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Recurrent Neural Network for Nonconvex
Economic Emission Dispatch

Jiayu Wang, Xing He, Junjian Huang, and Guo Chen

Abstract—In this paper, an economic emission dispatch
(EED) model is developed to reduce fuel cost and environmen-
tal pollution emissions. Considering the development of new en-
ergy sources in recent years, the EED problem involves thermal
units with the valve point effect and WTs. Meanwhile, it com-
plies with demand constraint and generator capacity con-
straints. A recurrent neural network (RNN) is proposed to
search for local optimal solution of the introduced nonconvex
EED problem. The optimality and convergence of the proposed
dynamic model are given. The RNN algorithm is verified on a
power generation system for the optimization of scheduling and
minimization of total cost. Moreover, a particle swarm optimiza-
tion (PSO) algorithm is compared with RNN under the same
problematic frame. Numerical simulation results demonstrate
that the optimal scheduling given by RNN is more precise and
has lower total cost than PSO. In addition, the dynamic varia-
tion of power load demand is considered and the power distri-
bution of eight generators during 12 time periods is depicted.

Index Terms—Recurrent neural network (RNN), nonconvex
economic emission dispatch, optimization problem.

I. INTRODUCTION

N order to control the total cost of power generation and

reduce the environmental effect of gaseous pollutants, the
economic emission dispatch (EED) problem has become a
hot topic in power industry. The EED problem, which is sub-
ject to the demand constraint and generator capacity con-
straints at the same time, aims to optimize the scheduling of
all power generators. However, EED problems are not con-
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vex objectives due to the valve point effect (VPE). Many lo-
cal minimums that represent nonconvex feature are intro-
duced to the objective problem because of the VPE, which
increases the difficulty of finding the optimal solution.

To cope with EED problems, many studies have been car-
ried out in electric system using diverse optimization algo-
rithms. Various nature-inspired heuristic techniques still play
an important role in solving these problems. For example, an
improved particle swarm optimization (PSO) [1] was demon-
strated to solve an EED problem. In the previous year, a
PSO with time varying operators was constructed to find
global optimal solution, which was designed for optimiza-
tion problems with hard combination constraints such as non-
convex discontinuity problem [2]. A hybrid approach was
employed in [3]. PSO and evolutionary programming (EP)
were integrated to solve nonconvex economic load dispatch
(ELD) problem. It had been observed from simulation re-
sults that all algorithms could find a reasonable global solu-
tion over a period of time. A gravitational acceleration based
PSO (GAEPSO) [4] could search for optimal solution of eco-
nomic dispatch (ED) problem, which was applied to a power
system containing wind turbines (WTs) and thermal genera-
tors. An ED problem was equated with a two-objective prob-
lem [5]. Firefly algorithm (FFA) and real genetic algorithm
(RGA) were adopted to solve the objective optimization
problem. The effectiveness of the introduced method was
backed by simulation results. To solve the ELD problem
with continuous and nonconvex function, an efficient optimi-
zation approach [6] was proposed on the strength of real-cod-
ed genetic algorithm (RCGA). Numerical results manifested
that the RCGA held higher operation efficiency than binary-
coded genetic algorithm (BCGA). Considering the VPE, arti-
ficial bee colony (ABC) as a novel neural network algorithm
was adopted to deal with ED problem, which proved the va-
lidity of the proposed approach in multifarious test sys-
tem [7].

Most EED problems are settled by nature-inspired heuris-
tic techniques so far. They can converge to optimal value at
a fast rate. However, nature-inspired heuristic techniques are
insufficient in handling constraints, accurate local search.
Meanwhile, they lack the support of mathematical theoretic
background. The techniques converge to different solutions
instead of a precise optimal solution in each run. Compared
with nature-inspired heuristic techniques, the neurodynamic
optimization methods own a more obvious advantage in
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searching for exact local solutions under strict constraints,
because the veracity and stability of objective solutions
could be justified mathematically. Many neurodynamic opti-
mization approaches had been applied to deal with optimiza-
tion problems due to these advantages. A modified back
propagation neural network was designed in [8], which was
applied to solve the combined economic and emission dis-
patch (CEED) problem. Dynamic neural networks (DNNs)
were demonstrated to solve a CEED problem with a fixed
load demand, and the convergence could be proved [9]. An
adaptive Hopfield neural network (HNN) could solve the
CEED problem [10], by means of changing the slope of acti-
vation function to seek solutions of proximate Pareto. A nov-
el method was developed to get the best compromise solu-
tion of the ED model under real-time state [11]. It was ob-
served from numerical results that the proposed abductive
reasoning network (ARN) was superior than some nature-in-
spired heuristic techniques. The method of conic program-
ming [12] was utilized to deal with a nonconvex ED prob-
lem. Numerical results based on an IEEE 33-bus system
showed the validity of the represented technique.

