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Abstract——The energy consumption of buildings has risen
steadily in recent years. It is vital for the managers and owners
of the building to manage the electric energy demand of the
buildings. Forecasting electric energy consumption of the build‐
ings will bring great profits, which is influenced by many fac‐
tors that make it very difficult to provide an advanced forecast‐
ing. Recently, deep learning techniques are widely adopted to
solve this problem. Deep neural network offers an excellent ca‐
pability in handling complex non-linear relationships and com‐
petence in exploring regular patterns and uncertainties of con‐
sumption behaviors at the building level. In this paper, we pro‐
pose a deep convolutional neural network based on ResNet for
hour-ahead building load forecasting. In addition, we design a
branch that integrates the temperature per hour into the fore‐
casting branch. To enhance the learning capability of the mod‐
el, an innovative feature fusion is presented. At last, sufficient
ablation studies are conducted on the point forecasting, probabi‐
listic forecasting, fusion method, and computation efficiency.
The results show that the proposed model has the state-of-the-
art performance, which reflects a promising prospect in applica‐
tion of the electricity market.

Index Terms——Load forecasting, deep learning, convolutional
neural network, feature fusion, ResNet.

I. INTRODUCTION

INCREASING energy demands have attracted more atten‐
tion with the growth of the world population and econom‐

ic development. At the same time, in order to solve prob‐
lems of the pollution, carbon emissions and greenhouse, re‐
ducing energy consumption must be taken into account. Ac‐
cording to the U.S. Energy Information Administration Month‐
ly Energy Review, 40% of the energy consumption comes
from buildings [1]. In addition, with the aim of achieving
the building energy conservation, some policies and regula‐
tions have been promulgated for the effective design of new
buildings in many countries. The growing energy demand of
the buildings requires reliable load forecasting, which will

promote the effective planning, long-term strategies, effec‐
tive plans to reduce carbon emissions, and control energy us‐
age in the construction sector [2]. A great number of innova‐
tive techniques have been introduced for smart grids to im‐
prove the power system reliability and building energy effi‐
ciency, including demand response (DR) [3] and demand-
side management [4], [5]. From the perspective of electric
operators, accurate building load forecasting ensures the ef‐
fectiveness of both pre-DR resource assignation and post-DR
performance assessment [6]. Modeling and forecasting the
energy consumption of buildings are essential for urban ar‐
eas to reduce their overall energy consumption [7]. Reason‐
able consumption forecasting becomes significant in that it
could save 10% to 30% of the building energy consumption
[8]. Energy consumption forecasting is an important part of
the energy management system. It aims to provide the key
information for daily management and grid planning of elec‐
tric utility, which make optimal decisions in grid energy
management to ensure safe and reliable operation of power
system. It is proved that improving the energy efficiency of
buildings by designing accurate and powerful load forecast‐
ing models is an effective solution for energy management,
DR procedures, fault detection, and energy benchmarking [9].

Since the energy and building types are various, the ener‐
gy system in buildings is quite complicated [10]. Most ener‐
gy is consumed by heating, ventilating, and air-conditioning
(HVAC) system, water heater, and other electric appliances.
Common building types consist of residential, office, and en‐
gineering buildings. The energy consumption of buildings is
influenced by internal and external factors. Internal factors
include sub-level components such as lighting, HVAC sys‐
tems, and the occupancy behavior. External ones such as
weather conditions, and thermal property of the used physi‐
cal materials also affect electric demands. Due to the regular
pattern and uncertainty in building load profiles, caused by
internal and external factors, it is difficult to make a precise
short-term load forecasting.

In recent years, a large number of forecasting models
have been proposed and applied to solve practical problems.
The load forecasting category can be simply summarized as
follows: very short-term load forecasting (VSTLF), short-
term load forecasting (STLF), medium-term load forecasting
(MTLF), and long-term load forecasting (LTLF). The main
forecasting models are divided into two categories: tradition‐
al and artificial intelligence methods. The advantages of tra‐
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ditional methods depend on their clipping computing speeds
and robustness [11], which include linear regression (LR),
multiple linear regression (MLR), and auto-regressive inte‐
grated moving average (ARIMA). Reference [12] studies the
sensitivity of Iran electrical load to the temperature based on
the LR method. The analysis can be extended to all other en‐
vironmental factors such as humidity, wind speed, and weath‐
er coverage and can also be carried out on the power grids
of other countries. Reference [13] proposes a modern pro‐
cessing method of classical technology, MLR, to model hour‐
ly demand and study the causality of power consumption.
The proposed model has been used to generate a 3-year
hourly energy demand forecasting for the U. S. companies.
Reference [14] combines several methods of ARIMA based
on the idea of time series to avoid the shortcomings in vari‐
ous aspects, helping ARIMA model better forecast the short-
term load. Reference [15] depends on the lifting scheme and
ARIMA model. The lifting scheme is a general and flexible
method for constructing biorthogonal wavelets, which are
embedded in the ARIMA model to improve the forecasting
accuracy. Based on the results of wavelet multiple revolution
analysis (MRA), the lifting scheme decomposes the original
load sequence into subsequences with different revolutions.
Then, the inverse lifting is used to reconstruct the forecast‐
ing results of different levels to generate the original load
forecasting.

