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Abstract——Considering the increasing integration of renew‐
able energies into the power grid, batteries are expected to play
a key role in the challenge of compensating the stochastic and
intermittent nature of these energy sources. Besides, the deploy‐
ment of batteries can increase the benefits of a renewable pow‐
er plant. One way to increase the profits with batteries studied
in this paper is performing energy arbitrage. This strategy is
based on storing energy at low electricity price moments and
selling it when electricity price is high. In this paper, a hybrid
renewable energy system consisting of wind and solar power
with batteries is studied, and an optimization process is con‐
ducted in order to maximize the benefits regarding the day-
ahead production scheduling of the plant. A multi-objective cost
function is proposed, which, on the one hand, maximizes the
obtained profit, and, on the other hand, reduces the loss of val‐
ue of the battery. A particle swarm optimization algorithm is de‐
veloped and fitted in order to solve this non-linear multi-objec‐
tive function. With the aim of analyzing the importance of con‐
sidering both the energy efficiency of the battery and its loss of
value, two more simplified cost functions are proposed. Results
show the importance of including the energy efficiency in the
cost function to optimize. Besides, it is proven that the battery
lifetime increases substantially by using the multi-objective cost
function, whereas the profitability is similar to the one obtained
in case the loss of value is not considered. Finally, due to the
small difference in price among hours in the analyzed Iberian
electricity market, it is observed that low profits can be provid‐
ed to the plant by using batteries just for arbitrage purposes in
the day-ahead market.

Index Terms——Battery energy storage system, energy arbi‐
trage, hybrid renewable energy system, particle swarm optimi‐
zation.

I. INTRODUCTION

RENEWABLE energy sources (RESs) have become key
solutions to reduce greenhouse gas emissions and fossil

fuel dependency on energy production [1], [2]. However, the
increasing integration of these power sources implies some
challenges, due to their stochastic and intermittent nature,
and the increasing production uncertainty. This uncertainty
in turn leads to greater energy reserve volumes in order to
maintain a balance between the production and consumption.

Considering the production variability, hybrid combina‐
tions of these alternative sources can become complementa‐
ry, and therefore improve the performance of the generation
plant. As an example, a combination between wind and solar
energy appears to be interesting for a hybrid renewable ener‐
gy system (HRES) due to their greater development com‐
pared with less mature RESs [3]-[5].

Besides, in order to introduce a larger number of RESs in‐
to the power grid, the deployment of energy storage systems
(ESSs) becomes a key point for the purpose of compensat‐
ing the production intermittency, as well as for enhancing
the profitability of renewable power plants [6]-[9]. There ex‐
ist a wide range of storage technologies, which could be di‐
vided into capacity-oriented storage technologies (such as
pumped hydroelectric or hydrogen storage systems) and ac‐
cess-oriented technologies (such as batteries, flywheels, and
supercapacitors). The selection of them depends mostly on
the desired capacity, power density, and response time. Con‐
sidering these parameters, Li-ion technology appears as a
great solution due to its suitable properties, namely fast re‐
sponse, high cycle life, high energy density, and high effi‐
ciency [10], [11].

Another fact that makes this technology attractive for its
use is that the price of Li-ion batteries has dropped drastical‐
ly in the last decade. This price drop is mainly attached to
the development and rise in sales of electric cars, for which
this technology is commonly applied. According to the last
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survey published by Bloomberg New Energy Finance
(BNEF) [12], the fall in price of battery packs is 85% be‐
tween 2010 and 2018, from 1160 $/kWh to 176 $/kWh, and
by 2024 the price could fall below 100 $/kWh. This forecast
is based on the relationship between the price and volume of
batteries worldwide. From this analysis, BNEF has observed
that every time the volume doubles, the price falls 18%,
which implies that the battery price could be around 94 $/
kWh by 2024, and 62 $/kWh by 2030.

