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Abstract—Recent development trends in wind power genera-
tion have increased the importance of the safe operation of
wind-turbine blades (WTBs). To realize this objective, it is es-
sential to inspect WTBs for any defects before they are placed
into operation. However, conventional methods of fault inspec-
tion in WTBs can be rather difficult to implement, since com-
plex curvatures that characterize the WTB structures must en-
sure accurate and reliable inspection. Moreover, it is considered
useful if inspection results can be objectively and consistently
classified and analyzed by an automated system and not by the
subjective judgment of an inspector. To address this concern,
the construction of a pressure- and shape-adaptive phased-ar-
ray ultrasonic testing platform, which is controlled by a nanoen-
gine operation system to inspect WTBs for internal defects, has
been presented in this paper. An automatic classifier has been
designed to detect discontinuities in WTBs by using an A-scan-
imaging-based convolutional neural network (CNN). The pro-
posed CNN classifier design demonstrates a classification accu-
racy of nearly 99%. Results of the study demonstrate that the
proposed CNN classifier is capable of automatically classifying
the discontinuities of WTB with high accuracy, all of which
could be considered as defect candidates.

Index Terms—Wind-turbine blade (WTB), blade inspection
platform, convolutional neural network (CNN), discontinuity,
phased-array ultrasonic testing (PAUT), A-scan.

1. INTRODUCTION

S a promising renewable energy resource for reducing
greenhouse gas emissions and satisfying the stringent
environmental regulations, wind power has witnessed re-
markable technical advancement in recent years. Many coun-
tries of the world have direct and uninterrupted access to
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wind power. This feature further enhances the economic ap-
plicability of wind-based electricity production [1]. Conse-
quently, the global cumulative installed wind capacity has
witnessed a dramatic 20-fold increase in recent years, from
23.9 GW in 2001 to 486.8 GW in 2016 [2]. However, along-
side this unprecedented development, the number of structur-
al-failure occurrences at wind power stations has also steep-
ly increased, from an average of 33 accidents between 1998
and 2002 to nearly 167 incidents each year between 2013
and 2017 [3]. Since most wind-power stations have been in-
stalled either in the mountains or near shorelines, they are
subject to erratic winds and strong turbulence. Such severe
operation environment is likely to cause the development of
fatigue cracks in wind-turbine blades (WTBs), thereby result-
ing in failure during natural disasters. As the size of wind
turbine increases, there will be more risks of structural fail-
ure. In particular, large wind turbines frequently experience
structural failure of blades. This means that the risk posed
by structural failures to wind-power plants is presently diffi-
cult to estimate. Wind turbines need to operate continuously
to provide the most efficient power production. Accordingly,
quality management and maintenance of wind power genera-
tion facilities assume critical importance. When WTBs expe-
rience structural issues, additional costs are incurred to facili-
tate their repair and reoperation, and at the same time, the
maintenance and production schedules are also delayed.
Apart from the loss of time and money, pieces of broken
blades pose a safety concern. The risk associated with these
problems can be alleviated via thorough inspection of WTBs
before they are placed into operation.

In particular, WTBs made of composite materials such as
glass-fiber reinforced polymer (GFRP) and carbon-fiber rein-
forced plastic, may result in the occurrence of internal de-
fects, including debonding, delamination, and crack initia-
tion, owing to difficulties encountered during the manufac-
ture of blades. Initially, these defects can be so small that
they may be considered to have little impact on the structur-
al integrity of WTBs. However, since WTBs are subject to
repeated impulsive loadings, these defects tend to propagate,
thereby threatening WTB structural integrity and resulting in
catastrophic failures. If these initial defects could be detected
in their infancy during the manufacturing stage and duly re-
paired in accordance with established guidelines, many seri-
ous failures and the accompanying economic damage can be
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prevented.

Internal defects can be accurately detected via the use of
an appropriate method. The traditional method of defect de-
tection is based on the judgment of an experienced inspector
concerning results obtained via the use of nondestructive test-
ing (NDT) techniques such as the phased-array ultrasonic
testing (PAUT). However, the reliability and objectivity of
this approach has often been a matter of dispute. In view of
this, the development of automatic defect detection tech-
niques has become a subject attracting intense research focus
in recent years.