The optimization problems can be found in many techni-
cal and scientific applications [13]-[15]. Based on the ED
problem, a oblivious routing economic dispatch (ORED) al-
gorithm [16] was designed to optimize the total power gener-
ation. This algorithm was suitable for both radial and non-ra-
dial networks. The superiority of the proposed method in
managing congestion and minimizing power was elucidated.
To cope with the uncertainties in renewable generators and
load demand, an algorithm for solving semidefinite pro-
grams (SDPs) sequences was adopted in [17] based on itera-
tive re-weighted norm approximation.

A three-level decomposition algorithm [18] is presented to
settle down a distribution expansion planning problem,
which was transformed into a convex problem in advance.
In [19], an iterative AC optimal power flow (AC-OPF) was
adopted to deal with mixed-integer linear programming
(MILP) problem. Non-convex models can be easily linear-
ized or convexed by using the MILP method. The validity of
the algorithm was proved on 33-bus distribution networks. A
recurrent neural network (RNN) was proposed for solving
nonconvex optimization problems [20], which showed stabili-
ty for the objective minimum solution. The solutions were
unstable at the maximum and saddle points. When specific
conditions were unsatisfied for the minimum solution, it
could be solved by constructing an equivalent problem based
on original problem by means of p-power method.

In this paper, considering the stability and superiority of
neurodynamic optimization, an RNN algorithm is adopted to
solve a nonconvex EED problem. A PSO algorithm is com-
pared with the proposed algorithm to solve the nonconvex
optimization problem. Our main contributions are as follows:

1) An EED model is introduced which incorporates ther-
mal units and WTs. The model is subject to demand con-
straints and generator capacity constraints.

2) An RNN algorithm is proposed and compared with
PSO. With the same power load demand, simulation results

show that the optimal scheduling given by RNN is more pre-
cise and has lower total cost than PSO. The RNN algorithm
can be applied to solve the nonconvex optimization prob-
lem.

3) The power distribution of eight generators during 12
time periods is derived by using the RNN algorithm. Simula-
tion results indicate that the proposed algorithm is applied to
multi-period economic dispatch.

The remainder of this paper is as follows. Section II ad-
dresses the problem formulation. In Section III, the RNN al-
gorithm is described. In Section IV, optimization solutions
are obtained and a PSO algorithm combined with the penal-
ty function method is introduced. Finally, the paper is con-
cluded in Section V.

II. PROBLEM REPRESENTATION

Reducing the emissions of gaseous pollutants is crucial to
power industry. In recent years, renewable energy sources
start playing an important role in power generation system.
As shown in Fig. 1, we introduce an architecture of the pro-
posed EED model which consists of conventional thermal
units, WTs and energy storage system (ESS). Popularly, the
objective optimization functions and constraints are indicated
in mathematical terms as follows.
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Fig. 1. Architecture of proposed EED model.

A. Objective Problem

1) Minimization of Fuel Cost

For each thermal unit, fuel cost is a quadratic function
generally if the VPE is ignored [21]. But VPE brings ripples
in the heat rate curve [22], which results in non-convexity of
the fuel cost function as shown in Fig. 2.
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Fig. 2. Effect caused by VPE.
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Currently, the fuel cost function can be described as:
F(Py)=a,+b,Pg,+c,PE,+ | e;sin(f(Pon —PG_,,.))‘ 1)

where P, is the real output power of the /" thermal unit;
a, b, and c, are the cost coefficients for the i unit; e, and £,
are the coefficients of VPE; and Pg7 is the minimum genera-
tion limit of the i thermal unit. The cost function contains
sine term, and its generalized gradient is remarked in Appen-
dix A.
2) Minimization of Pollutant Emissions Cost

At present, fossil fuels are still the main source of power
generation. However, fossil fuel power generation creates a
lot of gaseous pollutants. The pollutant emission cost is de-
scribed as:

