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A Two-stage Autonomous EV Charging
Coordination Method Enabled by Blockchain
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Abstract——Increasing electric vehicle (EV) penetration in dis‐
tribution networks necessitate EV charging coordination. This
paper proposes a two-stage EV charging coordination mecha‐
nism that frees the distribution system operator (DSO) from ex‐
tra burdens of EV charging coordination. The first stage en‐
sures that the total charging demand meets facility constraints,
and the second stage ensures fair charging welfare allocation
while maximizing the total charging welfare via Nash-bargain‐
ing trading. A decentralized algorithm based on the alternating
direction method of multipliers (ADMM) is proposed to protect
individual privacy. The proposed mechanism is implemented on
the blockchain to enable trustworthy EV charging coordination
in case a third-party coordinator is absent. Simulation results
demonstrate the effectiveness and efficiency of the proposed ap‐
proach.

Index Terms——Electric vehicle (EV) charging coordination,
Nash bargaining, alternating direction method of multipliers
(ADMM), blockchain.

I. INTRODUCTION

INCREASING electric vehicle (EV) penetration in distri‐
bution networks triggers overload risks to distribution net‐

work facilities and the need for EV charging coordination.
Traditionally, EV charging is coordinated by a distribution
system operator (DSO). The optimal charging schedule is de‐
rived by centralized optimization or decentralized iterations
between a DSO and local controllers, e.g., charging stations,
EVs, or smart buildings. However, two challenges arise from
such coordination approaches:

1) It brings an extra computation burden to the DSO. The
DSO needs to either solve an optimization problem includ‐
ing the details of all equipment or communicate with local
controllers frequently.

2) It is vulnerable to single-point failures. A cyber attack
to the DSO can fail the coordination.

This paper aims to address the following issues:
1) How to design an EV charging coordination mecha‐

nism that neither brings extra computational burdens to a

DSO nor overloads facilities?
2) Given that local controllers are independent and profit-

seeking decision-makers, how to derive a global optimal
charging schedule while ensuring the fairness of welfare allo‐
cation?

3) How can local controllers coordinate charging sched‐
ules autonomously without a DSO?

To ensure that the charging demand meets facility con‐
straints, remarkable studies have been done on EV charging
coordination. In [1]-[5], a central operator collects the charg‐
ing power demands of all EVs and derives the optimal charg‐
ing schedule while considering system constraints. In [6],
[7], the optimal charging schedule is derived by iterations be‐
tween a DSO and individual EVs, which protects the priva‐
cy of EVs. In [8]-[10], EVs in a local area are controlled by
an EV aggregator, who plays as a local controller. As an in‐
termediary between a DSO and its on-site EVs, an EV aggre‐
gator always optimizes the local charging schedules and
communicates with the DSO. Such a hierarchical structure
eases the computational burden of a DSO. However, a DSO
still needs to communicate with aggregators frequently for
the EV charging power allocation, which may be beyond the
duty of the DSO. In the above studies, a DSO faces extra
computational burdens for EV charging coordination. It is al‐
so vulnerable to single-point failures.

Our first contribution is the proposition of a two-stage EV
charging coordination mechanism. Charging stations (CSs)
are set as local controllers of their on-site EVs. To mitigate
facility overload in distribution networks, the charging pow‐
er of a CS can not exceed an allowable limit which is de‐
fined as its charging power quota (CPQ). At the CPQ pre-al‐
location stage, CPQs are fairly allocated to CSs while meet‐
ing facility constraints. At the CPQ trading stage, CSs are al‐
lowed to trade CPQs each other. CSs with inelastic demands
have stronger motivation for charging, who can buy CPQs
from CSs with elastic charging demands. Given that CSs are
independent and profit-seeking decision-makers in CPQ trad‐
ing, the trading among CSs is realized by using Nash bar‐
gaining theory [11].

In the proposed mechanism, a DSO only needs to provide
the total permissible charging load, which frees the DSO
from managing charging coordination. CPQ allocations
among CSs are optimized via CPQ trading. The Nash bar‐
gaining-based CPQ trading maximizes the total welfare
while the benefits of trading are fairly allocated to CSs [12].

Moreover, for computation and privacy concerns, it is
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more practical to solve the Nash bargaining problem in a de‐
centralized manner. The alternating direction method of mul‐
tipliers (ADMM) is introduced in [13]. By using ADMM, a
Nash bargaining problem is decomposed into an upper prob‐
lem and some sub-problems, and can be solved through itera‐
tions. However, it still requires a third-party coordinator to
solve the upper problem and communicate with sub-problem
solvers. Letting a DSO be this third-party coordinator still
brings extra burdens to the DSO. If not letting the DSO be
the coordinator, there are few other third-party candidates
suitable for the role.

Blockchain, as an emerging technology, paves the way for
autonomous operation for independent decision-makers with‐
out a trusted third party. With an increasing number of inde‐
pendent participants in power systems, especially in distribu‐
tion networks, blockchain applications in distribution sys‐
tems have been explored in these years. In [14], blockchain
enables trusted and secure settlement of electricity trading in
a distribution network. In [15], [16], blockchain is utilized
for trusted peer-to-peer (P2P) trading among prosumers. In
[17], EVs in a CS can trade electricity with each other on a
blockchain-based platform. In [18], EVs can audit and share
the optimal trading records between EVs and a CS on a
blockchain. In [19], blockchain is utilized to ensure the secu‐
rity of charging process management. In [20], blockchain is
used to ensure the security and privacy between EVs and
CSs. These studies show the potential of blockchain for en‐
abling trusted operation in energy systems. However, exist‐
ing studies on blockchain-based EV charging mainly focus
on the trading among individual EVs or between EVs and
CSs, whereas the coordination of CSs is rarely concerned.