Support vector machine (SVM) is a kernel-based machine
learning algorithm, which can be used for both regression
and classification. The algorithm reveals great competence in
non-linear analysis. Support vector regression (SVR) [16] -
[19] is an important application branch of SVM. With the
kernel function, training data are potentially transformed into
higher dimensional spaces, which benefits extracting discrim‐
inative features and strengthens the capability of model. It
has been successfully used in solving nonlinear regression
and time series problems in the aspects of building load fore‐
casting. Since the performance of SVR heavily relies on the
selection of its parameters, [20] uses the differential evolu‐
tion (DE) algorithm to solve this problem. The forecasting
model is developed using a weighted SVR model with nu-
SVR and epsilon-SVR, and DE determines the weight corre‐
sponding to each model. The proposed model can be used to
forecast half-hourly and daily electricity time series data of
the same building. However, SVR is not stable enough for
outliers, and the setting of training parameters involves
many techniques and difficulties, which leads to a poor train‐
ing process.

Strategies based on machine learning offer a restricted ca‐
pability of modeling in time series analysis. In recent years,
neural networks have appeared as a powerful tool in the ar‐
eas such as image processing and data analysis. Deep learn‐
ing skills have been applied in load forecasting, and most of
them rely on recurrent neural network (RNN) or long short-
term memory (LSTM) [21] - [24]. LSTM is derived from
RNN, and both of them are successful in the target of se‐
quence-to-sequence learning such as speech recognition and
natural language processing in time-series analysis. Gated re‐

current neural (GRU) network is an effective variant of
LSTM and has a simpler structure. It can also solve the
problem of long dependency in RNN network. Therefore, it
is also a very manifold network at present. However, when
managing long-term sequence, RNNs suffer from the prob‐
lem of gradient disappearance severely, even though LSTM
alleviates this case partly. Moreover, the RNN-based models
require serial calculation, so the calculation efficiency is un‐
satisfactory.

Convolutional neural networks (CNNs) have achieved bril‐
liant performances in the field of computer vision with well-
known models such as AlexNet, ResNet, and DenseNet.
ResNet was proposed in 2015, and it is the most widely pop‐
ular CNN framework for feature extraction at present. Re‐
cently, ResNet models also demonstrate better performances
in sequence processing, not only in speech synthesis, lan‐
guage modeling and machine translation, but also in electrici‐
ty load forecasting. ResNet model contains a number of re‐
sidual connections between different level blocks and deliv‐
ers the errors to previous layers when the network is being
trained with back propagation. This mechanism is able to in‐
crease the depth of the network and strengthen the ability to
learn discriminative features. In other words, ResNet can ef‐
fectively deal with the problem of gradient disappearance.
An example of ResNet structure is illustrated in Fig. 1,
where the input x is the sequence of historical data; W1 and
W2 are the weights; and F(x) is the output of two convolu‐
tional layers.

With a deeper architecture and sophisticated operation,
neural networks, especially deep CNNs (DCNNs), provide
superior abilities of learning discriminative features and non-
linear relationships, which benefits extracting uncertainty fac‐
tors of building load forecasting [25] - [27]. Specifically, the
latest researches [26], [27] reveal that CNN performs a more
advanced accuracy as a result of the powerful capability of
the discriminative feature extraction. Gated CNN (GCNN) is
a deep learning model. GCNN introduces the gated mecha‐
nism of LSTM into the CNN and uses the gated mechanism
to identify and judge the information, which has achieved su‐
perior results. In addition, some mechanisms like residual
connection cannot cause dramatical gradient disappearance
even in deeper network. Consequently, related skills could
be optimized to identify and learn both the regular pattern
and uncertainty in load profiles. DCNN performs superiorly
in estimating heating/cooling loads, total electricity consump‐
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Fig. 1. Structure of ResNet.
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tion, and operation and optimization of sub-level compo‐
nents.