N,
E(PGJ): z 107 (ai +B:Pg.i +yiP(27.i) (2
i=1

where N, is the total number of thermal units in the grid;
and a, f, y, are the pollutant emission cost coefficients of
the ™ unit.
3) Minimization of WT Generation Cost

ESSs considered in this study are currently utilized for in-
tegration support of wind power so as to improve the con-
trollability of intermittent wind power. The power output of
WTs can be ensured, which is equivalent to the predeter-
mined wind power. The underestimation and overestimation
costs of wind power are also considered [23]. Thus, the cost

of WT is a fixed model in [24], [25], which is denoted as:
W (Yy,)=0,Yy,+CoE(Yi) + CoyE (V)

pwj rwj (3)
where Y, is the power output of the /" WT; 6, is the liner
cost coefficient of the /" WT; C,,, is the cost coefficient of
the underestimated availability for the /" WT; C,,, is the cost

C,E(Yi) is

coefficient of the overestimated availability; C,,,

the penalty cost that all available wind power cannot be
used absolutely; and C,ij(YV‘;?f) is the overestimated cost,
which means the cost of purchasing power from ESSs due
to insufficient wind power. £ (Y ;;,j) is described as:

v v
E(Y;;,j.): (W,.—YW,)(exp(—c;)—exp(— C“]': ))+
erin V’; V’]{
+Y,|lexp| — —|-exp| — — ||+
VoV c* c*
W.c rl 1 (v, ! 1 1 (v, ! :
+ —|— +—,|—
k'\ c k’'\c @)

vr_vin
where & is the shape factor of the Weibull distribution for
wind; ¢ is the scale factor of the Weibull distribution for
wind; W, is the rated wind power; v, is the wind speed; v,

and v, are the cut-in and cut-out wind speeds, respectively;
v, 1s an intermediary parameter defined as v, =v,+

(v,—v,.n)Y W / W exp(-) is the exponential function; and 7" (+)
is the standard incomplete gamma function. The generalized
gradient of the standard gamma function is given in Appen-

-I

dix A. Similarly, £ (Y”‘ ) is defined as:
vk
E(Y,”Ve, Yy | 1- exp( )+exp( ":’)
c

W, vh Vi
+Yy,|(exp| — —|—exp| - — ||+
vr_vin C C

e | L ()
+—.—
. k'\c
4) Objective Function

v, =V,

Three objective functions are combined into a single
function to search for the compromise generator schedule.
Inspired by the method of assigning prices to emissions
[26], the single-objective EED problem is expressed as fol-
lows:

FO:F(PGJ)‘FO'T,E (PG.i)+ W(YW.,./') (©)

where o, is the price penalty factor that is combined with
emission function for obtaining the total fuel cost function.
The method to obtain o, is given in Appendix B.

B. Equality and Inequality Constraints

In this paper, equality and inequality constraints are con-
sidered, which contain demand constraint and generator ca-
pacity constraints. These constraints are formulated as fol-
lows.

1) Power Demand Constraint

Transmission losses should be considered in practical pro-
duction. According to [23], [27], transmission losses are de-
noted by quadratic equations. The transmission losses P,
induced by the /" WT can be given as Py, =B,,Y,, and
the transmission losses P, caused by the i thermal unit
can be expressed as Pg;, =B, P, where B, and B, are
the coefficients of power losses.

The total power load demand P, is less than or equal to
the total power generation minus the total real transmission
losses. The EED problem complies with the demand con-
straint under the power load demand P, as follows:

Ng Ny
Y (Poi=BoPL)+ X (Y, =By, Yi,)2 P,

i=1 j=1

(7

where N, is the total number of WTs in the system.
2) Generator Capacity Constraint

To ensure stable operation, power output of each genera-
tor will be limited between its minimum limit and maximum
limit. The power limits of thermal units and WTs are as fol-
lows:

PG <Pg, <P

®)
)

min max
Yl <Yy <Yy

C. Problem Formulation

The EED problem with the purpose of minimizing (6) is
subject to some constraints denoted above. At last, the opti-
mization problem is mathematically expressed as:
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minFO:F(PGA,,.)+GTFE(PG¢,‘)+ W(YWJ)

N, Ny
S.t. ;(PG.,’ _BGA,I‘Pé.i)"' Z( YW-J' _BW-./YGZJ)ZPL

j=1

(10)

P&l <P, <P}
vpnsy,, <Yy

III. ALGORITHM MODEL DESCRIPTION

In this section, an RNN is introduced [20], [28]. Its net-
work architecture is represented in Fig. 3.
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Fig. 3. Network architecture of proposed RNN.