Our second contribution is to enable fully autonomous EV
charging coordination based on ADMM and blockchain.
Firstly, the CPQ trading problem is solved in a decentralized
way by using ADMM, which significantly protects individu‐
al privacy. Then, the coordination mechanism is implement‐
ed via blockchain. The blockchain-based implementation can
coordinate EV charging while removing the need for a third-
party coordinator, enabling fully autonomous EV charging
coordination.

The rest of this paper is organized as follows. Section II
presents a two-stage EV charging coordination mechanism.
Section III proposes a decentralized EV charging coordina‐
tion method. Section IV gives simulation results. Section V
concludes the paper.

II. TWO-STAGE EV CHARGING COORDINATION

A. Proposed Timeline

In the proposed EV charging coordination mechanism, a
day is split into a number of equal time intervals. In each
time interval, the EV charging schedule is coordinated
through two sequential stages: the CPQ pre-allocation stage
and the CPQ trading stage.

In the CPQ pre-allocation stage, the DSO calculates the to‐
tal permissible charging load in this time interval based on
the forecast of conventional loads, while each CS submits its
charging power demand according to its on-site EV informa‐

tion. If the total charging power demand does not exceed the
total permissible charging load, the charging power demands
of CSs are met and the coordination is finished. Otherwise,
CPQs would be allocated to CSs fairly, which then triggers
the CPQ trading stage.

In the CPQ trading stage, CSs can trade their CPQs with
each other. CSs with inelastic demands have stronger motiva‐
tion for charging, who can buy CPQs from CSs with elastic
demands. Through this stage, CSs can either meet their in‐
elastic charging power demands or receive payments by sell‐
ing CPQs. Hence this stage yields Pareto improvement.

In general, the CPQ pre-allocation stage provides an ini‐
tial CPQ allocation scheme before the CPQ trading. Based
on the CPQ pre-allocation stage, the CPQ trading stage im‐
proves the charging welfare of CSs through the CPQ trad‐
ing. The timeline of EV charging coordination in a time in‐
terval is illustrated in Fig. 1, where P TL

t denotes the total per‐
missible charging load in time interval t, QA

it denotes the
charging power demand of CS i in time interval t, and MCS

is the set of CSs in a distribution network.

B. CPQ Pre-allocation Stage

At the beginning of the CPQ pre-allocation stage, each
CS submits its charging power demand by solving a convex
optimization problem P0i, as shown in (1)-(3), according to
the information collected from its on-site EVs.

max Wit (Q
A
itP it) (1)

s.t.

F i (Q
A
itP it)£ 0 (2)

G i (Q
A
itP it)= 0 (3)

where P it is the charging power vector of EVs parked at CS
i in time interval t; and function Wit (×) represents the charg‐
ing welfare of CS i in time interval t. Constraints (2) and (3)
represent the inequality constraints and equality constraints
in CS i, respectively.

Then, CPQs are allocated by (4).
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According to (4), if the total charging power demand does
not exceed the total permissible charging load, the charging
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Fig. 1. Timeline of two-stage EV charging coordination in a time interval.
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more practical to solve the Nash bargaining problem in a de‐
centralized manner. The alternating direction method of mul‐
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lem and some sub-problems, and can be solved through itera‐
tions. However, it still requires a third-party coordinator to
solve the upper problem and communicate with sub-problem
solvers. Letting a DSO be this third-party coordinator still
brings extra burdens to the DSO. If not letting the DSO be
the coordinator, there are few other third-party candidates
suitable for the role.

Blockchain, as an emerging technology, paves the way for
autonomous operation for independent decision-makers with‐
out a trusted third party. With an increasing number of inde‐
pendent participants in power systems, especially in distribu‐
tion networks, blockchain applications in distribution sys‐
tems have been explored in these years. In [14], blockchain
enables trusted and secure settlement of electricity trading in
a distribution network. In [15], [16], blockchain is utilized
for trusted peer-to-peer (P2P) trading among prosumers. In
[17], EVs in a CS can trade electricity with each other on a
blockchain-based platform. In [18], EVs can audit and share
the optimal trading records between EVs and a CS on a
blockchain. In [19], blockchain is utilized to ensure the secu‐
rity of charging process management. In [20], blockchain is
used to ensure the security and privacy between EVs and
CSs. These studies show the potential of blockchain for en‐
abling trusted operation in energy systems. However, exist‐
ing studies on blockchain-based EV charging mainly focus
on the trading among individual EVs or between EVs and
CSs, whereas the coordination of CSs is rarely concerned.

Our second contribution is to enable fully autonomous EV
charging coordination based on ADMM and blockchain.
Firstly, the CPQ trading problem is solved in a decentralized
way by using ADMM, which significantly protects individu‐
al privacy. Then, the coordination mechanism is implement‐
ed via blockchain. The blockchain-based implementation can
coordinate EV charging while removing the need for a third-
party coordinator, enabling fully autonomous EV charging
coordination.

The rest of this paper is organized as follows. Section II
presents a two-stage EV charging coordination mechanism.
Section III proposes a decentralized EV charging coordina‐
tion method. Section IV gives simulation results. Section V
concludes the paper.

