and J. V. Deventer, “Improved district heat‐
ing substation efficiency with a new control strategy,” Applied Energy,
vol. 87, no. 6, pp. 1996-2004, Jun. 2010.

[4] J. Dong, H. Sun, Q. Guo et al., “State estimation for combined elec‐
tricity and heat networks,” Power System Technology, vol. 40, no. 6,
pp. 1635-1641, Jun. 2016.

[5] Y. Du, W. Zhang, and T. Zhang, “ADMM based distributed state esti‐
mation for integrated energy system,” CSEE Journal of Power and En‐
ergy Systems, vol. 5, no. 2, pp. 275-283, Jun. 2019.

[6] I. Gabrielaitiene, B. Bøhm, and B. Sunden, “Modelling temperature
dynamics of a district heating system in Naestved, Denmark–a case
study,” Energy Conversion and Management, vol. 48, no. 1, pp. 78-
86, May 2006.

[7] Z. Li, W. Wu, J. Wang et al., “Transmission-constrained unit commit‐
ment considering combined electricity and district heating networks,”
IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp. 480-492,
Apr. 2016.

[8] T. Sheng, Q. Guo, H. Sun et al., “Two-stage state estimation approach
for combined heat and electric networks considering the dynamic prop‐
erty of pipelines,” in Proceedings of 2017 International Conference on
Applied Energy, Cardiff, UK, Dec. 2017, pp. 3014-3019.

[9] T. Zhang, Z. Li, Q. Wu et al., “Dynamic state estimation of combined
heat and power system considering quasi-dynamics of temperature in
pipelines,” in Proceedings of 2018 International Conference on Power
System Technology, Guangzhou, China, Nov. 2018, pp. 232-237.

[10] T. Zhang, Z. Li, Q. Wu et al., “Decentralized state estimation of com‐
bined heat and power systems using the asynchronous alternating di‐
rection method of multipliers,” Applied Energy, vol. 248, pp. 600-613,
May 2019.

[11] F. C. Schweppe, “Power system static-state estimation, Part III: imple‐
mentation,” IEEE Transactions on Power Apparatus and Systems, vol.
PAS-89, no. 1, pp. 130-135, Jan. 1970.

[12] J. Zhao, A. Gomez-Exposito, M. Netto et al., “Power system dynamic
state estimation: motivations, definitions, methodologies and future
work,” IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 3188-
3198, Jul. 2019.

[13] P. Du, Z. Huang, Y. Sunet et al., “Distributed dynamic state estimation
with extended Kalman filter,” in Proceedings of 2011 North American
Power Symposium, Boston, USA, Aug. 2011, pp. 1-6.

[14] G. Valverde and V. Terzija, “Unscented Kalman filter for power sys‐
tem dynamic state estimation,” IET Generation, Transmission & Distri‐
bution, vol. 5, no. 1, pp. 29-37, Jan. 2011.

[15] Y. Zhao, “Performance evaluation of cubature Kalman filter in a GPS/
IMU tightly-coupled navigation system,” Signal Processing, vol. 119,
pp. 67-79, Feb. 2016.

[16] S. Li, Y. Hu, L. Zheng et al., “Stochastic event-triggered cubature Kal‐
man filter for power System dynamic state estimation,” IEEE Transac‐

TABLE AI
LINE SEGMENT DATA OF POWER SYSTEM

Line No.

1

2

3

4

5

6

7

8

9

10

11

12

From bus

13

1

1

3

1

5

6

6

5

9

5

2

To bus

1

2

3

4

5

6

7

8

9

10

11

12

Impedance (p.u.)

0.020000 + j0.016000

0.008205+ j0.019207

0.008205+ j0.019207

0.008205+ j0.019207

0.008205+ j0.019207

0.008205+ j0.019207

0.008205+ j0.019207

0.008205+ j0.019207

0.008205+ j0.019207

0.008205+ j0.019207

0.008205+ j0.019207

0.008205+ j0.019207

TABLE AII
ELECTRICAL LOAD VALUES OF POWER SYSTEM

Bus No.

1

2

3

4

5

6

7

8

9

10

11

12

13

Load value

Active power (MW)

0.200

0.500

0.800

0.800

1.155

0.800

0.170

0.128

0.170

0.582

0.100

0.230

0.000

Reactive power (Mvar)

0.116

0.125

0.400

0.290

0.660

0.400

0.080

0.086

0.151

0.462

0.050

0.132

0.000

TABLE AIII
PIPE PARAMETER OF HEAT SYSTEM

Pipe No.

1

2

3

4

5

6

7

8

9

10

11

12

From bus

13

1

2

4

12

1

1

2

2

3

3

4

To bus

1

2

3

3

4

5

6

7

8

9

10

11

Length (m)

500

400

600

500

600

200

150

180

150

100

110

90

Diameter (mm)

200

200

200

200

200

200

200

200

200

200

200

200

TABLE AIV
HEAT LOAD VALUE OF POWER SYSTEM

Bus No.

1

2

3

4

5

6

7

8

9

10

11

Heat load (MW)

0.2

0.2

0.2

0.2

0.2

0.2

0.1

0.1

0.3

0.2

0.2
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