The projection operator and the gradient are used to build
RNN model. The following neural network to solve objec-
tion problem is obtained.

The dynamic equation is given as below:

P, PX(PG —w (VFO (P,)+vC(P,) y))— P,

=Y, |=

" PV, (VFO(¥,)+vC(¥,)y))- ¥, | (D

Py(y+o(C-b))-y
where w>0 is a control factor; y € R is a Lagrange multipli-

er; V(-) is the gradient; and b=-P,. Define PQ(X ) as the

o
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where (2 is the projection object and X, is an abstract projec-
tion variable. At the same time, the inequality constraint (12)
is equivalent to the demand constraint (7).

G Ny

(Poi=Bo,Pe)= X (Yo, =BuYi,)<—P, (12)

J=1

T
Specially, P, (P, )= [PX(PGJ ). PP Py (PQNGH .
For a box set X = {PG eR"| PSP <P }, where Po" =
[Py Pon. Py, | and Py =[Py e PR | Po(Po)
and PX(Y m,) are defined as (13) and (14), respectively.

PGl Pgi <SPG}
Pg; PG <Pg,<Pg
PET P <P,
Yyl Yy <Yy
YWJ Y;Vrj}n<YWj<YVr;;X
Yit Yy <Yy,

projection operator expressed as P, (XU) =arg min HXO -y

=

C=-

i=

Py(Pg,)= (13)

Py(Y,,)= (14)

Simultaneously, P, (y) is defined as:
0 y<0
ly »>0
Two necessary theoretical problems should be explained
for achieving the optimal solution of (10). Firstly, equilibri-
um points of proposed RNN correspond to Karush-Kuhn-
Tucker (KKT) points under some necessary and sufficient
conditions. Secondly, the convergence of RNN algorithm is
proved. The detailed theoretical analysis is shown in Appen-
dix C. For further proof, the following definition is given.
Definition 1: a solution J = [Pé, YV},yT]T of the RNN (11)
represents a feasible solution. When the gradients of
C,.VC,Vje {J‘ C+P, :0} are linearly independent, a feasi-

ble solution J is said to be a regular point.

Py(y) (15)

IV. SIMULATION RESULTS

A. Results of RNN Approach

In this part, the proposed RNN algorithm is verified on an
eight-generator system which consists of six thermal units
(Psp» i=1,2,..,6) and two WTs (Y, j=1,2). The simulation
data are given in Table I and Table II, which can be found
in [24], [26].

TABLE I
DATA FOR SIX THERMAL UNITS

Unit PIM (MW) PI%(MW)  a, ($/h) b, (S(MW=>h)) ¢, ($/h) e, ($/h)  f; ($/h) a, (M) B, (S(MW>h)) 5, ($h) B, (S/h)
1 70 470 1356.659 38.2704 001799 840  0.08400 42.8955 ~0.5112 0.00460  0.00031
2 20 80 950.606 39.5804 0.10908 525 0.10610  350.0056 ~3.9524 0.04652  0.00011
3 20 130 800.705 39.5104 0.12111  63.0  0.10010  330.0056 -3.9023 0.04625  0.00041
4 47 120 900.705 36.5104 012511 672  0.09660  330.0056 ~3.9023 0.04625  0.00022
5 50 160 756.799 38.5390 0.15274  63.0  0.08820 13.8593 0.3277 0.00420  0.00045
6 10 55 1000.430 40.5407 012951  69.3  0.01073  360.0012 ~3.9864 0.04702  0.00021
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TABLE I
DATA FOR TWO WTS

Parameter Value
Vin (m/s) 5
Ve (05) 45
v, (m/s) 15
¢ (m/s)
k (m/s)
d; ($/h)
C,, ($/h) 3.1
C,,; ($/h) 3.1
W, (MW) 160
By, ($/h) 0.00033

During the simulation, the step size of the algorithm is set
as #=0.001, =15, and the completion deadline =16. Fig-
ures 4-6 show the convergence of the eight-generator system
in the EED problem. In simulation, the power load demand
P, is set as 580 MW. For each generator, ten arbitrary initial
values are selected. The optimal result of Lagrange multipli-
er y is also given. The Lagrange multiplier is the optimal val-
ue of the total system. It is obvious that initial values con-
verge to their optimal solutions after the calculation. The val-
ue of convergence does not change when the initial value
changes.

