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Parametric Problems in Power System Analysis:
Recent Applications of Polynomial Approximation

Based on Galerkin Method
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Abstract——In power systems, there are many uncertainty fac‐
tors such as power outputs of distributed generations and fluc‐
tuations of loads. It is very beneficial to power system analysis
to acquire an explicit function describing the relationship be‐
tween these factors (namely parameters) and power system
states (or performances). This problem, termed as parametric
problem (PP) in this paper, can be solved by Galerkin method,
which is a powerful and mathematically rigorous method aim‐
ing to seek an accurate explicit approximate function by projec‐
tion techniques. This paper provides a review of the applica‐
tions of polynomial approximation based on Galerkin method
in power system PPs as well as stochastic problems. First, the
fundamentals of polynomial approximation and Galerkin meth‐
od are introduced. Then, the process of solving three types of
typical PPs by polynomial approximation based on Galerkin
method is elaborated. Finally, some application examples as
well as several potential applications of power system PPs
solved by Galerkin method are presented, namely the probabi‐
listic power flow, approximation of static voltage stability re‐
gion boundary, and parametric time-domain dynamic simula‐
tion.

Index Terms——Parametric problem, stochastic problem, power
system analysis, polynomial approximation, Galerkin method.

I. INTRODUCTION

POWER system analysis is often confronted with a kind
of problems that concern the impact of some uncertain‐

ty factors on system states or performances [1], for example,
the impact of penetration level of distributed generations
(DGs) on system performance [2], and the impact of bilater‐
al contract on power transaction, the impact of load level on
system stability [3]. These factors, albeit with different physi‐
cal meanings, can all be mathematically regarded as parame‐

ters of power system analysis model. Accordingly, system
performances can be regarded as system states.

Hence the problems at hand, termed parametric problems
(PPs) in this paper, are to seek an explicit function describ‐
ing the relationship between parameters and states [4]. Since
the parameter-state relationship in power system analysis is
usually implicit and too complicated to obtain exactly, the
PP comes down to acquire an accurate explicit approximate
function that describes this relationship.

Sensitivity methods and sampling-fitting methods are the
most widely used techniques for PPs in power system analy‐
sis. Sensitivity methods [5] aim to analyze the sensitivity of
system states (or outputs) to system parameters (or inputs),
and are generally associated with linearizing the parameter-
state relationship around the rated parameter value. If the pa‐
rameters vary in a small range or the system possesses a
good linear characteristic, the sensitivity methods can result
in a linear approximate function with satisfactory accuracy.
Otherwise, the resulting linear function may have poor accu‐
racy, and high-order sensitivity methods [6] should be adopt‐
ed to retain the accuracy. However, the derivation of high-or‐
der sensitivity is tedious and practically difficult to perform,
when the expansion order is greater than two or the parame‐
ter number is more than two. Anyway, sensitivity methods
are local since it is usually based on the Taylor series expan‐
sion technique. Therefore, even high-order sensitivity meth‐
ods will lose accuracy when the system has strong nonlinear‐
ity in the variation range of parameters.

Sampling-fitting methods [7], [8] aim to construct an ap‐
proximate function by many samples. Their basic process is
to, first sample the parameters in their variation ranges, then
acquire the values of parameter-state function at all sampling
points of parameters, and finally employ the fitting tech‐
nique to get an approximate function. Sampling-fitting meth‐
ods provide a global description of the parameter-state rela‐
tionship over the whole parameter variation ranges, and thus
are preferable in the case of strong nonlinearity. However,
they have defects in terms of high dimension and accuracy
control, i.e., high dimensional PPs require so many samples
that this method may be computationally prohibitive, and the
sample size is hard to be determined in accordance with the
accuracy requirement.

An important special case of PPs is the stochastic problem
[9], in which parameters additionally follow probability dis‐
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tributions. The stochastic problem aims to calculate the prob‐
ability uncertainty of system states caused by the probability
uncertainty of parameters. The acquired probability distribu‐
tions and statistical characteristics of system states are valu‐
able for many power system analyses such as risk assess‐
ments of system planning and operation [10], [11].