II. TWO-STAGE EV CHARGING COORDINATION

A. Proposed Timeline

In the proposed EV charging coordination mechanism, a
day is split into a number of equal time intervals. In each
time interval, the EV charging schedule is coordinated
through two sequential stages: the CPQ pre-allocation stage
and the CPQ trading stage.

In the CPQ pre-allocation stage, the DSO calculates the to‐
tal permissible charging load in this time interval based on
the forecast of conventional loads, while each CS submits its
charging power demand according to its on-site EV informa‐

tion. If the total charging power demand does not exceed the
total permissible charging load, the charging power demands
of CSs are met and the coordination is finished. Otherwise,
CPQs would be allocated to CSs fairly, which then triggers
the CPQ trading stage.

In the CPQ trading stage, CSs can trade their CPQs with
each other. CSs with inelastic demands have stronger motiva‐
tion for charging, who can buy CPQs from CSs with elastic
demands. Through this stage, CSs can either meet their in‐
elastic charging power demands or receive payments by sell‐
ing CPQs. Hence this stage yields Pareto improvement.

In general, the CPQ pre-allocation stage provides an ini‐
tial CPQ allocation scheme before the CPQ trading. Based
on the CPQ pre-allocation stage, the CPQ trading stage im‐
proves the charging welfare of CSs through the CPQ trad‐
ing. The timeline of EV charging coordination in a time in‐
terval is illustrated in Fig. 1, where P TL

t denotes the total per‐
missible charging load in time interval t, QA

it denotes the
charging power demand of CS i in time interval t, and MCS

is the set of CSs in a distribution network.

B. CPQ Pre-allocation Stage

At the beginning of the CPQ pre-allocation stage, each
CS submits its charging power demand by solving a convex
optimization problem P0i, as shown in (1)-(3), according to
the information collected from its on-site EVs.
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where P it is the charging power vector of EVs parked at CS
i in time interval t; and function Wit (×) represents the charg‐
ing welfare of CS i in time interval t. Constraints (2) and (3)
represent the inequality constraints and equality constraints
in CS i, respectively.

Then, CPQs are allocated by (4).
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Fig. 1. Timeline of two-stage EV charging coordination in a time interval.
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power demands of CSs are not curtailed and the coordina‐
tion process is finished. Otherwise, the CPQs are allocated
to CSs according to the proportion of their rated capacities
in the sum of the capacities. This is because: ① a CS with a
larger capacity usually needs to pay a higher capacity fee in
reality; ② all CSs have the same contributions to the load of
the transformer they are affiliated with. Such an allocation
scheme ensures that the total charging load does not exceed
the permissible level. Moreover, this scheme can prevent
CSs from submitting an exaggerated charging power de‐
mand. Assuming that CS i submits an exaggerated demand
QA′

it, if the total demand does not exceed the limit, CS i
would be punished in the settlement stage because its actual
charging load deviates from QA′

it. If the total demand exceeds
the limit, the allocated CPQs of CS i is independent of QA′

it.
Hence, a rational CS would submit its actual charging power
demand.

If the charging power demands of CSs are curtailed, each
CS reschedules the charging power of its on-site EVs accord‐
ing to the reduced CPQs, i.e., each CS resolves problem P0i

with an additional constraint (5). The solution W 0
it denotes

the maximum charging welfare of CS i before CPQ trading,
which also named as the disagreement point in the bargain‐
ing literature [21].

QA
it =QA*

it (5)

C. CPQ Trading Stage

In the CPQ trading stage, CSs trade CPQs with other CSs
to achieve higher charging welfare. Let QB

it and π B
it denote

the amount and the unit price of CPQ bought by CS i, re‐
spectively, and the increase of the charging welfare of CS i
through CPQ trading is a function of QB

it, π
B
it, and P it, as

shown in (6).

Bit (Q
B
itπ B

itP it)=Wit (Q
A*
it +QB

itP it)- π B
itQ

B
itDt -W 0

it (6)

where Bit (Q
B
itπ B

itP it) is the increase of the charging welfare
of CS i through CPQ trading; Dt is the duration of a time in‐
terval; and a negative QB

it denotes the amount of sold CPQs.
In (6), the first term represents the charging welfare con‐

sidering the bought/sold CPQs; the second term denotes the
cost/revenue of buying/selling CPQs; and the third term is
the charging welfare before the CPQ trading.

The CPQ trading process is realized by using Nash bar‐
gaining to achieve a fair allocation of trading benefits. The
Nash bargaining solution for CPQ trading can be derived by
solving the optimization problem defined by (7)-(12).

max ∏
iÎMCS

Bit (Q
B
itπ B
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s.t.
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B
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itP it)³ 0 iÎMCS (12)

Constraints (8) and (9) represent the inequality constraints
and equality constraints in CS i, respectively; constraints
(10) and (11) represent the CPQ balance constraint and pay‐
ment balance constraint, respectively; and constraint (12) en‐
sures that CSs are better off in CPQ trading.

The Nash bargaining solution {QB*
it π B*

it P *
it}, iÎMCS, de‐

rived by solving (7)-(12) has the following advantages:
1) Individual rationality. The Nash bargaining solution en‐

sures that all CSs are better off. Hence, CSs have incentives
to participate in CPQ trading.

2) Pareto optimality. There is no alternative solution
where a CS is better off while the interests of other CSs are
not compromised.

3) Fair welfare allocation. The increase of charging wel‐
fare through CPQ trading is equally allocated to all CSs, i.e.,
Bit (Q

B*
it π B*

it P *
it)=Bjt (Q

B*
jt π B*

jt P *
jt) "ijÎMCS.