The use of batteries brings multiple benefits to renewable
plants, both in economic and technical aspects. A renewable
plant can reduce deviations between firmed capacity and real
production by using batteries, since batteries can provide the
missing part when the HRES plant gives less power than ex‐
pected. Likewise, when the plant produces more power than
forecasted, the battery energy storage system (BESS) can
store the energy surpluses. This fact, apart from being benefi‐
cial for the grid power management, also becomes economi‐
cally beneficial for the plant, as penalties related to those dif‐
ferences are minimized. Moreover, an HRES is able to per‐
form energy arbitrage by using an ESS, which consists in
shifting energy from a certain moment to another. The aim
of this strategy is to bid more energy when the price is high‐
er, and to store energy in batteries when the price is lower,
so that the benefits can be maximized [13], [14].

Furthermore, the use of batteries gives the HRES the op‐
portunity to provide ancillary service such as frequency con‐
trol and secondary reserve. Therefore, HRES can participate
not only in energy markets, but also in the ancillary service
markets [15]. This option has recently become a reality, as
some countries such as Spain have accepted HRES in their
legislation as ancillary service provider [16]. Therefore,
many researches have been conducted in order to improve
the participation of RES plants in both day-ahead and ancil‐
lary service electricity markets [17]-[19].

Several studies have previously optimized the production
schedule of a power plant using an ESS for the day-ahead
market. Nevertheless, most of them propose a single-objec‐
tive optimization problem, which is usually linearized so
that it can be solved with classical optimization methods
[20]-[24].

In [20], a photovoltaic (PV) + battery system is optimized
in order to determine the production schedule using a linear
programming (LP) routine with an idealized system. There‐
fore, it does not consider neither the energy efficiency of the
batteries, nor the degradation of them.

Similarly, in [21], an LP optimization is conducted with
model predictive control (MPC) method in order to deter‐
mine the optimal bidding of the plant. In the optimization
process, ESS costs are considered, but the cost function does
not take into account the energy losses that vary with the
given power.

In [22], a stochastic/robust optimization model for optimiz‐
ing the bidding strategy in both day-ahead and real-time mar‐
kets is developed, but the model is proposed for a mixed-in‐
teger linear programming (MILP) optimization problem, and
it does not take into account the nonlinear terms of the ESS.

Similarly, in [23], an MILP optimization is proposed for
participating in arbitrage markets with batteries. Battery deg‐
radation is considered in the study, but in order to solve the
optimization, the cost function has to be linearized.

Finally, in [24], a mixed-integer quadratic programming
(MIQP) optimization is proposed for managing the operation
of islanded microgrids and a battery degradation model is al‐
so considered. Nevertheless, as with MILP optimization, the
objective function also has to be linearized in order to solve
the problem.

In this paper, to improve the profits of an HRES, a day-
ahead market participation optimization is developed for a
plant consisting of wind turbines, PV modules, and a Li-ion
ESS. The main contribution of this paper is to propose a pro‐
duction scheduling optimization methodology, which maxi‐
mizes the profits obtained from performing the energy arbi‐
trage, and minimizes the loss of value of the BESS at the
same time. The loss of value is calculated considering both
the loss of life with the change of its state of health (SOH),
and the effect of the price drop with time. Furthermore, in
contrast to other similar studies, energy efficiency of the bat‐
tery is included into the cost function, which has a signifi‐
cant effect on the result.

II. PRODUCTION AND PRICE ESTIMATION

The aim of this study is to optimize the participation of a
hybrid renewable power plant into an electricity market in
order to maximize its profits by applying energy arbitrage
with the use of a BESS. For the present work, the Iberian
electricity market has been selected, and therefore, some in‐
sights about the procedure carried out in this market should
be remarked.

The Iberian electricity market is a liberalized market, in
which different traders offer and buy energies in different se‐
quential markets, and their offers are cleared depending on
the price they bid. The first of these sequential markets, and
the one to be optimized in this paper is the day-ahead mar‐
ket [25].

The day-ahead market is the core market among all the ex‐
isting markets, as it is the main mechanism to conduct the
electricity transactions. The majority of the electricity to be
produced in the following day is sold and purchased in this
market. It is composed of a single session, in which traders
make their offers for each of the 24-hour periods of the fol‐
lowing day (day D + 1). Traders send their offers to the Span‐
ish Market Operator (MO), called OMIE, until 12 a. m. of
day D, and after that, a complex algorithm clears the offers
to decide which of them are accepted or refused.