The proposed study has investigated an automatic detec-
tion technique by developing a PAUT platform to facilitate
precise examination of WTBs. The proposed platform has
been equipped with a pressure- and shape-adaptive mecha-
nism to accommodate the WTB profile curvatures, and the
same has been controlled by the nanoengine operation sys-
tem (NEOS), a real-time operation system. Among the sig-
nals from NDT, discontinuity has been a detectable change
in WTBs. This could be generated due to some undesirable
quality or the specimen state including the normal state.
Therefore, not all discontinuities could be attributed to de-
fects. They would need to be classified based on the quality
level to identify the ones corresponding to defects. Disconti-
nuity classification has played a role in classifying disconti-
nuities to detect defects causing unacceptable quality levels.
The study has also established a convolutional neural net-
work (CNN)-based classifier capable of identifying internal
discontinuities through the use of A-scan image data provid-
ed by PAUT test results. Discontinuities in the shape and
structure of WTBs have been considered a factor for detec-
tion during the proposed research. Recent studies [4], [5]
have reported detection and classification of certain types of
defects. The objective of the proposed study, however, is to
detect possible defects in WTBs regardless of their type. The
proposed study is the first to report discontinuity diagnosis
to facilitate the detection of the all possible defect types au-
tomatically with high levels of precision and reliability.

II. EXISTING INSPECTION PLATFORM AND CLASSIFICATION
METHOD

A. Inspection Platform

Owing to mathematically and structurally complex curva-
tures of WTB surfaces, the use of conventional testing equip-
ment and platforms could hardly ensure reliable inspection.
Another important consideration has been the size of inspec-
tion equipment. Pre- and in-service WTB inspection equip-
ments used by specialty companies and designed to accom-
modate complex WTB geometries are typically so large that
they need to be operated by cranes. Presently, limitations
with regard to the platform size have been addressed by re-
searchers through the development of various types of robots
such as those employed during the inspection of wind-tur-
bine-rotor blades [6], micro-aerial vehicle-type wall-climbing
robots [7], and the inchworm-type blade-inspection robot sys-
tem [8]. The paper attempts to address the issue of complex
blade geometries via the use of a novel method to adapt the
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proposed platform to WTB surfaces.
B. Classification Method

With the advancement in wind power generation technolo-
gy, many studies have been performed with an objective to
replace human-based inspection techniques with an automat-
ic system to detect and identify blade defects. Reference [9]
proposed an optical inspection method for the detection of
surface cracks on an installed blade and demonstrated crack
detection by using the Sobel and Canny image-processing
technique. One of the most recent trends in defect detection
has involved automatic classification of inspection results by
using machine learning (ML) and neural network (NN). Ref-
erence [10] used unmanned aerial vehicles to obtain blade
surface images, from which they extracted Haar-like features
and detected defects by implementing Logiboost along with
an extended cascading classifier. In another study concerning
automatic detection, [11] applied the short-time Fourier trans-
form to A-scan signals generated during surface inspection
to extract features, and developed a new potential real-defect
miner algorithm based on the k-means and support vector
machine classifiers for clustering and classification. Refer-
ence [12] captured the surface of a cutting tool using a
CMOS camera, and the features from resulting images were
extracted by performing edge detection and discrete Fourier
transforms whilst identifying defects on the surface via NN.
To facilitate WTB maintenance, [13] acquired ultrasonic sig-
nals and performed signal preprocessing to extract features.
Subsequently, detection results obtained via artificial neural
networks (ANNs) were compared against those obtained via
the use of various ML methods such as the decision tree,
quadratic discriminant analysis, and weighted A-nearest
neighbors, only to find that the use of ANN demonstrated
the highest detection accuracy. However, most studies con-
cerning the use of ML or NN have been performed to deter-
mine the means to extract features prior to employing a de-
tection technique. In this regard, there has been growing in-
terest in the use of CNN, a deep-learning method widely em-
ployed in image analysis. CNN applications typically in-
clude the use of an NN that could identify features without
the need for a separate feature-extraction step. Reference
[14] employed a one-class classifier based on the CNN ap-
proach to facilitate the image-defect detection with regard to
the small amount of electronic component present within the
image dataset. Reference [15] employed both mathematical
and CNN models to perform photometric extraction of ste-
reo images to detect defects on the surface of a steel rail,
thereby demonstrating that the CNN-based approach could
provide higher detection accuracy than mathematical models.