6 8§ 10 12 14 16
Input sample point

Fig. 4. Optimal results of P |, P 3, and P .

Power (MW)

6 8§ 10 12 14 16
Input sample point

Fig. 5. Optimal results of P ,, P, and Y, ,.

The above results are obtained based on a fixed power
load demand, which is inconsistent with practical applica-
tions. A variable load system within 12 time periods of a typ-
ical day is utilized to test the proposed RNN method. The
load variations of 12 time periods is illustrated in Fig. 7, one

of which indicates two hours. Figures 8 and 9 present the
load variation and power distribution of four generators dur-
ing 12 time periods, respectively. Power load demands in 12
time periods are elucidated in Table III. The detailed power
distribution values are given in Table IV. It can be seen that
the optimal power of two WTs is almost approximate.

Power (MW)

8 10 12 14 16
Input sample point

Fig. 6. Optimal results of P, Y, |, and y.
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Fig. 7. Load variations in 12 time periods.
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Fig. 8. Power distribution of four generators in 12 time periods.
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Fig. 9. Power distribution of four generators in 12 time periods.
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TABLE III
LOAD VARIATIONS OF 12 TIME PERIODS ON A TYPICAL DAY

Time period Load (MW)
1 490
2 580
3 735
4 810
5 950
6 1130
7 830
8 1025
9 975

10 720
11 540
12 440

B. Comparison with PSO Approach

In a classical PSO approach, each particle in a swarm
stands for a potential solution. Their initial positions are ran-
domly generated and then updated in a specific way. Each
particle has the ability to learn experience from its own and
its neighbors. Compared with other stochastic methods, PSO
can obtain high-quality solutions in shorter computation time
and has more stable convergence characteristic [31], [32].

However, PSO lacks the ability to precisely find local opti-
mal solution and handle complex constraints. The method of
penalty function can transform a constrained problem into an
equivalently unconstrained problem. Many related researches
have been done [33]-[37]. In this paper, a PSO algorithm
combined with the penalty function is introduced to seek lo-
cal optimal solution.

TABLE IV
POWER DISTRIBUTION OF EIGHT GENERATORS IN 12 TIME PERIODS

Power load (MW) Pg, (MW) Pgsr (MW) Pgs (MW) Pgq (MW) Pgs MW) Pge MW) Yy, (MW) Yy, (MW)
490 70.0000 34.0404 34.4908 47.0000 50.0000 17.4646 125.4650 125.6138
580 71.0638 41.6987 39.5341 47.0000 50.0000 32.8518 159.5350 159.5350
735 182.1369 48.7500 46.9003 63.1913 50.0000 55.0000 160.0000 160.0000
810 224.9520 53.5094 52.1057 79.8193 62.4147 55.0000 160.0000 160.0000
950 328.6094 59.2444 58.4348 102.5037 84.5272 55.0000 160.0000 160.0000
1130 441.7915 71.2183 70.6367 120.0000 144.5669 55.0000 160.0000 160.0000
830 219.5369 53.0121 51.5566 77.5490 60.1725 55.0000 160.0000 160.0000
1025 369.0382 63.5956 63.0957 114.2751 110.1540 55.0000 160.0000 160.0000
975 331.6637 61.8129 61.2114 107.2863 98.5072 55.0000 160.0000 160.0000
720 171.0769 47.6572 45.7272 60.1714 55.0000 50.0000 160.0000 160.0000
540 70.0000 34.1303 34.5878 47.0000 50.0000 17.6097 152.9196 152.3581
440 70.0000 33.9469 34.3897 47.0000 50.0000 17.2278 104.0327 104.2030

1) Penalty Function Method R()=0 t=0

Through the extensive work [38], the objective function is R()>0 t#0 (18)

transformed into a penalty function as (16).

S

G(P.p.c.M)=Q(FO(P)-M)+p| ¥ P(C(P)+P,) | (16)

i€ty
where M € R is the objective penalty parameter; p and ¢ are
the constraint penalty parameters and p>0, ¢>0; jel,=
{1,2,..., p}; QO and P are both continuous functions satisfying
0, P: R'5>R'U{+w} and (17). R(?): R' >R'U {+ o} is a
continuous function satisfying (18).
0(t)=0 t<0
P()=0 t<0
0()>0 >0
P(t)>0 t>0

0(6)>0(t,) t>1,>0
P(t2)>P(tl) t,>t, >0

an

R(6)>R(1) |6]>]4]
The penalty function is constructed as follows:
G(P,p,g,M):max(FO(P)—M)+p[max(C(P)+PL)]; (19)

The optimal solution of penalty function is approximately
equal to the optimal solution of objective function, which
has been proofed in [38] with more information.