An important point to consider is that, regardless of the
price of each offer, there is going to be a common and
unique price for each hourly period once the auction is fin‐
ished. Therefore, renewable plants usually make their offers
with a near-zero price in order to always be accepted. That
is why all the energy offered by the plant is going to be con‐
sidered as accepted in this study.

As for the price and production estimations used for this
study, the following models are used.
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A. Price Estimation of Day-ahead Electricity Market

In order to conduct the optimization, the developed algo‐
rithm needs to consider certain prices for each hourly period
of the day. As the main aim of the study is to present the
benefits of conducting a multi-objective optimization, the
price estimations used are going to be taken from real data
published by the Spanish System Operator for year
2018 [26].

B. Production Estimation

In real-time operation, wind power plants need to use
weather forecasts to calculate the energy expected to be pro‐
duced in the following hours, since the production offers are
made a few hours before the real production time [25].
These forecasts usually have a certain degree of uncertainty,
which leads to possible deviations between the expected pro‐
duction and real production. Nevertheless, in order to focus
on the effects of conducting a multi-objective optimization
for performing energy arbitrage, the forecasts are considered
ideal in this study. As for the values considered, the ideal
forecasts are made based on the real weather data. This sim‐
plification implies that there is going to be no penalties for
failing to produce the expected energy.

Regarding the wind power estimation, the electricity pro‐
duced by wind turbines is going to be calculated based on
the P-V curves of the wind turbines. As for the calculation,
the wind speed values taken from the nearest weather station
to the considered HRES are extrapolated to the hub height
with the following equation [27]:

U(z)
U(zr)

= ( z
zr
)
α

(1)

where U(z) and U(zr) are the wind speeds at the heights z
and zr, respectively; and α is the power law exponent. To cal‐
culate α, the equation proposed by Counihan [27] is used,
which defines α in terms of the surface roughness:

α= 0.096 lg z0 + 0.016 (lg z0)2 + 0.24 (2)

For the studied case, z0 is taken as 0.1 m corresponding to
a surface with few trees.

As for the solar power estimation, the energy produced
with solar modules is calculated with (3):

PMPP =PMPPSTC [1+ γ (Tcell - 25)]
G

1000
(3)

where PMPP is the maximum power at a certain cell tempera‐
ture Tcell and irradiance G; PMPPSTC is the maximum power at
standard test conditions (STCs); and γ is the maximum pow‐
er point (MPP) power coefficient of the module.

As for the cell temperature, its relationship with the ambi‐
ent temperature Tamb can be expressed as:

Tcell = Tamb + (NOCT - 20)
G

800
(4)

where NOCT is the temperature of the cell under nominal op‐
erating conditions (G=800 W/m2 Tamb =20℃ vwind =1 m/s),
and vwind is the wind velocity. The value of NOCT is usually
given by the manufacturer in the datasheet of the solar mod‐
ule.

It should be noted that, to estimate the power, some as‐

sumptions are made as follows.
1) All wind turbines are receiving the same wind speed,

uniformly distributed along each wind turbine.
2) All solar modules are receiving the same irradiance,

uniformly distributed along each solar module.
3) In both cases, generators are always working at their

MPPs under the given conditions.
4) No losses are considered regarding the connections and

transmission lines of the system.

III. BATTERY MODEL

Regarding the BESS, a simple equivalent circuit model
(ECM) consisting of an ideal voltage source and a series re‐
sistance has been used to model the static response of the
batteries. This simplified model is used to obtain the energet‐
ic efficiency curves.

The energetic efficiency can be defined as the relationship
between voltage source power (internal power of the battery
Pint) and the power in the terminals (external power Pext).
Nevertheless, depending on the battery charging/discharging
state, the equation changes as follows.

In charging case, the energetic efficiency ηchg (Pint) is calcu‐
lated as:

ηchg (Pint)=
Pint

Pext

=
OCV 2

OCV 2 +Rs Pint

(5)

In discharging case, the energetic efficiency ηdis (Pint) is
calculated as:

ηdis (Pint)=
Pext

Pint

=
OCV 2 -Rs Pint

OCV 2 (6)

where OCV is the open circuit voltage; and Rs is the series
resistance.