III. EXPERIMENTAL METHOD

The procedure for automatic defect detection contains
three steps: WTB inspection, data preprocessing, and CNN
for data classification. In the first step, accurate data acquisi-
tion is very important in order to ensure precise blade to in-
ternal examination. To address this concern, a pressure- and
shape-adaptive PAUT platform is developed in this study to
facilitate the precise inspection of WTB-surface curvatures.
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Data are first collected on a blade testbed by performing in-
spections using the proposed PAUT platform. Subsequently,
in the data pre-processing stage, wherein image data are
transformed to be interpretable by a deep-learning algorithm,
datasets are grouped based on certain criteria, and concerned
images are transformed into arrays. This is accomplished
through the use of numpy. asarray function in Python. The
CNN model is designed using the TensorFlow (Tensor-
flow™) and Keras packages within Eclipse IDE (Eclipse
Foundation, Inc). Transformed data are subsequently identi-
fied via the training of the CNN model, which is subsequent-
ly used to detect discontinuities. Finally, the original dataset
is successfully used to automatically identify internal discon-
tinuities. Once a WTB is thoroughly inspected, the CNN
model is used to automatically determine whether the collect-
ed data contain any discontinuities.

A. WTB Testbed

A large-sized WTB typically measures 40-50 m in length.
In this study, an actual WTB structure measures 43.5 m in
length, is fabricated using GFRP, and comprises two shear
webs. However, such a large structure is difficult to test ex-
perimentally in view of the storage- and cost-related con-
cerns. Since the objective of this study is to test the detec-
tion accuracy and performance of the proposed technique us-
ing the general shapes of the WTBs, the testbed is fabricated
as a scaled-down 3 m long model of the actual WTB geome-
try described above with the corresponding scaling factor 12
in consultation with the blade manufacturer, as depicted in
Fig. 1. The ply means a thickness of layer of a laminated
material in Fig. 1, and 1 ply is 0.9 mm in the testbed. Edge
joints, which typically forms main inspection targets, and in-
ternal shapes are designed to resemble those of a full-size
WTB, as closely as possible. GFRP, identical to that used in

full-sized WTBs, is used to manufacture the test blade. Can-
didate defects that develop and potentially occur are listed in
Table I, which have been compiled in accordance with manu-
facture and operation conditions of typical WTBs. Candidate
defects are described based on the experiences and knowl-
edge of NDT inspection experts. Among the candidate de-
fects that occur during manufacture and operation, the delam-
ination is chosen as an artificial defect. The delamination is
introduced along the leading and trailing edges of the blade
in accordance with inputs from actual blade manufacturers.
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Fig. 1. Testbed with sizes and locations of artificial defects. (a) Overview.
(b) Side view of testbed and delamination.

TABLE I
CANDIDATE DEFECTS THAT OCCUR DURING MANUFACTURE AND OPERATION OF BLADE

Defect occuring time Defect Detail
Delamination Gap between stiffener (glass fiber) and base material (resin)
Bubble and blow hole Occurrence of bubbles between plies
(]ijuerlicig :r}:aartu?f;((::ltlse White area Some plies incompletely filled with resin during reaction injection molding process
Crack Ply fiber severed
Wrinkle Excessive strengthening work causing wrinkles to appear on surface
Debonding For cases wherein plies are incompletely bonded, pressure loads during operation result in debonding
Defect that occurs Lightning When all parts of the blade are wet, lightning cannot be conducted to ground

during operation Fatigue defect

Corrosion

Invisible small defects that continue to grow during operation

Wind gradient and foreign substances tending to corrode blade surfaces

A WTB testbed with intentional defects is constructed
with three different delamination sizes. As depicted in Fig.
1, the delamination, in the form of artificial square-shaped
defect measuring 20 mm, 15 mm, 10 mm, and 0.6 mm in
depth, respectively, is induced along the leading and trailing
edges of the WTB. The 20 mm defect corresponds to the
largest size that could be inserted into the small blade joint.
The 10-mm defect is selected based on data obtained from a

plane testbed experiment, wherein the defects of this size are
either detectable or independent of the thickness of the com-
posite material. The 15 mm defect is selected to represent
the mean value between the 20 mm and 10 mm extremes.