Typical methods for the stochastic problem include Monte
Carlo simulation (MCS) [12], cumulant-based methods
(CMs) [13], and point estimation methods (PEMs) [14].
MCS, based on random sampling, is accurate and flexible
but quite time-consuming, and thus it often serves as the
benchmark for other methods. CMs require a linearization of
the parameter-state relationship just like the sensitivity meth‐
ods, and therefore they are fast but inaccurate in the case of
strong nonlinearity. PEMs are based on deterministic sam‐
pling technique and can accurately calculate the low-order
moments of system states but may fail to obtain accurate
high-order moments.

This paper provides a review of solving power system
PPs and stochastic problems by a new method called the
polynomial approximation based on Galerkin method [15],
[16]. Polynomial approximation [17] - [19], as a subclass of
function approximation [20], concerns how to accurately and
globally approximate a function with a simple polynomial. It
is a popular topic in the field of computational mathematics,
and has wide applications in physical and engineering prob‐
lems. Two typical methods for polynomial approximation are
collocation methods and Galerkin method.

Collocation methods, usually based on numerical integra‐
tion [21] or interpolation [22] technique, construct the poly‐
nomial approximation by acquiring values of the parameter-
state function at some collocation points. They are somewhat
similar to the sampling-fitting methods, but the points are de‐
liberately determined by certain technique (usually zeros of
orthogonal polynomials) rather than come from previously-
given data, and the construction process usually involves
some advanced techniques such as Smolyak sparse grid [23].
Collocation methods are easy to realize, but are not necessar‐
ily accurate because they are not theoretically rigorous.

Galerkin method [16], [24] - [27] aims to find an explicit
approximate function for the implicit parameter-state func‐
tion by projecting system model equations containing param‐
eters onto an approximation space. The projection process is
so mathematically rigorous that the acquired approximate
function is very accurate. By combining polynomial approxi‐
mation and Galerkin method, the approximate polynomial so‐
lution to PPs is obtained, which can also further tackle the
stochastic problems. We have done much work on solving
power system PPs by the polynomial approximation based
on Galerkin method [4], [28]-[34], and hence present this re‐
view.

This paper is organized as follows. Section II narrates the
concept of PPs and presents three types of typical PPs in
power system analysis from the perspective of mathematical
models. Section III provides the fundamentals of polynomial
approximation and Galerkin method. Section IV elaborates
how to solve PPs by polynomial approximation based on
Galerkin method. Section V introduces four application ex‐

amples and several potential applications of power system
PPs solved by Galerkin method. Section VI concludes the pa‐
per and briefly introduces prospective worthwhile works.

II. PPS IN POWER SYSTEM ANALYSIS

A. Concept of PPs

The concept of PPs provides a unified perspective for a
category of problems of studying the impacts of some uncer‐
tainty factors (namely parameters) on system states or perfor‐
mances.

The parameters in PPs are a general concept and could be
arbitrary quantifiable impact factors of the system. They are
not limited to operation or control variables such as the load
power and the terminal voltage of generator, but could also
be system model quantities such as cost coefficients of gen‐
erators and rotational inertia of generator units, and uncon‐
trollable stochastic factors such as power outputs of DG.

The model of PPs includes both the system state equa‐
tions and the system output equations that define system per‐
formances. For the convenience of narration, system perfor‐
mances are treated as states in PPs. In this way, PP model
contains only two types of variables, i.e., states and parame‐
ters, and thus defines an implicit function relationship be‐
tween them.

The aim of PPs is to seek an explicit function that de‐
scribes the relationship between parameters and states. With
this explicit function, the subsequent analysis on the charac‐
teristics of the system will become much easier, which is the
main significance of PPs. The parameters and states can be
continuous or discrete. In order to focus on PPs, this paper
only considers the continuous-variable case, which is the
most common case of PPs.

Besides being deterministic in certain ranges, the parame‐
ters can also be stochastic, i. e., random variables following
certain probability distributions or stochastic processes. The
resulting problem is called the stochastic problem, which
can be regarded as a special case of PPs and hence solved
by PP methods in combination with some extra probabilistic
and statistical manipulations.

There are a variety of PPs in power system analysis.
From the perspective of mathematical models, most of them
can be classified into the following three types of typical
PPs, as illustrated by Fig. 1.

B. Parametric Nonlinear Algebraic Equation (NAE) Problems

The simplest form of PPs is parametric NAE problems,
which are modeled as:

0= f (xp) (1)

where x =[x1x2xn]ÎRn and p=[p1p2pl]ÎRl are the
vectors of state variables and parameters, respectively; n and
l are the dimensions of x and p, respectively; and f (×):Rn ´
Rl ®Rn is the vector of nonlinear functions.