Although the range of forecasting time may vary from a
few minutes to several years, especially shorter than a day, it
is critical for buildings because utility prices may vary with
the season and time. A more effective and efficient estima‐
tion of the peak electricity load in a day and the load shape
has more possibilities to control the utility costs for provid‐
ing more intelligence in smart buildings. In this paper, hour‐
ly electricity consumption data and temperature data are ad‐
opted to forecast hourly consumption one hour ahead (single-
step forecasting) and 24 hours ahead (24-step forecasting).

Based on the literature outlined above, this paper proposes
a novel CNN model for sub-hourly building load forecast‐
ing. The key contributions are as follows.

1) We propose a novel DCNN for building load forecast‐
ing. The baseline of the network is built on ResNet contain‐
ing a number of residual connections in order to increase the
depth of the model and enhance the ability of learning non‐
linear relationships in time-series analysis.

2) For integrating the information of external factors into
the forecasting model, we design another branch responsible
for extracting the pattern of external factors per hour with
fully connected layers.

3) A novel mechanism of feature fusion between two
branches is proposed, which is also interpreted as a superior
feature selection process and leads to a remarkable improve‐
ment in accuracy.

4) The proposed network serves in an end-to-end manner
during the training and inference process. Sufficient ablation
studies are conducted to demonstrate the effectiveness of in‐
novations and great generalization in building load forecast‐
ing.

The rest of this paper will be organized as follows. Sec‐
tion II describes the details of the proposed model. Section
III introduces the elements and details of the experiment pro‐
cess. Section IV reports the experimental results and discuss‐
es some doubts of the proposed model. Finally, the conclu‐
sions are summarized in Section V.

II. METHODOLOGY

A. Problem Formulation

This paper proposes a CNN model with two branches in‐
cluding the forecasting branch and the external factor integra‐
tion branch. There is an input xL of main network represent‐
ing the sequence of historical load, and another input xW of
branch represents outdoor weather variables. The vector Y is
the output forecasting. The main purpose is to build a corre‐
sponding mapping relationship between inputs and future
load sequences as follows.

Y = f (X)+ e (1)

where X =[x1x2...xMa
], Y =[yMa+ 1yMa+ 2...yMa+ Mb

], x1x2...

xMa
are the historical loads, yMa+ 1yMa+ 2...yMa + Mb

are the out‐

put forecasting, and Ma and Mb are the lengths of the input

and output sequences, respectively; and e is the error. When
Mb is 1, it is a single-step forecasting problem, and if Mb is
over 1, it is a multi-step forecasting problem.

B. Network Architecture

In this paper, building load forecasting is solved as a se‐
quence issue. Deep networks based on DCNN automatically
extract the key change features layer by layer in the histori‐
cal load sequence, and generate forecasting at the end of the
model. External factors such as temperature are also the key
features in building load forecasting and should be consid‐
ered in the model. Changes of external factors will affect the
pattern of load sequences. This effect is broad and compre‐
hensive. For example, in hot weather, due to the use of air
conditioning, the load changes more drastically during the
day; on holidays and working days, the load curve changes
quite differently. The external factors used in this paper refer
specifically to historical data, since the focus here is on the
complex relationship between historical external variables
and load data.

Therefore, we propose a novel deep network structure to
fuse sequence change features and external factor features.
In this network, the external factor features are explicitly
modeled as the constraints of the historical load, constrain‐
ing the original input and changing characteristics of the his‐
torical load. Specifically, the learning to external variables
generates indicator vectors, where each scalar is close to 0
or 1. Element-wise multiplication is done based on indica‐
tors with different layers in DCNN to control the expression
of the key features. This is very different from the tradition‐
al feature fusion (TFF) ways, which generally concatenate
sequence change features and external factor features, and
generate forecasting through fully connected layers. Our
model explicitly models the relationship between sequence
change features and external factor features, introducing
strong priors to the model. Therefore, this network could
converge to a more optimal local minimum, which improves
the forecasting accuracy.

Both of the forecasting branch and external factor integra‐
tion branch run in a parallel way and constitute an end-to-
end manner of training and inference. Forecasting branch
serves for building load forecasting and external factor inte‐
gration branch takes responsibilities of increasing additional
significant features for efficient and effective forecasting ex‐
ploring potential nonlinear relationships. Details of our pro‐
posed network are illustrated in Fig. 2.