B. Pressure- and Shape-adaptive PAUT Platform

Phased-array ultrasonic testing is an NDT technique for
identifying internal defects within structures. The PAUT ap-
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proach provides a 2D thermogram in real time by transmit-
ting ultrasonic waves of diverse amplitudes into an object.
Compared with other ultrasonic testing techniques, the imple-
mentation of this method could improve detection reliability
and reduce testing time by simultaneously generating ultra-
sonic signals at various angles. In this study, a Dynaray Lite
tester and Zetec probes are used to perform PAUT. Since the
testbed blade geometry is rather small, the dual-probe tech-
nique is considered suitable for performing edge inspection.
An efficient dual-probe method is adopted as the pitch-catch
technique [16], which enables Zetec probes to possess the
advantage of high resolution.

WTB structures are highly non-linear and irregularly
shaped, which possess significant non-linearity in the form
of large surface curvatures. Furthermore, since WTBs could
be fabricated in different shapes in accordance with their in-
tended service environment, if a conventional PAUT plat-
form is used for inspection, the accuracy and reliability of in-
spection signals collected across a wide range of testbed ge-
ometries would tend to degrade. Accordingly, to facilitate
the inspection of different types of blade-joint shapes with
high curvatures, a flexible active-passive constant pressure
mechanism platform capable of performing various roll,
pitch, and Z-axis motions is fabricated as part of this study.
The platform described is completely attached to the blade
surface, thereby maintaining constant pressure against it and
facilitating accurate inspection of the internal structure of the
leading and trailing edges of blade even if the inspection
tools are moved. This approach enables the platform to ad-
just to the flexible range of motion over surfaces of diverse
shapes. When the inspection by conventional method is re-
peated three times for each size of the artificial defect on the
leading edge, the average measurement error is 1.59 mm
with a standard deviation of 1.92 mm. The average measure-
ment error is 1.06 mm with standard deviation of 2.24 mm
when using the pressure- and shape-adaptive PAUT platform
under equivalent conditions. By comparing the average mea-
surement errors between the conventional and proposed plat-
form inspection methods on the trailing edges, errors of 1.93
mm and 1.01 mm are obtained, respectively. The standard
deviations are 3.4 mm and 1.22 mm, respectively. The pro-
posed PAUT platform thus reduces measurement error by
33.34% on the leading edge and 47.67% on the trailing
edge. The NEOS software is used to control platform opera-
tion. NEOS is a real-time operation system with DO-178B
safety certification. It is a special-purpose embedded system
that facilitates accurate and precise processing [17].

Figure 2 depicts the experimental setup for defect inspec-
tion with the PAUT platform applied to the testbed. Three
supporting legs are attached to the testbed along with the
control part for the movement of axes of the PAUT device.
The PAUT device consists of a wedge, probe, and encoder
attached to the instrument unit of the testing platform for de-
fect inspection. The two Zetec probes serve as the pulser
and receiver and are moved using the 23 mm flat wedge.
The entire experimental setup is placed inside an indoor
pool to facilitate the use of water as a medium for defect in-
spection. A Windows notebook running the X86 NEOS soft-

ware is used to control the platform. The collected data are
transmitted to the notebook PC, wherein the Zetec program,
UltraVision 3.8R30, is installed.

Display &
control

S |
E v w L
Probe Wedge  Encoder PAUT device

Fig. 2. Defect inspection system with PAUT platform.