In addition to modelling the energy efficiency, the SOH of
the battery is also considered in this study. In many optimi‐
zation studies, this parameter is not taken into account, but
as it is going to be proved, it has an important effect on the
final optimization result. The SOH refers to the current maxi‐
mum capacity of the battery compared with its nominal ca‐
pacity. The two main factors that affect the SOH are cycling
(charging and discharging) and calendar aging. In this study,
the SOH is calculated focusing on the cycling. The Wöhler
method is selected to estimate SOH [28]. For applying this
method, it is necessary to know the number of cycles that
can be given in the battery for each depth of discharge
(DOD) range. This information is usually given in the data‐
sheets of the battery.

IV. OPTIMIZATION OF PRODUCTION SCHEDULE

As explained before, the HRES plant is capable of per‐
forming energy arbitrage by using a storage system. There‐
fore, the optimization includes offering a certain quantity of
energy each hour in order to make as many profits as possi‐
ble based on generation forecasts and price estimations for
day D + 1.

A. Cost Function

One of the benefits of the battery system incorporated to
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the hybrid plant is that wind turbines and solar panels can
be expected to work at their MPPs regardless of the power
schedule of the plant, as the batteries should be able to
damp those differences.

Therefore, considering the forecasting production as the re‐
al production, wind and solar productions are constant val‐
ues for the cost function, and the target is to optimize the
battery deployment.

The proposed objective function is defined for a multi-ob‐
jective optimization problem, as it covers two main aims.
The first aim is to optimize the battery use in order to maxi‐
mize the profit of the plant, and the second aim is to mini‐
mize the loss of value of the battery due to using it.

As for the second aim, two factors are taken into account
to calculate the loss of value of the battery.

On one hand, the SOH of the battery is considered in
terms of the loss of life each day. In order to calculate the
loss of life of the battery, a fatigue model known as Wöhler
method is selected [28]. Fatigue models are commonly used
for forecasting the aging of mechanical elements. These mod‐
els consider that the analyzed element degrades step by step
according to its use. Therefore, for the case of the BESS, the
model does not consider the physico-chemical reactions giv‐
en inside the battery, and treats the battery as a mechanical
element instead. The Wöhler method has been selected due
to its simplicity to be implemented and its sufficient accura‐
cy in order to estimate the real SOH of the battery [21],
[29], [30]. This method calculates the loss of life given in
the battery (LL) by (7) and (8):

LL=∑
i = 1

nranges

LLi (7)

LLi =
ni

cycles

N i
cycles

(8)

where LLi is the loss of life at a certain DOD range; nranges is
the number of ranges into which the depth of discharge is di‐
vided; ni

cycles is the number of cycles given at the ith DOD
range; and N i

cycles is the maximum number of cycles at the ith

DOD range.
When LL reaches a value of 1, it means the battery has

reached its end of life. Therefore, it is also possible to calcu‐
late the battery lifetime left by the following equation:

LT =
1

LLyear
(9)

where LT is the lifetime years; and LLyear is the loss of life
given in a complete year.

As for the number of fatigue cycles in a certain period,
since the cycles are not cyclical and do not have constant
amplitudes, determining the number of them requires a spe‐
cific method. The method widely used for this purpose is
known as the Rainflow cycle counting algorithm, which is
used for extracting cycles from a complex load history, and
organizing them depending on their mean values and ampli‐
tudes [31].

For the battery case, the parameter analyzed to determine
the given number of cycles is the state of charge (SOC) of
the battery during a certain period. A cycle describes the

charging and discharging of the battery, and the cycles are
classified depending on their DODs.

There exist some different types of Rainflow cycle count‐
ing algorithms, and the one chosen for this study is the three-
point method for a nonperiodic load time history. This meth‐
od is more efficient computationally than other methods, and
it can be used in applications of real-time cycle count‐
ing [31].