C. Forecasting Branch

The forecasting branch is a CNN that aims to extract the
features of electric load sequences. It consists of a series of
stacked residual blocks. In this study, we employ 4 blocks,
each of which is composed of four layers with different func‐
tions: dilated convolution, Relu activation, normalization,
and regular 1-dimension (1D) convolution, respectively, as
shown in Fig. 3. The forecasting branch receives a 24-dimen‐
sion load vector into the network. In addition, five residual
blocks join in the structure of this branch.
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Dilated convolution focuses on extracting a larger-scale of
features in local receptive field and results in fusion of dif‐
ferent dilated ratios, which means that comprehensive fea‐
ture abstracting leads to an advanced performance in deep
learning. Dilated convolution is widely used in image seg‐
mentation which can greatly increase the receptive field with‐
out increasing the computation complexity and the number
of parameters. Therefore, we introduce the dilated convolu‐
tion to extend receptive fields of a neuron by embedding ze‐
ro-value holes at various scales. Dilated convolution does
not mean that the blank elements are padded between the el‐
ements of the feature map when convoluted, but some ele‐
ments are skipped over the existing elements, or the input is
unchanged in this way, and some zero weights are inserted
into kernel convolution parameters. In addition, dilated con‐

volution introduces a parameter called dilation rate to indi‐
cate the expansion rate. In this study, we adopt the dilated
convolution with rates 1, 2, 4, and 8, respectively. We also
introduce residual connections to ensure that the gradient of
our model will not disappear or explode due to the depth.
Leaky Relu activation is responsible to filter salient features
for data analysis [28]. Normalization strategy introduces
batch normalization (BN) [29] that preserves identical distri‐
bution in our dataset and avoids from gradient explosion in
the training process. The last component, regular 1D convo‐
lution, pays more attention to extracting patterns in neighbor‐
hoods. Every block is adopted for collecting more advanced
features from the outputs of the previous block.

D. External Factor Integration Branch

Building load forecasting cannot live without external fac‐
tors, especially weather conditions that have been proven a
strong correlation in this field. External factor integration
branch takes responsibilities of increasing additional signifi‐
cant features to improve the accuracy of building load fore‐
casting. This branch contains multiple fully-connected layers
with different numbers of activation functions in order to
produce feature vectors with proper dimensions .

Specifically, the external factor integration branch takes a
24-dimension vector as the input, where each element repre‐
sents the historical external factors per hour, totally 24
hours. Then, two fixed sizes of fully connected layers filter
the input to extract coarse nonlinear features. Moreover,
there are three hidden layers derived as outputs that are
fused to forecasting branch, 1´ 24´ 1, 24´ 24´ 1, and 1´ 24´
1, respectively, as illustrated in Fig. 2. All activation func‐
tions adopt Sigmoid function, which ensures the values of
trainable parameters fall within (01). The reason for select‐
ing these output dimensions of the three hidden layers is to
keep consistent with the output dimensions of the corre‐
sponding layer in the forecasting branch, so as to facilitate
element-wise multiplication (i. e., feature fusion). The exter‐
nal factor integration branch realizes the extracting of exter‐
nal factors in the forecasting branch according to the exter‐
nal environment.

E. Feature Fusion

CNN extracts the changing features in the load sequence
and generates feature maps. Although deeper convolution
layers can simultaneously extract and select features in fea‐
ture maps, this process does not consider external factors.

In this paper, we propose a novel feature fusion or feature
selection process shown in Fig. 2, where outputs of the exter‐
nal factor integration branch with learnable weights are
fused into the baseline of forecasting branch by multiplica‐
tion operation. Three outputs of household profile branch are
set to be 1´ 24´ 1, 24´ 24´ 1, and 1´ 24´ 1, respectively. In
the forecasting branch, we choose the input layer, the first
convolution block, and the last convolution block for fusion,
which represent the input, low-level features, and high-level
features, respectively. When the input layer is constrained,
this model is similar to the original models for feature selec‐
tion of regression except that it changes along with external
factors. When the convolution layer is constrained, this mod‐

Input 24-hour loadInput 24-hour temperature

F

×

Block1

Block2

Block5

Output

Convolution

Last column of Block5

External factor integration branch Forecasting branch

Representation vector
24×24×1

Representation vector
1×24×1

Representation vector
1×24×1

F

F

×

×

Element-wise product; Block Residual block×

�

�

�

+

Sigmoid function;Fully conection; Element-wise sumF +

Fig. 2. Architecture of our proposed model.