The Nash bargaining problem is non-convex because of
the objective function (7) and constraint (11), and it is hard
to solve. Inspired by [13], this paper decomposes the Nash
bargaining problem in the CPQ trading stage into two se‐
quential problems, P1 and P2, where problem P1 figures out
the optimal transferred CPQs and problem P2 determines the
optimal CPQ prices.

Problem P1 denotes a total charging welfare maximization
problem, as shown in (13).

{max ∑
iÎMCS

Wit (QA*
it +QB

itP it)

s.t. (8)-(10)
(13)

Solving problem P1 indicated by (13) can yield the opti‐
mal transferred CPQs of CSs QB*

it . Yet, the information
about π B

it is missing because the payments of CSs cancel out
each other. π B

it is derived via problem P2.
Problem P2 formulates a CPQ price bargaining problem,

as shown in (14)-(16).

max ∏
iÎMCS

Bit (Q
B*
it π B

itP *
it) (14)

s.t. ∑
iÎMCS

π B
itQ

B*
it = 0 (15)

Bit (Q
B*
it π B

itP *
it)³ 0 iÎMCS (16)

Equation (14) can be rewritten in a logarithmic function
form, as shown in (17).

max ∑
iÎMCS

ln Bit (Q
B*
it π B

itP *
it) (17)

By solving problem P2 indicated by (14) - (16), the Nash
bargaining solution of CPQ prices can be derived.

The CPQ trading based on Nash bargaining is shown in
Fig. 2. For simplicity, only two charging stations are consid‐
ered. In Fig. 2, the blue dashed line and the red dashed line
represent the disagreement points of CS 1 and CS 2, i. e.,
W 0

1t and W 0
2t, respectively. The orange area includes all feasi‐

ble solutions of the CPQ trading, i. e., CPQ trading results
satisfying constraints (8)-(12). The green line represents the
Pareto frontier of the CPQ trading, i.e., the trading results de‐
rived by solving problem P1. The Nash bargaining solution
is the tangency point of the objective function of problem
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P2, i.e., f (B1tB2t)=B1t B2t, and the Pareto frontier, i.e., the
trading results derived by solving problem P2. It can be seen
that the Nash bargaining solution not only yields Pareto effi‐
ciency but also allocates the trading welfare equally.

Problems P1 and P2 are both convex and can be easily
solved centrally. However, the centralized solution of prob‐
lems P1 and P2 may be impractical in reality because of the
following concerns:

1) A central coordinator needs to have all the information
about CSs and their on-site EVs, which may violate individu‐
al privacy.

2) There may not exist a central coordinator who is will‐
ing to organize the CPQ trading in many local markets.

III. DECENTRALIZED EV CHARGING COORDINATION

In this section, a decentralized implementation of the two-
stage coordination mechanism is proposed. First, ADMM-
based decentralized algorithms are proposed to solve optimi‐
zation problems P1 and P2 in the CPQ trading stage. In this
way, a CS only needs to disclose limited information, i. e.,
QB

it and π B
it. Then, the proposed two-stage coordination mech‐

anism is implemented on a blockchain. A set of CSs plays
the role of a central coordinator, enabling autonomous CPQ
trading without the need of a central coordinator.

A. ADMM-based Decentralized Algorithms

1) ADMM-based Algorithm for Problem P1
Problem P1 can be decomposed into several sub-problems

and an upper problem, and be solved through iterations. In
problem P1, the objective function in (13) and constraints
(8) and (9) are separated by each CS, whereas constraint
(10) couples CSs. In order to decompose problem P1, auxil‐
iary variable Q̂B

it (iÎMCS) is introduced, and constraint (10)
is replaced as follows:

Q̂B
it =QB

it iÎMCS (18)

∑
iÎMCS

Q̂B
it = 0 (19)

where Q̂B
it (iÎMCS) can be interpreted as the optimal CPQs

of CSs calculated by the upper problem.

By using ADMM [22], QB
it and Q̂B

it reach an agreement
through iterations so that problem P1 is solved.

Problem sub-P1i is formulated as:

max
é

ë
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ρ1 (k)

2
(Q̂B

it (k)-QB
it)

2 + λ it (k)QB
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ù

û
ú

(20)

s.t.

F i (Q
A*
it +QB

itP it)£ 0 (21)

G i (Q
A*
it +QB

itP it)= 0 (22)

where ρ1 (k)> 0 is a penalty parameter in iteration k; and
λ it (k) is the Lagrangian multiplier of constraint (18) in itera‐
tion k.

Problem upper-P1 is formulated as:

ì
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ïï
ïï
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s.t. (19)

(23)

The Lagrangian multiplier λ it is updated according to (24).

λ it (k + 1)= λ it (k)+ ρ1 (k)(Q̂B
it (k + 1)-QB

it (k + 1)) (24)

In iteration k, each CS calculates QB
it (k + 1) and P it (k + 1)

by solving sub-P1i with λ it (k) and Q̂B
it (k) derived by the up‐

per problem upper-P1 in iteration k - 1. Then, the upper
problem upper-P1 calculates λ it (k + 1) and Q̂B

it (k + 1) accord‐
ing to QB

it (k + 1) (iÎMCS) submitted by CSs. The iteration
stops when the following terminal condition is satisfied.

r1 (k)= ∑
iÎMCS

|Q̂B
it (k + 1)-QB

it (k + 1)| £ ϵ1 (25)

s1 (k)= ρ1 (k) ∑
iÎMCS

|QB
it (k + 1)-QB

it (k)| £ ϵ2 (26)

where r1 (k) and s1 (k) are the primal residual and dual residu‐
al of problem P1 in iteration k, respectively; and ϵ1 and ϵ2

are the small positive numbers.
The self-adaptive rule of the penalty parameter proposed

in [23] is introduced to ensure efficient convergence, as
shown in (27).