2) PSO

U= [ Ul U gy U,iﬁm]T € R” denotes the position of the
"™ particle, which is generated in a random way. And V'=
[VH, Vi VM]T e R” denotes the velocity of the i™ particle,

where n denotes the dimension of each particle. U,, =
[Upy1sUpps o Uy, 1T is defined as the best position of the i*

2

particle obtained on the basis of its own experience, and
U, =[U,,.Us,,...Uy,]" is the best particle position based
on overall swarm experience. Each particle updates the for-

ward velocity and position vector as follows [39]:
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Vz;j (t"' 1):WVI‘,]' (t)+clr1 (IJ;I;,J' - Uli.j (t))"'czrz (U;b,j - Uli.j (t))
(20)

1)
where w is the inertia weight; ¢, and ¢, are two weighting
parameters; and r, and r, are two random numbers in the
range of [0, 1].

If the number of iterations reaches a predefined maximum
or a best position, the movement of the swarm will stop.
k(k=0,1,...,x,,) iS an iteration step, where «,,, is the maxi-
mum iteration step. The conditions for terminating iteration
are the same as [40].

PSO has shortcomings in searching exact local optimal so-
lution. In the next part, a comparison of the proposed RNN
and PSO is given under the same problem frame.

3) Comparison of Simulation Results

The introduced PSO algorithm is verified on this eight-
generator system. The size of the PSO swarm is 100 and the
the inertia weight @ is 0.9. The weighting parameters c,, ¢,
are both set as 2 [41]. Three different iterations k=150, 100,
200 are selected in the simulation. Besides, the object penal-
ty parameters are set as M =—10, p=200 and ¢=2 according
to [38].

Figure 10 presents the optimal total cost of eight-genera-
tor system by PSO. The optimal scheduling of eight genera-
tors by PSO algorithm are compared with that by RNN algo-
rithm in Table V. It can be seen from the results that PSO al-
gorithm gives different optimal solutions in each run, but
RNN algorithm would give stable optimal values of the ob-
jective function. It is theoretically ensured that the local opti-
mal solution is found through the RNN algorithm, it cannot
be mathematically proved that the local optimal solution can
be found through PSO. With the same power load demand
P, =580 MW, the optimal scheduling given by RNN is more
accurate and has lower total cost than that by PSO.

Up,(t+1)=U;,(0)+ U, (t+1)

74000
72000 f
70000
68000
66000
64000
62000
60000
58000+
56000

Cost in EED ($)

0 20 40 60 80 100 120 140 160 180 200
Number of iterations

Fig. 10. Optimal total cost by PSO.

As a nature-inspired heuristic technique, PSO lacks mathe-
matically theoretic support, so it may converge to different
solutions instead of accurate optimal solution in each run.
The proposed RNN algorithm owns a more obvious advan-
tage in searching for accurate local solution with strict con-
straints, because the stability and veracity of the solutions
can be justified mathematically.

TABLE V
COMPARISON OF SIMULATION RESULTS

Power distribution of eight-generator system (MW)

Constituent

RNN (KP=S ?0) (KI;SIOOO) (Kisz(()m)
P, 71.0638 73.6879 72.5561 723551
P, 41.6987 42.5431 40.5673 40.8463
P, 39.5341 39.9431 38.6541 38.8052
P, 47.0000 51.5678 51.2231 50.3521
Py 50.0000 53.4721 52.0587 52.1925
Pes 32.8518 35.4321 33.4721 33.7331
Y 159.5350 128.6878 154.3741 155.0350
Yy 159.5350 155.5879 159.2145 158.6878

Total cost (§) 56659 57551 57164 57135

V. CONCLUSION

The EED problem aims to reduce the total fuel cost and
pollutant emissions of the power system. An EED model
containing thermal units and WTs is introduced in this paper.
Meanwhile, it needs to meet the demand constraint and gen-
erator capacity constraints. To solve the nonconvex EED
problem, an RNN algorithm is proposed to search for local
optimal solution. The optimality and convergence of the pro-
posed algorithm are verified by mathematical theory. The
RNN algorithm is verified on an eight-generator system to
optimize the scheduling and minimize the total cost. More-
over, a PSO algorithm is compared with RNN in solving
nonconvex optimization problem. Numerical simulation re-
sults in Table V demonstrate that the proposed RNN owns a
more obvious advantage in searching for exact local solution
than PSO. The optimal scheduling of the system with the
same power load demand given by RNN is more precise and
has lower total cost. Finally, a variable load system within
12 time periods of a day is utilized to test the proposed
RNN method, and the power distribution of eight generators
during 12 time periods is depicted.