Dilated convolution

1D convolution

Relu activation

Normalization

Features from last block

More advanced features

Fig. 3. Illustration of one residual block as baseline of proposed forecast‐
ing branch.
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el is similar to a gating model except that it uses external
variables. In general, element-wise multiplication fusion en‐
sures a feature selection process when the vector from build‐
ing profile branch is filtered by Sigmoid activation and ele‐
ments are fallen within (01). As a result of the superior
mechanism in weight learning, the external factor integration
branch provides an excellent encoding of external factors,
which selects salient features in different levels of forecast‐
ing branch. Consequently, most significant features are deliv‐
ered to the next block, giving contributions to final fully-con‐
nected layers of the entire network. The two branches form
an end-to-end manner for training and inference with a paral‐
lel approach. Therefore, the entire model is able to explore
more non-linear relationships among consumption behaviors
of buildings, achieving more competent performance with
great generalization for load forecasting.

III. EXPERIMENT SETUP

A. Data Description

We adopt the dataset from the genome project building da‐
ta [30], which includes 507 public datasets from electrical
meters of non-residential building. Each dataset includes
load and the corresponding weather conditions. We choose
two laboratory buildings and an office building as the re‐
search objects, denoted as buildings A, B, and C, in Switzer‐
land, respectively. The information of the three buildings is
shown in the Table I. The area of building A is larger than
others. The time starts from January 1, 2013 to December
31, 2013. Peak electricity demands of buildings A, B, and C
are approximately 90, 85, and 25 kW/h in summer, which are
higher than those in winter. The national average annual tem‐
perature in Switzerland is 8.6 ℃ . In summer, the average
temperature is 18 ℃ to 27 ℃ (rarely above 30 ℃), and the
temperatures of the day and night are greatly different. Aver‐
age temperature in winter is -1 ℃ to -5 ℃, relatively not
very cold.

In addition, more buildings are added to our experiments
to verify the forecasting ability of the proposed model. After
eliminating the abnormal data, we adopt the data of a total
of 300 buildings from January 1, 2010 to December 30,
2015, which are located in New York, Los Angeles, Chica‐
go, Phoenix, London, and Switzerland, respectively. The
buildings are all used for education, including offices, dormito‐
ries, laboratories, and classrooms. The floor areas range from
399 to 155679 m2, and their loads range from 1 to 823 kW.

B. Weather-relevant Feature Selection

In order to select more appropriate weather variables as
the input of external factor integration branch, it is vital to

select the most relevant features for building load forecast‐
ing before the model construction. There are some weather
variables considered as candidates, which includes outdoor
temperature (xT), humidity (xH), and wind speed (xS). Pear‐
son correlation coefficient is also called simple correlation
coefficient, which describes the closeness and correlation of
the relationship between two variables. Its value stays be‐
tween -1 and 1. The value of 1 indicates that the variable is
completely positively correlated, 0 expresses irrelevant, and
-1 means completely negatively correlated. Its calculation
process can be summarized as:

P
xWxL =

cov(xWxL)
ω

xWωxL

xWÎ{xTxHxS} (2)

where cov(⋅) represents the covariance; and ω
xW and ω

xL are

the standard deviations of any weather variable xW and build‐
ing load series xL, respectively.

Table II summarizes the Pearson correlation coefficients
statistics between each weather variable and building load
for buildings A, B, and C, respectively. As is shown in Table
II, there is a stronger positive correlation between xT and xL

for all three buildings in comparison with other weather vari‐
ables and building load. Adding weakly correlated variables
into our model will introduce unnecessary noises. Therefore,
in this study, only xT is selected as the weather-relevant feature.

C. Data Preprocessing

The frequency of dataset acquisition is once an hour, and
consequently there are 24 data points per day. The raw data
may have noisy, missing or redundant variables. Therefore,
raw data are preprocessed to ensure the dataset availability
before experiments. The datasets are divided into training,
validation, and testing dataset by 80%, 10%, and 10% in
chronological order, respectively. Finally, in order to stabi‐
lize the learning process, input variables with corresponding
validation and testing datasets are meticulously normalized.
Normalization helps avoid dramatic changes on the gradient,
which is beneficial to smoothen the convergence.