ρ1 (k + 1)=

ì

í

î

ï
ï
ï
ï

ρ1 (k)

1+ ξ(k)
r1 (k)< hs1 (k)

ρ1 (k)(1+ ξ(k)) hr1 (k)³ s1 (k)

ρ1 (k) otherwise

(27)

where hÎ(01); and the non-negative sequence {ξ(k)} satis‐

fies∑
k = 1

+¥

ξ(k)<¥.

2) ADMM-based Algorithm for Problem P2
Similar to problem P1, problem P2 can be decomposed in‐

to several sub-problems and an upper problem, and be
solved through iterations. In problem P2, objective function
(14) and constraint (16) are separated by CSs, whereas con‐
straint (15) couples CSs. In order to decompose problem P2,
auxiliary variables π̂ B

t = (π̂ B
it)iÎMCS are introduced, and con‐

straint (15) is replaced as follows:

π̂ B
it = π B

it iÎMCS (28)

f (B1,t, B2,t)=B1,tB2,t

Pareto frontier of CPQ trading

Nash bargaining solution

0
1,tW

0
2,tW

Equal

Charging
welfare
of CS 1

Charging welfare of CS 2

Disagreement point of CS 1
Disagreement point of CS 2

Fig. 2. Schematic diagram of CPQ trading based on Nash bargaining.
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∑
iÎMCS

π̂ B
itQ

B*
it = 0 (29)

Problem sub-P2i is defined as:

ì

í

î

ïï
ïï

max
é

ë
ê

ù

û
úln Bit (Q

B*
it π B

itP *
it)-

ρ2 (k)

2
(π̂ B

it (k)- π B
it)

2 + γ it (k)π B
it

s.t. (16)
(30)

where ρ2 (k)> 0 is a penalty parameter in iteration k; and
γ it (k) is the Lagrangian multiplier of constraint (28) in itera‐
tion k.

Problem upper-P2 is defined as:

ì

í

î

ïï
ïï

max ∑
iÎMCS

é

ë
ê

ù

û
ú-

ρ2 (k)

2
(π̂ B

it - π B
it (k + 1))2 - γ it (k)π̂ B

it

s.t. (29)

(31)

The Lagrangian multiplier γ it is updated according to (32).

γ it (k + 1)= γ it (k)+ ρ2 (k)(π̂ B
it (k + 1)- π B

it (k + 1)) (32)

In iteration k, each CS calculates π B
it by solving problem

sub-P2i with γ it (k) and π̂ B
it (k) derived by the upper problem

upper-P2. Then, the upper problem upper-P2 figures out
γ it (k + 1) and π̂ B

it (k + 1) according to π B
it (k + 1) (iÎMCS) sub‐

mitted by CSs. The iteration stops when the following termi‐
nal condition is satisfied.

r2 (k)= ∑
iÎMCS

|π̂ B
it (k + 1)- π B

it (k + 1)| £ ϵ3 (33)

s2 (k)= ρ2 (k) ∑
iÎMCS

|π B
it (k + 1)- π B

it (k)| £ ϵ4 (34)

where r2 (k) and s2 (k) are the primal residual and dual residu‐
al of problem P2 in iteration k, respectively; ϵ3 and ϵ4 are
the small positive numbers; and the selection method of pen‐
alty parameter ρ2 (k) is similar to ρ1 (k) and is omitted here.

Unlike the centralized coordination, a CS in the proposed
ADMM-based algorithms does not need to expose those sen‐
sitive information about itself and on-site EVs to a central
coordinator, but only limited information. This protects indi‐
vidual privacy during the CPQ trading.

B. Blockchain-based Implementation

The above decentralized coordination approach still relies
on a center for coordinating CSs, i.e., allocating CPQs in the
CPQ pre-allocation stage and solving problems upper-P1 and
upper-P2 in the CPQ trading stage. Given that there may not
exist such a center, a blockchain-based implementation of
the EV charging coordination is proposed, which enables ful‐
ly autonomous EV charging coordination. The two-level
structure of the blockchain-based system is shown in Fig. 3,
where a set of CSs (named as delegates) plays the role of a
central coordinator. As demonstrated in Fig. 3, on the upper
level, delegates solve upper problems and communicate with
CSs and a DSO; on the lower level, CSs communicate with
delegates and optimize the local charging schedules, and a
DSO provides the total permissible charging load. A simpli‐
fied delegated Byzantine fault tolerance (SDBFT) consensus
algorithm is proposed to ensure that CSs can trust the coordi‐
nation results proposed by delegates.

In decentralized EV charging coordination approaches, it
is usually assumed that the communication network is syn‐
chronous, i.e., a message sent by a node can be received by
all nodes within a fixed and known time. This is because:
① it may not converge in time if the network is not synchro‐
nous; ② it is convenient to establish a synchronous commu‐
nication network among charging stations in a distribution
network in practice [24]. The blockchain-based implementa‐
tion in this paper is also under this assumption.
1) Definitions of Key Concepts

Definition 1: round. Rounds can be deemed as the basic
units of consensus processes and are numbered consecutive‐
ly. In a round, all delegates select a leader, who leads the
rest of delegates to provide the coordinator functions. In
round V, delegate l is selected as the leader of this round,
where l =V mod|Md|, and |Md| is the number of delegates.
In the following text, “round” is represented by “view”,
which is commonly used in the blockchain literature.