On the other hand, apart from the SOH, the other parame‐
ters considered in this study for calculating the loss of value
in the battery is the change of market price. As previously
explained, the battery price has fallen drastically in the last
decade, and the trends indicate that the price is going to
keep decreasing.

As shown in Fig. 1, an exponential curve is obtained for
estimating the Li-ion battery pack price based on the data
published in the latest new energy outlook [12].

The exponential curve estimates the unit price (UP) for
the battery in energy terms can be calculated as:

UPday = 162.3e-0.1029d/365 (10)

where UPday is the unit price of a certain day; and d is the
number of the days analyzed starting from January 1, 2018.

The curve has been obtained by fitting the data from 2017
until 2030, using the estimations of the latest New Energy
Outlook [12]. It should also be remarked that, in order to
convert the units from dollars to euros, a rate of 1.14 $/€ is
used.

Considering the SOH of the battery in terms of the LL
and the UP, the loss of value of the battery from one day to
another is defined as:

LVbat =Enom (1- LLtotday)×UPday -Enom (1- LLtotday - 1)×UPday - 1

(11)

where Enom is the rated energy of the battery at the beginning
of its life; LLtotday is the total cumulative loss of life after
day D; and LLtotday - 1 is the total cumulative loss of life at
the end of day D- 1.

Finally, the global multi-objective cost function to maxi‐
mize at day D is (LVbat is always zero or negative):

max ( )∑
h= 1

24

Egiveh ×FPh + LVbat (12)

where Egiveh is the total energy given at each hour; and FPh

is the forecasting price for each hour.
As explained before, the energy given by the battery is af‐

fected by its energy efficiency, and the efficiency curves are
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Fig. 1. Exponential trend of battery pack price.
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different in charging and discharging cases. Therefore, Egiveh

is going to have one of the following expressions for each
of the hours.

In charging and discharging cases, Egiveh is given in (13)
and (14), respectively.

Egiveh = Egenh +
1
ηchgh

(Ebath- 1 -Ebath) (13)

Egiveh = Egenh + ηdish (Ebath- 1 -Ebath) (14)

where Egenh is the forecasting energy generation at each
hour; and Ebath is energy at the battery at each hour. Energy
efficiencies ηchgh and ηdish are the ones defined in (5) and (6).

An important point to take into account is that, in order to
extend the battery life, charging and discharging cycles
should not overpass certain SOC limits. These limits corre‐
spond to the bounds of optimization variables, and they are
expressed as:

Ebatmin ³Enom

SOCmin

100
(15)

Ebatmax £Enom

SOCmax

100
(16)

where Ebatmin and Ebatmax are the minimum and maximum en‐
ergies of the battery, respectively; and SOCmin and SOCmax

are expressed in percentage, and for the studied case, the
SOC range is taken between 20% and 80% [32] in a Li-ion
battery system.

B. Constraints

The first constraints to be considered in the storage sys‐
tem are the ones related to the maximum charging and dis‐
charging power of the battery, namely Pbatchgmax and Pbatdismax.
Considering an hour as a time step, power constraints can be
expressed as energy constraints with the following inequali‐
ties:

Ebath -Ebath- 1 £Pbatchgmaxh (17)

Ebath- 1 -Ebath £Pbatdismaxh (18)

It should be noted that these maximum charging and dis‐
charging power values refer to the internal power given by
the battery Pint. Therefore, as energy efficiency drops with
the higher power, the efficiencies of giving or receiving the
maximum internal power are the minimum efficiency values.

Secondly, in order not to make the battery at its lowest
level at the end of the day, a constraint linked to the SOC at
the last hour (Ebat24) is established. The aim is to keep the
SOC of the battery similar to the one at the beginning of the
day, and in order not to create an equality constraint, two in‐
equality constraints are modelled as:

Ebat24 ³
SOC24min

100
Enom (19)

Ebat24 £
SOC24max

100
Enom (20)

where SOC24min and SOC24max are the minimum and maxi‐
mum SOCs of the battery at the last hour, respectively. For
the simulations, the values assigned are 55% and 65%, re‐
spectively.