After all datasets are properly preprocessed, model param‐
eters, i.e., weights and bias, and hyper-parameters, i.e., lay‐
ers and number of neurons, are tuned using training and vali‐
dation datasets. Once the optimal model parameters and hy‐
per-parameters are obtained, the testing dataset of each build‐
ing would be fed into the optimized models to evaluate per‐
formances.

D. Selection of Benchmark and Hyperparameter

In this study, our model is evaluated in comparison with
GRU, LSTM, GCNN, and ResNet. Details of parameters are
shown in Table III. Hyperparameters of LSTM keeps the

TABLE I
DETAILS OF 3 BUILDINGS FOR EVALUATIONS IN ABLATION STUDY

Building

A

B

C

Type

Laboratory

Laboratory

Office

Area (m2)

6875

6039

186

Location

Zurich

Zurich

Zurich

TABLE II
PEARSON CORRELATION COEFFICIENTS BETWEEN EACH WEATHER

VARIABLE AND BUILDING LOAD

Building

A

B

C

P
xTxL

0.75

0.69

0.43

P
xHxL

-0.21

-0.09

-0.14

P
xSxL

0.03

0.05

0.16
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same with GRU. Hyperparameters of GCNN is set as those in [31].

For fair comparison, some setup and hyperparameters of
all models should be as consistent as possible, such as the
batch size, optimization method, and number of trainable pa‐
rameters. On this basis, we adopt the grid search method to
determine other hyperparameters, including the learning rate,
network depth, convolution kernel, and so forth.

To ensure the fairness, historical temperature data are also
considered in four benchmark models. Unlike the proposed
model, which handles the temperature and load sequences in
two branches, historical temperature and load data in the
benchmark models are integrated as two dimensions of the
input sequence. The input vector form of the benchmark
models is:

X = é
ë
ê

ù
û
ú

xL
1 xL

2 ... xL
24

xT
1 xT

2 ... xT
24

(3)

E. Software and Hardware Platform

All experiments are conducted on a cloud server with the
CPU with 8 cores and 2 NVIDIA P4 computing cards. Neu‐
ral network based models are realized by the Keras frame‐
work with Tensorflow backend.

IV. RESULT AND DISCUSSION

A. Evaluation Metric

We carry out point and probabilistic forecasting, separate‐
ly, and evaluate the point forecasting results of the three
buildings by the following three metrics, including mean ab‐
solute percentage error (MAPE), mean absolute error
(MAE), and root mean square error (RMSE). Smaller values
from these metrics mean that the model has lower errors and
higher accuracies. The metrics are calculated based on
(4)-(6).

RMSE =
1
N∑i = 1

N

( ŷi - yi)
2 (4)

MAE =
1
N∑i = 1

N

|| ŷi - yi (5)

MAPE =
1
N∑i = 1

N || ŷi - yi

yi

´ 100 (6)

where ŷi and yi are the forecasting and true values, respec‐
tively; and N is the amount of data.

In order to estimate the quality of probabilistic forecast‐
ing, we adopt a comprehensive metric called pinball score
(also called quantile score). It is widely recognized and can
be interpreted as the accuracy of a quantile forecasting mod‐
el. Pinball score for one quantile can be calculated by the
following formula:

P = {(1- q)(Ŷ q
t - Yt) Ŷ q

t ³Yt

q(Yt - Ŷ q
t ) Ŷ q

t <Yt

(7)

where q is the targeted quantile; and Ŷ q
t and Yt are the fore‐

casting and true values in the qth quantile at time t, respec‐
tively.

B. Point Forecasting

The point forecasting accuracies of the three buildings are
presented in Tables IV, V, and VI, respectively. Our pro‐
posed network performs significantly better than other mod‐
els, and the LSTM performs the worst. As shown in Table
IV, the MAPE of our proposed model obviously decreases
compared with the other three models for smaller buildings,
as MAPE remains around 2%. Moreover, the MAEs of the
proposed model on the three buildings are 24.3%, 43.6%,
and 56.3% lower than the optimal MAE of other models, re‐
spectively. This indicates a much better generalizability of
our model compared with GRU, ResNet, LSTM, and
GCNN. The comparison of the results is shown in Fig. 4.
The points of the proposed model are closer to the diagonal
line, indicating that the forecasting accuracy is higher than
those of several other models, respectively. The forecasting
values of the proposed model are most closely distributed
near the ground truth, revealing its accuracy is better than
the other four models.