Definition 2: message. Messages transferred among CSs
have a standard format. A message m has a fixed set of
fields, defined as mDmVmPmSmC , where mD is the digest
of a message, containing the hash of its parent block and the
hash of mVmPmSmC . mV, mP and mS record the view, the
phase and the stage in which the message is being sent, re‐
spectively. mSÎ{requireCPQsolveP1solveP2}, in which
requireCPQ, solveP1, solveP2 represent the CPQ pre-alloca‐
tion stage, solving problem P1 in the CPQ trading stage and
solving problem P2 in the CPQ stage, respectively. mC re‐
cords the detailed message.

Definition 3: digital signature. When sending a message,
one should sign the message with its private key. A message
m signed by node i is represented by m

σi. Anyone can
verify a signed message with the sender’s public key, ensur‐
ing that the message is not tampered by others [25].

Definition 4: smart contract. A smart contract is a set of
software codes which set the rule for delegates about how to

Transmission network DSO

Upper level

Lower level

Data flow; Energy flow; DelegateNon-delegate CS;

Fig. 3. Structure of blockchain-based system.
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derive the coordination result according to the messages sent
by CSs. Smart contracts are approved by all CSs before
the coordination. In the CPQ pre-allocation stage, i.e.,
mS ¬ requireCPQ, the contract refers to solving (4). In solv‐
ing problem P1 in the CPQ trading stage, i.e., mS ¬ solveP1,
the contract refers to solving (23) and (24). In solving prob‐
lem P2 in the CPQ trading stage, i.e., mS ¬ solveP2, the con‐
tract refers to solving (31) and (32).
2) Structure

The structure of the blockchain-based system can be divid‐
ed into two layers, as illustrated in Fig. 3. In the upper layer,
the delegates play the role of the coordinator besides their
own roles as CSs, i.e., solving the upper problems and com‐
municating with CSs and a DSO. In the lower layer, CSs
communicate with the delegates and optimize the charging
schedules of on-site EVs. As a special participant, a DSO is
also in the lower layer, which provides P TL

t to the delegates.
Instead of communicating with a central coordinator, the
CSs and DSO communicate with the delegates in the SD‐
BFT consensus algorithm. In the CPQ pre-allocation stage,
each CS or the DSO sends a request message (containing
QA

it or P TL
t ) to the delegates. Then, the delegates execute the

smart contract in the CPQ pre-allocation stage and send a
block (containing QA*

t ) to the CSs and DSO. In the CPQ
trading stage, each CS sends request messages (containing
the updated QB

it or π B
it) to the delegates in each iteration of

the ADMM algorithms. Then, the delegates execute the
smart contracts of solving problem P1 or P2 in the CPQ trad‐
ing stage and send blocks (containing λ it (k) and Q̂B

it (k) or
γ it (k) and π̂ B

it (k)) to the CSs and DSO. The iteration between
the CSs and delegates stops when the terminal condition of
problem P1 or problem P2 is satisfied.
3) Blockchain-based EV Charging Coordination

In each view, the SDBFT consensus algorithm needs to go
through 4 phases of Request, Pre-prepare, Prepare, and Re‐
ply in normal-case operation and an additional phase of
View-change in faulty-leader operation, i. e., mPÎ{Request,
Pre-prepare, Prepare, Reply, View-change}. Algorithm 1
demonstrates the SDBFT consensus algorithm in normal-
case operation.

In the Request phase, CS i sends a signed request mes‐

sage mi = mD
i mV

i mP
i mS

i mC
i

σi to a leader, where mV
i , mP

i

and mS
i are the current view, phase and stage recorded by CS

i itself, respectively. If mS ¬ requireCPQ, mC
i refers to QA

it; if
mS ¬ solveP1, mC

i refers to QB
it; and if mS ¬ solveP2, mC

i re‐
fers to π B

it. A leader verifies mi by using the verifyM (mi)
function. Function verifyM (mi) returns true only if: ① the
hash values in md

i are correct; ② mV
i , mP

i and mS
i are the cur‐

rent view, phase view and stage view recorded by the leader,
respectively; ③ σ i is signed by the private key of CS i.

In the Pre-prepare phase, a leader l, after collecting the re‐
quest messages from all CSs, broadcasts a pre-prepare mes‐

sage ml = mD
l mV

l mP
l mS

l  mR
l mA

l

σl

to all delegates, where

mR
l consists of all request messages, mA

l =C S
l (mR

l ) is the lead‐
er’s proposal of the coordination result by executing the
smart contract C S

l in the current stage. A delegate verifies a
pre-prepare message ml by calling the verifyM (ml) function.

In the Prepare phase, each delegate verifies mA
l in the pre-

prepare message by executing C S
l . If it is correct, delegate r

generates a prepare message mr = mD
l mV

l mP
l mS

l  mR
l mA

l

σr

by signing the pre-prepare message and then sends it back to
a leader. A leader verifies a prepare message mr by calling
the verifyM (mr) function.