Finally, in the studied case, it is considered that batteries
can only be charged with the HRES plant and cannot get en‐
ergy directly from the power grid. This implies that the max‐
imum charging value of the battery in an hour is limited by
the energy generated, which is expressed as:

Ebath- 1 -Ebath £Egenhηchg (Egenh) (21)

where ηchg (Egenh) is the charging efficiency for each Egenh.
In order to obtain a solution which meets all the con‐

straints, for each constraint that is not fulfilled, a penalty is
applied to the cost function. In this way, the solutions with‐
out any constraint violation obtain a better fitness.

C. Optimization Algorithm

In order to solve the optimization problem, a particle
swarm optimization (PSO) algorithm has been developed.
This algorithm comes from the family of heuristic algo‐
rithms, which are widely used to solve complex multi-objec‐
tive and non-linear problems [33] - [35]. It is developed by
Kennedy and Eberhart in 1995 [36] based on swarm behav‐
iors such as fish and birds schooling in nature.

To solve the optimization problem, the algorithm uses a
set of particles. These particles are different possible solu‐
tions for the problem, and for this case, each of them is a
vector with 24 components (energy of the battery at the end
of each hour of the day). After creating the initial population
of particles, the fitness of each of them is calculated, and the
best global and local solutions are stored for the following it‐
erations.

Depending on the fitness of each of the particles, the val‐
ues of its components change with a certain speed (they
move their positions). The particles which are far from the
best solution move faster, and the ones which have a better
fitness move slower.

The speed vi and position xi of each particle i are defined
as:

vi (t + 1)=wi (t + 1)vi (t)+ φ1 (xibest (t)- xi (t))+
φ2 (xbest (t)- xi (t)) (22)

xi (t + 1)= xi (t)+ dt × vi (t) (23)

where wi (t) is the inertia of the ith particle at iteration t; xi (t)
is the ith particle position at iteration t; xibest (t) is the local
best position of the ith particle at iteration t; xbest (t) is the
global best position at iteration t; φ1 and φ2 are the uniform
random values for the exploration and exploitation, respec‐
tively; and dt is the position update term.

As for the initial population of particles, i. e., the initial
possible solutions for the optimization problem, more than
one initialization method is used in order to assure that a
profitable solution is found.

Firstly, the PSO algorithm is run with a completely ran‐
dom initial population in order to cover the solution domain
and find the best solution. Nevertheless, it could happen that
the PSO algorithm does not find a solution which fulfills all
the constraints, or that the solution found is not profitable.

To solve this issue, the PSO algorithm is run a second
time with a new initialization method. Here, the initial popu‐
lation is composed of random particles as well, but one of
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the particles corresponds to the solution obtained for a sim‐
plified cost function. This solution is calculated by an LP al‐
gorithm.

LP is a powerful optimization technique when the cost
function and constraints of the problem are linear [18].
Therefore, in order to solve the problem with this technique,
the simplified cost function does not consider neither the en‐
ergy efficiencies, nor the loss of value of the battery, and it
is expressed as:

max∑
h= 1

24

[Egenh + (Ebath- 1 -Ebath)]×FPh (24)

The solution obtained by both initialization methods is
compared, and the solution with a better fitness is chosen as
the result for the multi-objective optimization problem.

Nevertheless, as explained in the next section, applying en‐
ergy efficiencies to the solution obtained with the simplified
cost function, the profit could be less than those of others
without the ESSs. Therefore, as a definitive way to assure
that a profitable solution is always found, a third initializa‐
tion method is used if needed. The third method is similar to
the second one (LP particle + random particles), but a new
particle is introduced into the initial population. This new
particle keeps the battery SOC at its initial value during the
complete day so that a non-negative profit is assured.

V. CASE STUDY

As explained before, in the present study, a grid-connect‐
ed HRES consisting of wind turbines, solar modules, and Li-
ion batteries is considered.

A graphical representation of the plant is shown in Fig. 2.

The sizing of the power plant considered for the simula‐
tions is as follows: 50 MW of wind power, 30 MW of solar
power, and 10 MW/50 MWh of battery. For conducting the
simulations, WindPACT baseline 1.5 MW wind turbines
[37], developed by the National Renewable Energies Labora‐
tory (NREL), have been considered. As for PV modules, the
datasheet of Atersa ULTRA A-255 solar modules has been
used [38].