The goal of the problem is to find an explicit function
x* (p) that satisfies (1) and hence gives the relationship be‐
tween x and p. However, the exact explicit function x* (p)
rarely exists in practical engineering problems, and thus an
approximate explicit function x(p) is the only feasible choice.
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There are many methods for obtaining the approximate ex‐
plicit function, e.g., sensitivity methods and sampling-fitting
methods. This paper introduces the polynomial approxima‐
tion based on Galerkin method, which has the advantage of
global nonlinear approximation and high accuracy. The gen‐
eral solving process of parametric NAE problems by the in‐
troduced method is given in Section IV-A. Since many pow‐
er system problems share the form (1), this method has
many applications. Two typical applications, namely probabi‐
listic power flow (PPF) and static voltage stability region
boundary (SVSRB), are presented in Section V-A and Sec‐
tion V-B, respectively.

C. Parametric Nonlinear Programming (NLP) Problems

NLP has a variety of applications in power system analy‐
sis, among which optimal power flow (OPF) is one of the
most important. In the case of parameter uncertainty, the op‐
timum solution changes with these parameters. This yields
the parametric NLP problems, which are modeled as:

ì

í

î

ïï
ïï

min
x

f (xp)

s.t. h(xp)= 0

g(xp)£ 0

(2)

where h(×):Rn ´Rl ®Rr and g(×):Rn ´Rl ®Rs are the vector
of r equality constraints and vector of s inequality con‐
straints, respectively.

The optimum solution x *
opt of (2) is a function of p. The

goal of the problem is to find an explicit function x *
opt (p) de‐

scribing the relationship between x *
opt and p. Similarly, the ex‐

act x *
opt (p) hardly exists and it is unavoidable to find an ap‐

proximation xopt (p) as an alternative.
It is not as straight-forward as solving the algebraic prob‐

lems (1) to solve the parametric NLP problems by the intro‐
duced Galerkin method. The Galerkin method should be
combined with some extra optimization techniques, as intro‐
duced in Section IV-B. Parametric NLP (2) also has plenty
of applications in power system analysis. A typical applica‐
tion called approximating the global SVSRB is presented in
Section V-C.

D. Parametric Differential-algebraic Equation (DAE) Prob‐
lems

Power system dynamic problems are usually modeled as
DAEs. Parametric DAE problems aim to study the relation‐
ship between parameters and system dynamics, and are mod‐

eled as:

{ẋ = f (xyp)

0= g(xyp)
(3)

where y =[y1y2ym]ÎRm is the vector of algebraic state
variables; m is the dimension of y; and f (×):Rn ´Rm ´Rl ®Rn

and g(×):Rn ´Rm ´Rl ®Rm are the vectors of n dynamic
equations and m algebraic equations, respectively.

Given p, (3) defines trajectories x* (t) and y* (t) that depict
system dynamics. The goal of the problem is to find explicit
functions x* (tp) and y* (tp) that describe the impacts of p
on system trajectories. Similarly, the exact x* (tp) and y* (tp)
hardly exist, and accurate approximation x(tp) and y(tp) are
desired.

The general solving process of the parametric DAE prob‐
lems by the Galerkin method is introduced in Section IV-C.
Parametric DAE problem (3) has many applications in both
deterministic and stochastic power system dynamic analysis.
A typical application called power system time-domain simu‐
lation considering parameter uncertainty, is presented in Sec‐
tion V-D.

III. FUNDAMENTALS OF POLYNOMIAL APPROXIMATION AND

GALERKIN METHOD

A. Approximation of Explicit Function

It is well known that a periodic function can be approxi‐
mated by the weighted sum of sinusoidal functions accord‐
ing to the Fourier analysis. Likewise, a continuous function
can be approximated by the weighted sum of monomials, i.e.,

x(p)» xN (p)=∑
i = 0

N

ci pi (4)

where p is a variable; x(×) is a continuous function in an inte‐
val [ab]; xN (×) is the Nth-order polynomial approximation of
x(×); and ci is the expansion coefficient of the monomial pi.
The rationality of (4) is guaranteed by the Weierstrass ap‐
proximation theorem [35]: any continuous function in a
closed interval can be uniformly approximated as closely as
desired by a polynomial function, which means the infinite
norm approximation error max

a£ p£ b
|xN (p)- x(p)| could be arbi‐

trarily small as the order N increases.
xN (p) in (4) is expressed in the form of the basis {pii =