C. Discontinuity Classification Criteria

The data obtained via the PAUT device consist of the A-
scan signals, C-scan image, and D-scan image. S-scan imag-
es could also be obtained from PAUT instead of D-scan im-
ages. Among them, the basic signal output obtained from the
PAUT platform is an A-scan signal. C-scan and D-scan rep-
resent a mixture of A-scan and distance information. The A-
scan signal is obtained by transmitting a single ultrasonic
beam from top to bottom along the length of the blade. This
signal is expressed as the ultrasonic path travelled by an ul-
trasonic wave against ultrasonic-pulse amplitude (along the y-
axis). The corresponding graph depicts locations and intensi-
ties of reflected ultrasonic waves. The index axis represents
the inspection direction along which the probe and wedges
traverse, whereas the scan axis denotes the inspection range.
C-scan images are captured to depict the top view of the
blade as well as to illustrate the relationship between the in-
dex and scan. Likewise, D-scan and S-scan images depict
the relationships between the ultrasonic path and index.
They are obtained by multiple moving ultrasonic beams,
causing multiple A-scan signals to overlap along and perpen-
dicular to the index and inspection directions, respectively.
D-scan and S-scan images are obtained using linear and sec-
torial beams, respectively. This study mainly focuses on the
use of A-scan signals for differentiating between internal dis-
continuities and defect-free detections, since A-scan signals
facilitate the sorting of defects. A discontinuity may not nec-
essarily imply the presence of a defect, but it could be used
as a basic criterion to determine candidate defect probabili-
ties. Therefore, A-scan signals form the basic information
necessary to determine the presence of internal discontinui-
ties, whereas C-scan and D-scan images could be used to
measure the lengths of the defects and facilitate the visualiza-
tion of discontinuity.

The classification criteria for identifying A-scan signals
are defined based on the AASHTO/AWS D1.5M/D1.5: 2015,
a standard approved by the American National Standards In-
stitute [18]. Following the K10.2 acceptance criterion pre-
scribed in this standard, discontinuities are confirmed to be
identified when the size and length of an indication exceed
specific values. Figure 3 depicts the discontinuity classifica-
tion indication levels for Classes A, B, C, and D. Here, full-
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screen height (FSH) corresponds to the maximum signal
strength provided by the equipment set for a 1.5 mm reflec-
tor, as specified in the standard under equipment calibration.
If FSH is set to 100%, signals exceeding 100% could not be
identified. In the proposed study, the value of FSH is set to
be 80%. The standard sensitivity level (SSL) indicates corre-
spondence to a reference value, and in this study, it is set to
be 50+5% of the FSH value. The automatic reject level
(ARL) is set higher compared to SSL by 5 dB and at 89%
of FSH. The disregard level (DRL) is set lower compared to
SSL by 6 dB and at 25% of FSH. When indication peak ex-
ceeds ARL, it is classified as Class A. Class B refers to the
indication greater than SSL and less than or equal to ARL,
whereas Class C refers to the indication greater than DRL
and less than or equal to SSL. Indication peak less than or
equal to DRL is categorized as Class D. Amongst the four
classified defect classes, Class D is considered to possess
negligible discontinuity. Therefore, the proposed study
adopts 20% signal amplitude as the criterion for indicating
the presence of a defect. When this criterion is applied to in-
spection images of the WTB leading edge, Fig. 4(a) is ob-
served to contain a discontinuity, and the corresponding D-
and C-scan images clearly demonstrate the presence of de-
fects. On the other hand, Fig. 4(b) depicts negligible discon-
tinuity, and the corresponding D- and C-scan images demon-
strate the presence of non-apparent defects.
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Fig. 3. Discontinuity classification indication levels.

D. Data Pre-processing

The collected dataset contains 12487 images, 9361 of
which are observed to depict discontinuities, whereas the re-
maining 3126 images depict defect-free detection. Since the
platform-based internal inspection of blade mainly focuses
on defects determined from raw-image data, discontinuity da-
ta account for nearly 75% of the total data. With such an un-
balanced dataset used to train the model, the model classifies
all images containing discontinuity, thereby constituting an
overfitting problem. Data augmentation is subsequently per-
formed to efficiently solve this problem by increasing data
volume artificially [19], [20], wherein horizontal flips of im-
ages containing indications are introduced to increase the
presence of indications, thereby resulting in improved data
balance.
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Fig. 4. Example of PAUT result image. (a) Example of observed defects.
(b) Example of defect-free detections.