Regarding the BESS, the data for the LiFeBATT X-2E 15
Ah 40166 Cell are used in order to parametrize the model as
shown in Table I, and the results are adjusted to the case
power range.

The resulting curves for different power values (maximum
external power value Pextmax is 10 MW) are calculated based
on (5) and (6), and the result is shown in Fig. 3.

In order to get the same Pextmax, the maximum internal
power Pintmax is different for charging and discharging cases.

Besides, it should be pointed that Rs is considered as con‐
stant during the simulation.

As for the battery Wöhler curve, the values used are taken
from [39], which are summarized in Table II.

VI. SIMULATION SETUP AND RESULT

In order to analyze the effects of performing energy arbi‐
trage in a representative period, the data of a complete year
have been simulated. The data in 2018 are taken from the da‐
ta published by the Spanish System Operator for price val‐
ues [26], and from the Basque Meteorological Agency Eus‐
kalmet [40] for forecasting calculation. In this case, the plant
is supposed to be located in the Province of Álava, in the
North of Spain.

Before analyzing the effects of the battery in the econom‐
ic revenues, the parameters of the PSO have been fitted by
an iterative method. In the case of the PSO, the inertia is
considered as the main parameter affecting the final solution,
so the rest of the parameters are fitted as constant, with the

�

Wind and solar power Battery

Fig. 2. Graphical representation of hybrid renewable power plant.

TABLE I
DATA TAKEN FROM DATASHEET FOR LIFEBATT X-2E 15AH 40166 LI-ION

CELL

Parameter

OCV

Rs

Imax

Value

3.3 V

3 mΩ

45 A

0 10 126 82 495

96

97

98

99

100
Charging
Discharging

Ef
fic

ie
nc

y 
(%

)
Pint (MW)

Fig. 3. Efficiency curves for the studied BESS.

TABLE II
NUMBER OF CYCLES ADMITTED BY EACH DOD RANGE

DOD range (%)

10

20

30

40

50

60

70

80

90

DOD interval (%)

5-15

15-25

25-35

35-45

45-55

55-65

65-75

75-85

85-100

Number of cycles

70000

31000

18100

11800

8100

5800

4300

3300

2500
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values in Table III.

As for the inertia, there exists a wide range of methods to
calculate it [41]. Three methods, namely the random method,
the linear time-varying method, and the adaptive method,
have been tried and compared for recalculating the inertia
during the optimization [41]. The results obtained for a par‐
ticular day in 100 simulations with different seeds are shown
in Fig. 4.

As it can be seen in Fig. 4, time-varying method has bet‐
ter results in most cases. On average, the cost function re‐
sults of time-varying method are 0.3% and 0.4% higher than
adaptive and random methods, respectively. Therefore, it is
going to be the method selected for the algorithm.

After fitting the parameters, simulations are conducted for
the complete year. Each day is optimized and simulated con‐
secutively, following the real-time schedules of the Iberian
Electricity Market.

In order to analyze the effects of performing a multi-objec‐
tive optimization, three different cost functions have been
tested.

1) Multi-objective cost function is solved with PSO, name‐
ly PSOMO, as defined in (12).

2) Single-objective cost function is solved with PSO, not
considering the loss of value of the battery, namely PSOSO.
The function is:

max∑
h= 1

24

Egiveh ×FPh (25)

3) Simplified objective function is solved with LP, not
considering neither the loss of value of the battery, nor the
energy efficiencies, as defined in (24).

As for the mean computation time, based on the parame‐
ters from Table III, and an Intel Core i5 CPU with 8 GB of
RAM, each LP optimization takes less than 1 s, and PSOSO
and PSOMO optimization take about 30 s and 65 s, respec‐

tively.
Figure 5 shows the net profitability considering energy ef‐

ficiencies, which is obtained for each day with the proposed
cost functions. As it can be observed, by using the simpli‐
fied cost function, the net profitability obtained is negative
in a considerable number of days. This is due to the fact that
if the energy losses are neglected, the ESS tends to be used
with more and deeper charging and discharging cycles,
which considers real energy losses and implies a higher loss
of energy. This effect can be observed in Fig. 6, where the
total number of cycles during the year for each DOD range
are shown.