12N}, and thus is a function in the linear functional
space (called the approximation space) spanned by this ba‐

Power system problems Power system PPsModels Uncertain parameters Models
Power flow

Static voltage stability
Small disturbance stability

Optimal power flow
Congestion management

Transient stability
Mid- and long-term stability

NAE

NLP

DAE

Parametric NAE

Parametric NLP

Parametric DAE

Stochastic power
injections:

loads and DGs

Controllable variables

Uncertain model quantities:
line parameters, generator

rotational inertias, etc.

Probabilistic power flow
Approximation of local SVSRB

Approximation of global SVSRB
Stochastic economic dispatch

Parametric time-domain dynamic simulation
Parametric quasi-steady state simulation

� �

Fig. 1. Classification and examples of PPs in power system analysis.
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sis. According to the linear algebra theory, it can also be ex‐
pressed in the form of another basis in the same space such
as the polynomial basis {Φ i (p)i = 01N}, where Φ i (p) is
an ith degree polynomial. Therefore, this approximation be‐
comes

xN (p)=∑
i = 0

N

ciΦ i (p) (5)

Let c denote the vector composed of all coefficients ci (i =
01N), then c can be regarded as the coordinate of xN (p)
in the spanned functional space, just like a tuple indicates
the coordinate of a point in the Euclidean space.

To evaluate the discrepancy between x(p) and xN (p), we
introduce the following residual function R(p):

R(p)= x(p)- xN (p)= x(p)-∑
i = 0

N

ciΦ i (p) (6)

B. Least-square Approximation

The least-square approximation is one of the most popular
methods for constructing a polynomial approximation xN (p),
and is optimal in the sense of weighted L2 norm error.

Let f (p) and g(p) denote arbitrary two functions in [ab],
and w(p) denote a nonnegative function (or weight function,
usually w(p)= 1) in [ab]. Then the weighted inner product of
f (p) and g(p) is defined as (7), and the weighted L2 norm of
f (p) is defined as (8).

f (p)g(p) = ∫
a

b

f (p)g(p)w(p)dp (7)

 f (p)
2
= f (p)f (p) = ∫

a

b

f 2 (p)w(p)dp (8)

The weighted least-square approximation aims to find a
group of coefficients such that the weighted L2 norm of the
residual function (namely weighted L2 norm error) is mini‐
mized, namely

min
c

R=  R(p)
2

2
= ∫

a

b( )x(p)-∑
i = 0

N

ciΦ i (p)
2

w(p)dp (9)

At the minimum of R, the partial derivative of R with re‐
spect to every cj equals to zero, namely

0=
¶R
¶cj

=-2∫
a

b(x(p)-∑
i = 0

N

ciΦ i (p))Φ j (p)w(p)dp =

-2 x(p)-∑
i = 0

N

ciΦ i (p)Φ j (p) j = 01N (10)

With a transformation, (10) becomes

∑
i = 0

N

ci Φ i (p)Φ j (p) = x(p)Φ j (p) j = 01N (11)

Note that the inner products are with respect to p, and that
p will disappear after all inner products are worked out.
Therefore, the only unknowns in (11) are N + 1 coefficients,
which can be obtained by solving this N + 1 dimensional lin‐
ear equation set (11).

Specially, if the system of polynomials {Φ i (p) i =
01N} is orthogonal with respect to w(p), i.e., for any i
and j, there exists (12), then (11) becomes (13).

Φ i (p)Φ j (p) = {χ i i = j

0 i ¹ j
(12)

ci = x(p)Φ i (p) χ i i = 01N (13)

where χ i is a positive constant.
This means that under the circumstance of orthogonal

polynomial basis, every coefficient in the polynomial approx‐
imation equals to the projection value (ignoring the scale
constant χ i) of the function onto the corresponding polynomi‐
al basis term.

C. Galerkin Method

The least-square formula (10) can also be written as:

R(p)Φ j (p) = 0 j = 01N (14)

Equation (14) reveals another perspective of understand‐
ing the least-square approximation, that is, letting the projec‐
tion of R(p) onto the approximation space spanned by basis
{Φ j (p)j = 01N} be 0, as illustrated by Fig. 2.