Only quadratic static constraints and inequality constraints
are considered in this paper, and we are going to take into
account the network constraints as a future research direc-
tion in the proposed problem frame. Also, it is expected to
see that more stable and effective algorithms can be used to
solve non-convex optimization problem.

APPENDIX A

The generator cost function (1) has sine term. Through the
extensive work in [27], the generalized gradient OF, (PG‘ ,.) is
limited to [ —e f.te.f ] at the non-derivative points. F', (PGA [)

is described as:

Fun(Pa,)=|e,sin(f,(P2r - Py (A1)
At derivative points, OF (PG‘ [) is defined as:
P..—PM) f
OF ,(P.)=e.f, cos|(Po, = PE7) fi - (n)f n|(A2)
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where [-] is the round operation realized by fix(-) function in
MATLAB. In this paper, 0I'(-), which is the partial differential
of the standard incomplete gamma function 7°("), is defined as:

or(i+ L (2 A ) ) A3
172 1 ] ol o ey I BCS)
From (4) and (A3), we can obtain:
vE v
aE(Y;fj):exp(— "Z’)—exp(— ,ll) (A4)
¢ ¢
Similarly, from (5) and (A3), we can obtain:
Vk Vk
OE (Y5)= 1+exp( ) exp( ;) (A5)
c* c

APPENDIX B

The price penalty factor ¢, for each unit can be calculated
as follows [26]:

(B1)

where F (Pg“f}*) is the fuel cost when the output power of the i*

generator is the maximum. F' (ng}x) can be described as:

F(Pg)= (a,+b P+, Pz + e sin(r (Pn - P2v) |
(B2)
Similarly, £ (ng.‘) is the emission when the output power of

the /" generator is the maximum. £ (ng.x) can be defined as:

NG
E(Pe)= 3107 (a +p Pz e (P))  (B3)
i=1

APPENDIX C

In this part, the existence and convergence of local optimal
solution of the proposed model are given.

A. Optimal Analysis

Theorem 1: making a hypothesis that the objective problem
is a nonconvex function within a given feasible region. The
equilibrium point J = [13;, Y;,fT]T of (11) satisfies the KKT
condition of (10).

Proof: the KKT condition for the objective problem (10) can
be described as:

PG <Pg,<PST

Yir <Yy, <Ypp y20 (C1)

C+P,<0 y'(C+P,)=0
(vFo(P.)+vC(P,)y) <0 P =P
(VFO(P.)+VC(Py)y) =0 PZr<Py<PZr ()

i

(vFo(P.)+vC(P,)y) 20 Pr=P,,

i

(vFO(¥,)+vC(¥y)y) <0 v, =13
(VFO(YW)+VC(YW)y)j:0 V<Y, <Y (C3)
(VFO(YW)JrVC(YW)y),_ZO Y=Yy, =Yg

According to the KKT theorem [29], the mentioned KKT
conditions can be equivalently translated into the following
projection formulation:

PX( o(VFO(P,)+V
PX( o(VFO(¥,)+Vv (YW) y)):YW

(
P(y+o(c+r,))=y

where 0>0. J " = [(P;)T, (¥, (y*)TJ satisfies the above for-

T
mulation if [(P;)T,(Y W)T] is a local optimal solution of (11),
which can be expressed as:

P,(Po-o(VFO(P,)+VC(P])y))=P;
P(Y;-o(VFO(¥;)+VC(Y;)y))=Y;

PR(y* +w(C+PL)):y*

J= [PV}, j}T]T is the equilibrium point of RNN. The fol-
lowing relationships must exist:

(©5)

PX(PG ~w(VFO(P,)+vC(P,) y))—PG -0
PX(I_’W—w(VFO(YW)+VC(I7W)y))—YW:O (C6)

Py(7+w(C+P,))-5=0
Therefore, the equilibrium points of the RNN are in a one-to-
one correspondence with the KKT points of (10) exactly. The
optimal solution J = [Fg, Y, fT]T is also satisfied with the
KKT conditions simultaneously.