In the Reply phase, only if a leader collects more than
|Md | / 2 delegates’ prepare messages, it generates the final

block in this view BV = mD
l mV

l mP
l mS

l  mR
l mA

l

σ

, where σ

contains more than |Md | / 2 signatures (one from the leader
and others from non-leader delegates). Then, the leader
broadcasts the final block to all CSs (including delegates).
Once receiving a correct block, i.e., a final block with more
than |Md | / 2 signatures, a CS adds it to its local blockchain
and considers mA

l in the reply message as the coordination re‐
sult in this view. Let |Mf| be the number of faulty delegates,
the proposed algorithm can work as long as |Md|³2|Mf|+1 [26].

Algorithm 1 SDBFT consensus algorithm

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

//Request

for iÎMCS do

CS i sends mi to leader l =mV
i mod|Md|

if verifyM (mi)= true then

leader l adds request: mR
l ¬mi

end if

end for

//Pre-prepare

Leader l executes C S
l to obtain mA

l :mA
l ¬C S

l (mR
l )

Leader l broadcasts ml to all delegates

for rÎMd do

if verifyM (ml)= true and verifyM (mi)= trueiÎMCS then

//Prepare

if mA
l =C S

r (mR
l ) then

Delegate r sends mr to leader l

end if

end if

end for

for rÎMd do

if verifyM (mr)= true then

Leader l combines signature: σ¬ σr

end if

//Reply

Leader l broadcasts BV to all CSs

end for

for iÎMCS do

if verifyM (BV)= true then

CS i accepts BV and mV
i ¬mV

i + 1

else

//View-change

Go to Step 1 in Algorithm 2

end if

end for
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If CS i does not receive a correct final block by a pre-set
time since it sends a request message to a leader, it means
that the leader may be faulty. In such a faulty-leader case,
CS i would ask all CSs (including non-delegate CSs and del‐
egate CSs) for changing the view so that the next delegate
becomes the new leader, triggering a View-change phase. CS
i sends a signed view-change message mi =
mD

i mV
i mP

i mS
i mC

i

σi to all CSs, where mV
i , mP

i and mS
i are

the current view, current phase (View-change) and current
stage recorded by CS i, respectively, and mC

i refers to a view-
change request. Once a CS receives and verifies a view-
change message, the CS abandons any message or block re‐
ceived in this view, changes the view number V ¬V + 1,
and then restarts Algorithm 1. Algorithm 2 illustrates the pro‐
posed view-change algorithm.

In the SDBFT consensus algorithm, once a CS receives a
correct final block and does not receive view-change messag‐
es from other CSs, it could confirm that all CSs receives the
same coordination result, and the result is valid because it
has been verified by the majority of delegates. Hence, based
on the SDBFT consensus algorithm, the EV charging coordi‐
nation can be implemented on a blockchain. The blockchain-
based EV charging coordination algorithm is shown in Algo‐
rithm 3. Figure 4 illustrates the communication pattern on
the blockchain-based implementation when solving problem
P2 in the CPQ trading stage. In Fig. 4, C1 and C2 are non-
delegate CSs, D0-D3 are delegates, and D0 is the leader in
this view.

The blockchain-based implementation has the following
advantages:

1) It enables fully autonomous EV charging coordination.
Given that the proposed ADMM-based algorithms still rely on
a coordinator, the blockchain-based implementation enables
the CPQ trading in case a third-party coordinator is absent.

2) It is fair, trustworthy, and transparent. The smart con‐
tracts are designed based on Nash bargaining theory and are
pre-approved by all CSs before coordination, ensuring fair‐
ness. The SDBFT consensus algorithm ensures that the coor‐
dination cannot be tampered with as long as faulty delegates
are the minority, enabling trusted coordination. Once being
verified and recorded on a blockchain, all CSs follow the
same result and the result is tamper-resistant, guaranteeing
transparency.

3) It has good scalability. The SDBFT consensus algo‐
rithm has linear communication complexity, i.e., the commu‐
nication complexity is a linear function of the number of
CSs. This ensures efficient EV charging coordination for a
large number of CSs.

Algorithm 3 Blockchain-based EV charging coordination

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

for T ¬ 123 do

//CPQ pre-allocation stage

DSO s generates ms, where mC
s ¬P TL

t

for iÎMCS do

CS i solves local optimization problem P0i

CS i generates mi, where mC
i ¬QA

it

end for

Running Step 1 to Step 32 in Algorithm 1

end for

CS iÎMCS gets QA*
it according to BV

if QA*
t =QA

t then

CS iÎMCS waits for the next time interval

else

//Solving problem P1 in CPQ trading stage

Initialization: k = 1, Q̂B
it (k)= λit (k)= 0iÎMCS

repeat

for iÎMCS do

CS i solves local optimization problem sub-P1i

CS i generates mi, where mC
i ¬QB

it (k + 1)

end for

Running Step 1 to Step 32 in Algorithm 1

CS iÎMCS gets Q̂B
it (k + 1) and λit (k + 1) according to BV

k ¬ k + 1

until r1 (k)£ ϵ1 and s1 (k)£ ϵ2

//Solving problem P2 in CPQ trading stage

Initialization: k = 1, π̂ B
it (k)= γit (k)= 0iÎMCS

repeat

for iÎMCS do

CS i solves local optimization problem sub-P2i

CS i generates mi, where mC
i ¬ π B

it (k + 1)

end for

Running Step 1 to Step 32 in Algorithm 1

CS iÎMCS gets π̂ B
it (k + 1) and γit (k + 1) according to BV

k ¬ k + 1

until r2 (k)£ ϵ3 and s2 (k)£ ϵ4

end if

Request Pre-prepare Prepare Reply
C1
C2
D0
D1
D2

D0 broadcasts
a proposal for

the proposal

D3
CSs send

Bπi,t(k+1)
ˆ BQi,t(k+1) and
λi,t(k+1)

D1, D2, D3
verify and sign

D0 broadcasts
the final block

Fig. 4. Communication pattern on blockchain-based implementation when
solving problem P2 in CPQ trading stage.