This understanding is equivalent to the so-called Galerkin
method [16], which aims to seek an explicit approximate
function in the approximation space such that the residual
function is orthogonal to arbitrary functions in the approxi‐
mation space. Equation (12) is called the Galerkin equations,
which form an N + 1 dimensional nonlinear equation set
with respect to coefficients {cii = 01N}. In Galerkin
method, the basis {Φ i (p)i = 01N} in the polynomial ap‐
proximation (5) is called the trial basis, and the basis
{Φ j (p)j = 01N} used to project residual function in (14)
is called the test basis.

Under the residual function definition (6), Galerkin meth‐
od is identical to the least-square approximation, and thus is
optimal. However, the genuine powerfulness of Galerkin
method lies in that residual function R(p) is not necessary to
be (6), rendering this method still applicable when x(p) de‐
notes an implicit function. Under this circumstance, the least-
square approximation is not feasible since the inner product
on the right side of (11) cannot be worked out. In contrast,
Galerkin method still works and provides a quasi-optimal ap‐
proximation, if an appropriate residual function is chosen. To
focus on the essence of Galerkin method, this subsection on‐
ly discusses the explicit function, and the implicit function
will be discussed in Section V.

The Galerkin method can be extended to a more general
sense. In traditional Galerkin method, the test basis is the
same as the trial basis. However, generalized Galerkin meth‐
od [30] allows for using a different test basis {Ψ j (p)}, so

Residual function R(p)

Φj(p)

ΦN(p)Φ0(p)
� �

Approximation space

Fig. 2. Illustration of Galerkin projection.
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(14) becomes

R(p)Ψ j (p) = 0 j = 01N (15)

Compared with (14), (15) loses the link to least-square ap‐
proximation, and hence the approximation accuracy of gener‐
alized Galerkin method may not be as good as that of tradi‐
tional Galerkin method. But the ability of choosing a test ba‐
sis different from the trial basis endows the generalized
Galerkin method with some practical flexibility, which may
help simplify the computation and reduce the time cost.

It should be noted that both (14) and (15) rely on the in‐
ner product operation defined by (7) or (8), which is an inte‐
gration over the whole interval [ab]. This endows Galerkin
method with the characteristic of global approximation. That
is, if approximation performance over the whole interval
[ab] is concerned, and interval [ab] is large or the system
has strong nonlinearity, Galerkin method usually performs
better than local approximation methods such as sensitivity
methods based on Taylor series expansion.

The main procedures of applying Galerkin method to poly‐
nomial approximation are shown in Fig. 3.

D. Galerkin Method for Approximating Multivariate Func‐
tion Vector

The Galerkin method in Section III-C can also be used to
approximate multivariate function vector, as described below.

Firstly, construct the basis for multivariate polynomial ap‐
proximation. For every variable pd (d = 12l), we can
build its univariate polynomial sequence {Φdi (pd)i = 01}.
By selecting a polynomial from every univariate sequence
and prescribing the degree sum of the l univariate polynomi‐
als no more than a given order N, we construct the Nth-order
basis as

Φ i (p)=Φ1i1
(p1)Φ2i2

(p2)××Φ lil
(pl) 0£ |i|£N (16)

where i =[i1i2il]; and |i|= i1 + i2 ++ il. The size of the
Nth-order basis, namely the number of constituent polynomial
terms in (16), is

Nb =
(N + l)!

N! l!
(17)

Take the 2-variable 3rd-order basis (namely l = 2N = 3) for
example. If adopting the simple monomial sequence for each
pd, i. e., {1pdp

2
dp

3
d} (d = 12), the basis (16) will be

{1p1p2p2
1p2

2p1 p2p3
1p3

2p2
1 p2p1 p2

2} and the basis size
is 10.

Multi-index i is inconvenient for practical applications and
hence often translated into single index i orderly. The most
popular translation method is the graded lexicographic order,
which prescribes that i > j if and only if |i|³ |j| and that the
first nonzero entry in the difference i - j is positive. By rear‐
ranging these multi-indices from smallest to largest and en‐
dowing each of them with a single index according its posi‐
tion, the basis {Φ i (p)} (0£ |i|£N) can be written as {Φ i (p)}
(i = 12Nb).