Horizontal flip is a technique of creating mirror images.
Therefore, the adjusted dataset contains 15613 images, 9361
of which demonstrate discontinuities while the remaining
6252 contained defect-free detections. Each image initially
possesses an approximate resolution of 440 %400 pixels, but
once the model is trained, the accuracy for smaller image
sizes is also increased. Consequently, the size of collected
images is reduced by half to approximately 220 x 200 pixels
during data preparation. These half-sized images correspond
to the smallest reduction rate, which in turn, demonstrate the
increase of operation accuracy. RGB pixels of smaller imag-
es provide a similar data distribution by means of a normal-
ization process, wherein the range is converted from [0, 255]
to [0, 1], and the training and test datasets were divided into
a ratio of 8:2 learning from inference data.

E. Automatic Discontinuity Detection

This study utilizes a deep learning algorithm to design a
classification system capable of automatically differentiating
discontinuities in A-scan signals. Two NVIDIA GPU Ge-
Force GTX 1080 Ti cards with 11 GB of memory are used
to process the learning and inference datasets. Since A-scan
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signals obtained from the proposed PAUT platform mainly
contain images, CNN is used to distinguish between images.
CNN is a deep feed-forward ANN used in the extraction and
classification of image features. Basic CNN contains three
key structural layers: a convolution layer to extract data fea-
tures; a pooling layer that plays a key role in subsampling to
reduce feature mapping; and a fully-connected layer to facili-
tate data classification.

An activation function is used within each layer to create
a feature map and add non-linearity to the NN. Thus, com-
plex data patterns could be learned [21]. Activation functions
generally employed include the threshold, linear, Gaussian,
and sigmoid functions [22]. Generally, the sigmoid function
is used as an ANN activation function. However, when only
the sigmoid function is applied to each layer in this study, a
vanishing gradient problem is observed during the course of
back-propagation. The vanishing gradient problem refers to a
case where the gradient magnitude approaches zero as more
gradients are calculated through the layer [23], which makes
it difficult to calculate the error rate and reduce calculation
accuracy. This problem is solved by using the rectified linear
unit (ReLU) proposed in [24]. The ReLU function is based
on the principle that a value of zero could be assigned to all
negative parameters. Further, for any value assigned to posi-
tive parameters, the function returns the input value to the
output [25].

The loss function could calculate the difference between
the calculated values for a model and the corresponding in-
tended values. The mean squared error (MSE) represents one
possible example of a loss function. MSE measures the aver-
age of squared error values. The binary cross-entropy, also
known as the negative log loss, denotes a probabilistic inter-
pretation loss function in classifier problems [26]. The out-
put of binary cross-entropy is a probabilistic result with an
intermediate value between 0 and 1. This result could be in-
terpreted as a probability belonging to the positive class. It
is essential to determine the point where minimum losses are
incurred. If a CNN model is trained to be excessively fit to
a particular training dataset, it fails to possess sufficient gen-
erality, thereby, once again, representing an overfitting prob-
lem. Regularization [27], dropout [28], and batch normaliza-
tion could be applied to prevent the occurrence of such over-
fitting. Regularization is a penalty on model complexity to
improve generality and could be divided into L1 and L2
types. The L1 regularization technique adds an absolute mag-
nitude to the cost function, while the L2 type adds a squared
magnitude to the cost function. In this study, L2 regulariza-
tion, also referred to as “weighty decay” regularization, is
employed. Weighty decay regularization reduces large
weights by adding a parameter that imposes a penalty upon
the cost function [29], [30]. If a model is trained to reduce
weights in this manner, it tends to be less affected by outli-
ers corresponding to local noise, thereby preventing overfit-
ting and providing acceptable generalization. Dropout, as a
complementary method to regularization, randomly removes
units (nodes) from a network [31]. Batch normalization is
performed on a mini-batch basis to facilitate the uniform
learning of layers, each of which could possess different dis-
tributions owing to an internal covariate shift within deep
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networks [32]. Theoretically, prior to nonlinearity evaluation,
batch normalization requires a network that must be de-
signed before the activation function.