It can be better understood that with neglecting energy ef‐
ficiency, the profit obtained would be negative by analyzing
a single day case.

Figures 7 and 8 show the solution obtained for Day 259
of the year (September 16, 2018), and Table IV shows the
profitability results obtained with different cost functions. As
it can be observed, LP solution creates more and deeper en‐
ergy cycles, which would lead to a higher profit. Neverthe‐
less, the results show that the net profitability obtained is
negative by applying energy efficiencies, and recalculating
the real net profits.

Another aspect shown in Fig. 8 is that in all cases, the
stored energy in the battery Estobat does not exceed the ener‐
gy produced by the plant. Thus, constraint (21) is fulfilled.

Besides, it is also observed that the net profitability ob‐
tained with PSOSO is higher than with PSOMO in most cas‐
es as it can shown in Fig. 9.

This result is consistent considering that the PSOMO also

TABLE III
FIXED PARAMETERS FOR PSO ALGORITHM

Parameter

φ1

φ2

dt

Number of particles

Number of iterations

Value or interval

0.5-1

0.5-1

1

200

2000

200 40 60 80 100
No. of simulation

Radom
method

Time-varying
method

Adaptive
method

In
er

tia
 c

al
cu

la
tio

n 
m

et
ho

d

36.2

36.0

36.4

36.6

36.8

Cost function
result (k€)

Fig. 4. Profit obtained by different inertia calculation methods.
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Fig. 5. Net profitability obtained for each day with different cost functions.
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tries to optimize the battery lifetime. Therefore, it is neces‐
sary to analyze both the net profitability and lifetime in a
complete year to perform a complete comparison. The re‐
sults are shown in Table V.

The results in a complete year show that performing the

optimization with the multi-objective cost function, the bat‐
tery lifetime is extended considerably, and in contrast, mean
net profitability is similar to the one obtained with the single
objective strategy. Besides, in both cases, the mean net prof‐
itability and lifetime are improved compared with the LP
cost function result. Presumably, the real battery lifetime is
less than the value obtained with these cost functions, since
calendar aging is not included. Nevertheless, it is proven
that the SOH associated to the cycling of the battery is sig‐
nificantly reduced with PSOMO method, while the mean net
profitability is still better than in the LP case. Therefore,
based on the multi-objective PSO strategy, global results are
better than in the rest of the cases.

VII. CONCLUSION

In this paper, a production scheduling optimization for the
day-ahead market is conducted in an HRES plant with a
BESS.

The main aim of this study is to analyze the importance
of applying a multi-objective optimization to schedule the
production. The multi-objective cost function optimizes both
the net profitability of the plant and the loss of value of the
battery, which are calculated with the number of cycles and
the change of market price.

After simulating the data of a complete year, it can be
seen that the global performance and profit of the plant are
improved by implementing a PSO algorithm. In contrast, if
the effects of the energy efficiency are neglected, the net
profitability can be negative. Besides, it is proven that bat‐
tery lifetime is substantially increased by using a multi-objec‐
tive optimization, whereas the net profitability remains simi‐
lar values.

Another conclusion is that the profitability is low by per‐
forming energy arbitrage uniquely in the day-ahead market.
Benefits obtained from the arbitrage depend on price varia‐
tion during the day, and in the Iberian Electricity Market,
these differences are not substantial, nor are the benefits
from it. Nevertheless, depending on price variations in each
country, the profits could be significant.

Furthermore, it must be considered that production fore‐
casts have been taken as ideal, and therefore there are no
penalties for deviations in the production. Considering this
aspect, the profits obtained with batteries could increase sub‐
stantially, as batteries would be able to damp the differences
between the forecasting and real production.

A last point to remark is that by participating in providing
ancillary services with the ESS, the profits could increase
considerably. This is a topic to be tackled in future works.
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