TABLE III
PARAMETERS OF PROPOSED MODEL AND OTHER MODELS

Model

ResNet

GRU/LSTM

Proposed model

Depth

34

3

8

Kernel size

8

None

8

Kernel number

24

None

24

Batch size

128

128

128

Loss function

Mean square
error (MSE)

MSE

MSE

Optimizing model

AMSGrad

AMSGrad

AMSGrad

Learning rate

0.002

0.100

0.002

Training stop

Early stopping

Early stopping

Early stopping

TABLE IV
RESULTS OF MAPE AND STANDARD DEVIATION FOR SINGLE-STEP POINT FORECASTING WITH FIVE MODELS

Building

A

B

C

GRU

MAPE (%)

2.93

4.56

8.34

Standard
deviation

(%)

2.02

2.83

5.59

ResNet

MAPE (%)

2.63

8.06

6.87

Standard
deviation

(%)

1.68

5.56

4.67

LSTM

MAPE (%)

3.60

4.90

9.04

Standard
deviation

(%)

2.45

2.89

6.33

GCNN

MAPE (%)

2.72

6.01

6.74

Standard
deviation

(%)

2.36

4.27

4.58

Proposed model

MAPE (%)

2.22

2.80

4.26

Standard
deviation

(%)

1.53

1.96

2.81
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Building A has lower MAPE values compared with the

other two buildings. Along with the load decrease of differ‐

ent buildings, the accuracies of all models also go down (as
shown from the results for buildings B and C). One of the

reasons is larger buildings usually accommodate more occu‐
piers. When there are more occupiers in a building, the un‐
certainty of their overall behaviors tends to be smaller, lead‐
ing to more regular and predictable building load patterns.
Another reason is the Pearson correlation coefficient of
building A is the highest, which makes its forecasting bene‐
fits more from the temperature.

The MAPE of a more extensive experiment on 300 build‐
ings is shown in Fig. 5, where warmer color indicates lower
forecasting errors. The line corresponding to the proposed
model is significantly warmer than the other lines, illustrat‐
ing a generally lower forecasting error. Compared with the
other four models, the proposed model shows general im‐
provements. The proposed model has an average MAPE re‐
duction of 29.7%, 32.8%, 35.9%, and 25.3% relative to
GRU, ResNet, LSTM, and GCNN, respectively.

In the practice of DR, 24-step forecasting provides dis‐
patchers with the key information for pre-DR resource assig‐
nation of the next day. We evaluate the MAPE of 24-step
forecasting on 300 buildings, as shown in Fig. 6. Since the
consumption in the future is more difficult to forecast than that
at just next moment, the multi-step forecasting is more error-
prone than the single-step one. The proposed model has an av‐
erage MAPE reduction of 31.2%, 30.5%, 37.3%, and 22.7%
relative to GRU, ResNet, LSTM, and GCNN, respectively.

C. Probabilistic Forecasting

Probabilistic forecasting can provide more information
than point forecasting, thus providing more application possi‐

bilities. Common probability forecasting include probability

distribution parameter estimation, probability interval estima‐

tion, and quantile forecasting.

TABLE V
RESULTS OF MAE AND STANDARD DEVIATION FOR SINGLE-STEP POINT FORECASTING WITH FIVE MODELS

Building

A

B

C

GRU

MAE
(kW)

2.57

2.89

4.08

Standard
deviation

(kW)

1.69

1.64

2.60

ResNet

MAE
(kW)

1.95

4.00

3.00

Standard
deviation

(kW)

1.20

2.73

1.87

LSTM

MAE
(kW)

2.60

3.25

4.40

Standard
deviation

(kW)

1.74

1.88

2.83

GCNN

MAE
(kW)

1.89

3.13

2.86

Standard
deviation

(kW)

1.19

2.13

1.78

Proposed model

MAE
(kW)

1.43

1.63

1.25

Standard
deviation

(kW)

0.96

1.12

0.78

TABLE VI
COMPARISON OF RMSE FOR SINGLE-STEP POINT FORECASTING WITH FIVE

MODELS

Building

A

B

C

RMSE (kW)

GRU

2.84

3.85

5.04

ResNet

2.57

4.94

4.46

LSTM

3.62

4.35

6.40

GCNN

2.57

4.05

4.08

Proposed
model

2.09

2.27

1.67
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Fig. 4. Scatter plot of five models for building A. (a) ResNet. (b) GCNN.
(c) LSTM. (d) GRU. (e) Proposed model.
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Fig. 5. MAPE heat map of single-step forecasting on 300 buildings.
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Among them, quantile forecasting does not depend on the
distribution hypothesis, and the probability interval can be
generated according to quantile forecasting. Therefore, quan‐
tile forecasting has a better generalization ability and fore‐
casting accuracy. In this study, we use pinball loss as the
loss function of each model and generate the forecasting of
9 quantiles from 0.1 to 0.9. By comparing the average pin‐
ball scores, we can observe the accuracy improvement
brought by the proposed model for probabilistic forecasting.