F. Model Estimation

A model is typically evaluated based on its accuracy in
terms of inferring test data. However, the demonstrated accu-
racy in this study is considered insufficient to perform de-
tailed evaluations, thereby resulting in wrong conclusions for
cases where datasets include an unbalanced number of data
points between the classes. To address these issues, this
study adopts a confusion matrix, as described in Table II,
which could distinguish the polarity between actuality and
prediction to evaluate the classification system model
[33], [34].

TABLE 11
PREDICTION CONFUSION MATRIX

Predicted polarity

Actual polarity

Predicted negative Predicted positive

False positive (FP)

Actual negative True negative (TN)

Actual positive False negative (FN) True positive (TP)

Estimation scores are derived in (1)-(6) based on the con-
fusion matrix.

Acc= TP+§]§:;];[+FN M)
REC= TPZPFN @
SPE= TN];]—VFP @
PRE= % @)
FPR= % )
FNP= FNFJ]rV P ©

where TN, TP, FN, and FP are the values of TN, TP, FN,
and FP, respectively. Accuracy ACC is the number of images
correctly predicted from the whole set of images. Recall
REC is the number of positive predictions over the actually
positive images. It is also called sensitivity or true positive
rate. Specificity SPE is the number of negative predictions
over the actually negative images. Precision PRE is the num-
ber of actually positive images among the positively predicted
images. False positive rate F/PR refers to the number of posi-
tively predicted images from actually negative images. Fur-
ther, false negative rate FNR refers to the number of positively
predicted images from the actually negative images. When the
designed model could predict the results with high accuracy
and reliability based on a new dataset, it is considered to be a
good model. ACC, REC, SP, and PREC are all considered opti-
mum as they approach 1, whereas FRP and FNP are consid-
ered optimum as their corresponding values approach zero.
However, in the case of an unbalanced binary classifica-
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tion dataset, the F1 score, defined in (7) as the harmonic
mean of precision and recall, could be used as an indicator
superior to any of the previously defined elements [35]. As
the F1 score approaches a value of unity, the evaluated mod-
el could be considered better, since the F1 score depends on
the average of precision and recall, which are considered op-
timum when their value is closer to unity.

PRE - REC
Fi _p LB REL
Seore =2 p E REC )
IV. RESULTS

The CNN classification model contains 11 layers: 1 input
layer, 6 convolution layers, 3 fully-connected layers and 1
output layer. Figure 5 depicts the final architecture of the
CNN discontinuity classifier where Input, Conv-32, Conv-
64, MaxPool, BN, Flatten, FC-512, FC-128, FC-64 and Out-
put represent the input layer, 2D convolution layer with 32
filters, 2D convolution layer with 64 filters, max pooling lay-
er, batch normalization, layer to change the 2D shape into
1D shape, fully-connected layer with 512 output neurons, ful-
ly-connected layer with 128 output neurons, fully-connected
layer with 64 output neurons and output layer, respectively.
Based on the observed variation in accuracy, batch normal-
ization in this study is performed at the end of each layer to
normalize input data on the basis of each layer. In terms of
hyper parameters, the batch size considered is 50, the drop
rate equals 0.25 at each layer, and the learning rate is set to
be 0.01. To facilitate the evaluation of loss function, a bina-
ry cross-entropy is applied. Two types of active functions
are utilized within each layer except the input. Additionally,
within the convolution layer, the ReLU function is applied
as an active function. Since a binary classification model is
employed, the sigmoid function is applied in the fully-con-
nected layers and output layer. Test accuracy is determined
to be approximately 99% with regard to the classification of
discontinuities and defect-free detection.

No. Layer  Output shape Conv-64 | (None,13,12,64)
[ 1 [Input  [(None,220,200,3) | »{ 6 [MaxPool | (None,6,6,64)
v
Conv-32 | (None,220,200,32) BN (None,6,6.64
2 [MaxPool | (None,110,100,32) Conv-64 | (None,6,6,64)
BN (None,110,100,32) | | | 7 [MaxPool | (None,3,3,64)
12
Conv-32 | (None,110,100,32) BN |(one3.3.64)
3 |[MaxPool | (None,55,50,32) Flatten |(None,576)
BN (None,55,50,32) 8 |[FC-512 |(None,512)
12
Conv-32 | (None,55,50,32) BN (None,512)
4 |MaxPool | (None,27,25,32) o [FC-128 [ (None,128)
BN (None,27,25,32) BN (None,128)
) v
Conv-64 | (None,27,25,64) 10 FC-64 |(None,64)
5 |MaxPool | (None,13,12,64) BN (None,64)
v
BN (N[one,l3,12,64) l 11 ‘Output ‘ (None,2) ‘

Fig. 5. Architecture of a discontinuity classifier.