Algorithm 2 View-change in SDBFT consensus algorithm

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

if CS i does not receive correct BV in a pre-set time then

CS i sends a view-change message mi to CS jÎMCS

mV
i ¬mV

i + 1

end if

for jÎMCS do

if verifyM (mi)= true then

mV
j ¬mV

j + 1

end if

end for

Back to Step 1 in Algorithm 1
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IV. SIMULATION RESULTS

A. Data

A simulation is carried out on a distribution network with
780 houses [27], where each house has one EV, mimicking a
scenario with high EV penetration. All 780 EVs are equally
assigned to 20 CSs. We consider 96 time intervals in each
24-hour day. The total permissible charging load in each
time interval is determined by the capacity of the transform‐
er at the root of the network and the conventional load curve
provided by Fig. 2 in [27]. The charging welfare function
(the charging service income minus the charging power re‐
duction compensation) and charging constraints of a CS, and
the parameters of EVs, CSs, and the distribution network are
provided in our previous work [28]. Five CSs are randomly
selected as the delegates in the simulations.

B. Coordination Results

Figure 5 illustrates the total load curves with or without
the proposed EV charging coordination approach. In an unco‐
ordinated scenario, the total load in the network exceeds the
limit in peak hours. With the proposed EV charging coordi‐
nation approach, the charging load in peak hours would be
shifted to neighboring hours, avoiding the overload of the fa‐
cility.

The total charging welfare before and after CPQ trading
during peak hours is illustrated in Fig. 6. As shown in Fig.
6, the CPQ trading mechanism improves the total charging
welfare. In addition, the charging schedule derived by the
proposed mechanism is the same as the one derived by the
centralized optimization.
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Fig. 6. Total charging welfare before and after CPQ trading.

Figure 7 shows the convergence performance of the AD‐
MM algorithms in the time interval which has the longest it‐
eration process. Solving problem P1 takes about 50 itera‐

tions, and solving problem P2 takes about 140 iterations.
The algorithms converge to the global optimum rapidly.

The CPQ trading results in a time interval, i.e., 19:00-19:
15, are demonstrated in Fig. 8. As shown in Fig. 8, all ratio‐
nal CSs participate in CPQ trading. CSs buy/sell CPQs from/
to other CSs according to their local charging power de‐
mands. And the Nash bargaining solution ensures that all
CSs equally share the increase of the charging welfare.

C. Effectiveness of SDBFT Consensus Algorithm

Figure 9 illustrates the consensus process of the SDBFT
consensus algorithm, where C1 and C2 represent a DSO and
all non-delegate CSs, respectively; D0-D4 are the delegates;
and D0 is the leader in this view.

Time

500
1000
1500
2000
2500
3000

Uncoordinated EV charging
Coordinated EV charging
Base load curve
Transformer capacity

Lo
ad

 (k
W

)

10:00 14:00 18:00 22:00 02:00 06:00 10:00

Fig. 5. Total load curve with or without EV charging coordination.
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Fig. 7. Convergence performance of ADMM algorithms. (a) Convergence
performance in problem P1. (b) Convergence performance in problem P2.

0 2 4 6 8 10 12 14 16 18 20
Charging station

-20

-10

0

10

20

30

-20

-10

0

10

20

30Welfare in CPQ trading
Welfare before CPQ trading

Bought CPQ

Ch
ar

gi
ng

 w
el

fa
re

 (C
N

Y
)

Bo
ug

ht
 C

PQ
 (k

W
)

Fig. 8. CPQ trading result in a time interval.
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Fig. 9. Consensus processes within a view for normal-case operation and
faulty-leader operation. (a) Normal-case operation. (b) Faulty-leader operation.
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In Fig. 9(a), D3 and D4 are faulty delegates who do not
send the prepare messages to D0 on time (denoted by the
red lines). But D0 can still generate a final block with more
than |Md | / 2 signatures (provided by D0-D2). Consequently,
all CSs can reach an agreement for the coordination result as
usual. In Fig. 9(b), D0 is a faulty leader who does not send
the reply message to C1 in time. Then, C1 sends a view-
change message to all CSs, triggering the change of the lead‐
er. The next delegate, i.e., D1, becomes the new leader and
a new view starts. Hence, the SDBFT consensus algorithm
ensures the safety of the coordination process as long as the
faulty delegates are the minority.

V. CONCLUSION

This paper proposes a fully autonomous two-stage EV
charging coordination approach. The CPQ pre-allocation
stage guarantees the security of the facility. The Nash bar‐
gaining-based CPQ trading stage makes the Pareto improve‐
ment. ADMM algorithms and a blockchain-based implemen‐
tation are proposed to enable decentralized coordination.
From the DSO perspective, the proposed approach can de‐
rive the optimal charging schedule while satisfying facility
constraints. The proposed decentralized algorithm can work
without a central coordinator, enabling fully autonomous co‐
ordination. From an individual perspective, the Nash bargain‐
ing solution ensures the fairness of charging welfare alloca‐
tion. The ADMM-based decentralized algorithms protect indi‐
vidual privacy. The blockchain implementation provides
trusted coordination.
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