Pinball scores of several models are presented in Fig. 7.
The comparison on the three buildings shows that the pro‐
posed model has a significant reduction in pinball score com‐
pared with other models, and the improvement is greater
than the MAE improvement of point forecasting. Compared
with the MSE loss function, pinball loss holds a more com‐
plex search space, making the model more difficult for con‐
ventional deep models to converge on an acceptable local op‐
timal point. The experimental results show that although our
network structure is more complicated than ordinary CNN, it
still achieves a better performance in probability forecasting.
In view of the importance of probabilistic forecasting in cur‐
rent load forecasting, our proposed model presents a promis‐

ing future.

D. Fusion Method

The TFF network also contains two branches, one for
learning historical load sequences and the other for learning
external factors. The difference with our model is that the
representative vectors output from the two branches are only
fused in the manner of vector concatenating, thus a fully-
connected network is also needed in the rear for learning the
vector obtained by concatenating. In this subsection, we com‐
pare our fusion model with TTF, keeping the other structures
and parameters of two models consistent.

The comparison of the results is shown in Table VII. The
RMSE of the TFF network is superior to that of our model
for the three buildings, while its MAPE and MAE are also
superior to other models on buildings A and C. It proves that
the TFF network is effective. However, the MAPE, MAE,
and RMSE of our proposed model have better performances
than the those TFF network in the three buildings, which re‐
veals the relationship between sequence features and exter‐
nal factor features is modeled effectively. The pinball score
of the probability forecasting also shows the similar conclu‐
sion.

E. Comparison of Computation Efficiency

Table VIII summarizes the computation time of all models
for three buildings. The computation efficiency of our pro‐
posed model is the fastest. LSTM and GRU consume a lot
of time due to the characteristics of their recursive calcula‐
tions. Compared with ResNet and GCNN which have simi‐
lar structures to ours, our proposed model converges faster
and achieve a better accuracy.
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Fig. 7. Pinball scores of probabilistic load forecasting for three buildings.
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Fig. 6. MAPE heat map of 24-step forecasting on 300 buildings.

TABLE VII
COMPARISON OF PROPOSED MODEL AND TFF

Building

A

B

C

MAPE (%)

TFF

2.51

5.36

6.52

Proposed model

2.22

2.80

4.26

MAE (kW)

TFF

1.85

2.94

2.48

Proposed model

1.43

1.63

1.25

RMSE (kW)

TFF

2.46

3.42

3.17

Proposed model

2.09

2,27

1.67

Pinball score (kW)

TFF

0.92

1.04

0.78

Proposed model

0.51

0.67

0.47

TABLE VIII
COMPARISON OF COMPUTATION EFFICIENCY WITH FIVE MODELS

Building

A

B

C

Computation time (s)

GRU

712

756

782

ResNet

348

312

420

LSTM

828

864

880

GCNN

528

576

672

Proposed model

280

204

286
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This is because our network explicitly models the relation‐
ship between the temperature and load curve, making it easi‐
er to converge to a more optimal extreme value. Figure 8
compares the learning curves of the models, using the datas‐
et of building A. It reveals our proposed model has the low‐
est training error and the fastest rate of convergence.

V. CONCLUSION

In this paper, we propose a DCNN based on ResNet for
building load forecasting. With the dilated convolution in
forecasting branch, the ability of CNN has been improved
by extracting complex and significant features of load se‐
quences. In addition, we propose another external factor inte‐
gration branch which takes more significant weather features
as the input. The features extracted from external factors
will be fused effectively to enhance the ability of learning
discriminative features remarkably. Therefore, the forecasting
accuracy is optimized greatly without increasing parameters
and operations. In this study, the performances of five differ‐
ent deep learning models, i.e., GRU, ResNet, LSTM, GCNN
and our proposed model in the application of single-step and
24-step building load forecasting are systematically com‐
pared. Competitive results reveal that our model can serve
more accurate forecasting, higher computational efficiency,
and stronger generalization for different buildings.
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