The confusion matrix of the proposed classifier, which is
used as an additional evaluation criterion, has been presented
in Table III. The total number of successfully classified im-
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ages within the test dataset equals 3094, which represents
the sum of 1826 and 1268 images containing discontinuities
and defect-free detections, respectively. The sum of classi-
fied failure images equals 29 with 23 images constituting the
false-positive section, while the false-negative section con-
tains 6 images. As can be observed in Table IV, the values
of REC, SPE, and PRE are 0.995, 0.988, and 0.982, respec-
tively, while the observed F1 score is 0.989. The FPR is also
considered important, because if blade discontinuities remain
unidentified or are classified as normal instead, a serious fail-
ure could occur. The resulting FRP is observed to be 0.012,
which is considered to be acceptably close to zero.

TABLE III
CONFUSION MATRIX FOR DISCONTINUITY CLASSIFIER

Predicted population

Actual population

Negative (discontinuity)  Positive (defect-free)

Negative (discontinuity) 1826 23
Positive (defect-free) 6 1268
TABLE IV

RESULT CONCERNING ELEMENTS DERIVED USING CONFUSION MATRIX

Element Value
ACC 0.991 FPR 0.012
REC 0.995 FNR 0.004
SPE 0.988 F1 score 0.989
PRE 0.982

Failure cases are classified into two types. In the first
type, the discontinuity classifier identifies six images as con-
taining a discontinuity, whereas in actuality, the images are
defect-free detections. In the second type, the classifier iden-
tifies 23 images to demonstrate defect-free detections. How-
ever, the images contain discontinuities. With regards to the
first type, as shown in Fig. 6, peaks of all signals within im-
ages attain the 20% signal amplitude set as the criterion.
With regards to the second type, Fig. 7(a) depicts classifica-
tion failure for small-amplitude defects, whereas Fig. 7(b) de-
picts corresponding failures for large-amplitude defects. For
cases depicted in Figs. 6 and Fig. 7(a), signal amplitudes
demonstrate the existence of an ambiguous peak near the
20% boundary. As shown in Fig. 7(b), for a majority of cas-
es, signal peaks are located on the extreme right of images.
Therefore, the classifier would recognize the right side of
these peaks as the end or boundary of the image. If more im-
ages are provided with their respective signal peaks lying on
the extreme right of the domain, the use of the CNN classifi-
er could effectively reduce the number of failure cases.

V. CONCLUSION

This paper presents the design of a CNN-discontinuity
classifier capable of identifying discontinuities within WTBs
through the use of A-scan image data. To obtain accurate A-
scan images of raw data collected from a scaled-down WTB
testbed, a pressure- and shape-adaptive PAUT platform using
NEOS is fabricated.
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Fig. 6. Actual defect-free detection results predicted as discontinuities. (a) Result image 1. (b) Result image 2. (c) Result image 3. (d) Result image 4. (e)
Result image 5. (f) Result image 6.
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Fig. 7. Actual discontinuity results predicted as defect-free detections. (a) With small-amplitude defects predicted as defect-free detections. (b) With large-
amplitude defects predicted as defect-free detections.

Scan data are successfully obtained by using a real-time design could be stated in terms of its ability to automatically
control system, and an accurate CNN classifier is designed detect all candidate defects via discontinuity classification.
to exhibit a classification accuracy of nearly 99% along with The proposed CNN classifier could be used for a variety of
an F1 score of 0.989. The novelty of the proposed classifier WTB sizes, whilst it is also applicable in a wide range of
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scenarios concerning internal-defect detection using the
equipment capable of generating A-scan signals such as
PAUT or other UT devices. As a future endeavor, the au-
thors would intend to apply the proposed CNN classifier to
actual full-scale WTBs to verify its real-time detection accu-
racy.
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