B. Convergence Analysis
The Lagrangian function associated with (10) can be defined
as:

L(P.y)=FO(P)+y(C(P)+P,) (C7)

where P=[P., ¥, ;]T satisfying the constraints is a feasible so-
lution of (10). It follows that the Hessian of the Lagrangian
function is:
ViL(Py)=V?FO(P)+ Y y,V’C,(P) (C8)
i=1

Theorem 2: the proposed neural network can be stable at a
KKT point J* for any initial point J(¢,) if V2L(J") is positive

J(t)=

[Pg (to), Y, (to) s (to)]T. Simultaneously, the output trajectory

semidefinite = on  feasible  solution,  where

of the proposed neural network converges to a global mini-
mum.
Proof: P’ is an equilibrium point, and at the same time, J* =
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T
[(P*)T,yq is a KKT point. P € P, so there exists a set N € P

that satisfies P'e Nand VP € N.
%:—w (VFO(P)+VC(P)y)

The Jacobian linearization result of the system can be de-
scribed as dP/dt=AP, where A=-wV3L(J"). It should have
one or more negative eigenvalues if V,ZJL(J ) is not positive

(C9)

semidefinite, so 4 has one or more positive eigenvalues corre-
spondingly. Thus, the system (C9) is unstable at J* through the
Lyapunov indirect theorem, and the same is true for the RNN
in (11), the following function is defined:

2

V' (J))=-F ()" R()- illR(J)IIZ + ﬁllJ—J* (C10)

where  F(J)= (VFO(P)+VC(P)y.~C(P)-P,); R(J)=
Po(J—wF (J))-J; and Q=J x (R*)". Similar to the proof of
Theorem 1 [29], the following formulas can be obtained:

dstS—F(J)T(J—J*)—R(J)TVF(J)R(J)SO (C11)
. 1 .
vz -7 (C12)
2w
where VF(J) can be described as:
VZFO(J)+ Y yVC,(N)+P, VC(J)
VF (J)= izl (C13)

-ve(J)' 0

V2FO(P)+y,V*C,(P) is positive semidefinite, so VF (J) is
positive semidefinite on N. For t>7,, R(J) VF(J)R(J)>0,
and F(J) (J-J)2 (F()-F(J')) (J-J)20. Because
V2L (J) is positive definite, there exists a constant &> 0 lead-
ingto i"VAL(J)h>E|R |, he R,

For any X', X?, the mean-value theorem is applied to F (X)
such that:

F(X?)-F(X")= f;VF(X‘+s(X2 ~X1)) (X -X")ds
(C14)

T

where X' =J" = | (P)".(v;).(v")'| s x* =7 = [PLYLy"]"
Then note that:
(FU)-F () (/=)
f;(J—J*) VF(J+s(J=J))(J T ")ds=
J’;{(P—P*)T(ViFO(PH ﬁyiVZCi(P) (P-P)-
(y—y*)Tvc(ﬁ)T(P—P*)— (P-P)'V C(IA’)T(y—y*)}ds:
f;(P—P*)T(VﬁFO(I;)+iﬁiVZCi(ﬁ))(P—P*)ds (C15)
where P=P+s(P—P"); and p=y+s(y—y"). Since N is con-
vex, (F(N)-F(J")) (J=J°)=&|P—P | and (P.§)e N, vi>

t,- Formula (C11) can be rewritten as:

drv- .
——<-F)' (J-J)
de
By integrating this formula, the following formulas are ob-
tained:

V@) (I (n)- [ G©-T) FU)ds c17)

¢
’U

(C16)

|P(t)-P

<0l (J(to))—2wf:0(.l(s)—J*)TF(J(s))dss

_zwj;(J(s)—J*)T(F(J (5))=F () ds+20 V" (4 (z,) )<

_znf;HP(s)—P* ds+2cuV*(J(t0))

(C18)

where #=w{>0. According to the Gronwall inequality pro-
posed in [30], we can obtain:

1P-P||< J20V" (4 () exp( -5 (t-1,)) Vrzz, (C19)

where P is the set of minimum. Based on the above proof, the
neural network exponentially converges to P°. Thus, the out-
put trajectory of the proposed neural network is convergent to
the optimal solution of problem (10).
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