Now consider an explicit function vector x(p), where
pÎRl and x(×):Rl ®Rn. By employing the trial basis {Φ i (p)}
(i = 12Nb), each component xk (p) of x(p) can be approx‐
imated by

xN
k (p)=∑

i = 1

Nb

ckiΦ i (p) i = 12n (18)

where cki (i = 12Nb) is the expansion coefficient for xN
k .

The vector comprised of xN
k (p)k = 12n is denoted by

xN (p). Similarly, the residual function Rk (p) for approximat‐
ing xk (p) is

Rk (p)= xk (p)- xN
k (p)= xk (p)-∑

i = 1

Nb

ckiΦ i (p) (19)

In order to use Galerkin method, a trial basis should be
chosen, such as the basis {Φ i (p)} (i = 12Nb) or another
polynomial basis {Ψ j (p)} (j = 12Nb). Then we have
Galerkin equation (20) if traditional Galerkin method is ad‐
opted or (21) if generalized Galerkin method is adopted.

Rk (p)Φ j (p) = 0 k = 12n; j = 12...Nb (20)

Rk (p)Ψ j (p) = 0 k = 12n; j = 12...Nb (21)

The inner product in (20) or (21) is defined as:

f (p)g(p) = ∫
D

f (p)g(p)w(p)dp (22)

where f (p) and g(p) denote the arbitrary functions in do‐
main D; w(p) denotes a multivariate weight function in do‐
main D (usually w(p)= 1), which is similar to the univariate
weight function introduced in Section III-B; D={pÎRl|ad £
pd £ bdd = 12l} is the definition domain of p; and dp=
dp1dp2 ×× dpl. Noticing that the orthogonal polynomial defi‐
nition (10) only relies on the definition of inner product, we
can define the multivariate orthogonal polynomial from it
likewise by just replacing the definition of univariate inner
product (7) with the multivariate one (22).

Equation (20) or (21) is an n´Nb dimensional equation
set with respect to n´Nb unknown coefficients. By solving
this equation set, the coefficients and polynomial approxima‐
tions xN

k (p) (k = 12n) of the function vector x(p) are ob‐
tained.

Start

End

Choose a polynomial trial basis {Φi(p)}

Choose {Φj(p)} or {Ψj(p)} as the test basis

Express polynomial approximation xN(p) as the
linear combination of trial basis functions (5)

Form residual function R(p) by substituting
xN(p) into the system model

Formulate Galerkin equations as (14) or (15)

Obtain expansion coefficients {ci} as well as xN(p)
by solving Galerkin equations

Fig. 3. Solving procedures of Galerkin method.
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IV. SOLVING PPS BY POLYNOMIAL APPROXIMATION BASED

ON GALERKIN METHOD

A. Approximation of Implicit Functions Governed by Para‐
metric NAEs

Consider the parametric NAEs 0= f (xp) in (1). These
equations govern an implicit parameter-state function vector
x(p) that satisfies f (x(p)p)= 0 over the whole domain of p.
This function vector can be approximated by polynomial ap‐
proximation based on Galerkin method.

To reduce the error of approximating x(p), the polynomial
approximation xN (p) should make each element of
f (xN (p)p) close to 0. Thus, the residual function can be

Rk (p)= fk (xN (p)p) k = 12n (23)

Each element xN
k (p) of xN (p) is the linear combination of

the trial basis {Φ i (p)i = 12Nb}, as shown in (18), and
its coefficients {ckii = 12Nb} are unknown.

With (23) and a chosen test basis, the Galerkin equation
(20) or (21) is established, from which unknown coefficients
can be solved out and thus an explicit approximation func‐
tion vector xN (p) is obtained.

Although Galerkin method has several merits such as glob‐
al approximation and controllable accuracy, it also has some
drawbacks in terms of dimensions of the unknowns and
equations. As indicated in (18) and (20), the numbers of
both Galerkin equations and unknown coefficients are Nb

times those of original equations and variables. Furthermore,
according to (17), Nb could be very big even though both N
and l are moderate values, as shown in Table I. Therefore,
the Galerkin equations may have a very large dimension and
thus become difficult to solve, which poses a challenge to
the method.

Fortunately, on the one hand, although there could be doz‐
ens even hundreds of parameters in engineering problems,
practical studies rarely involve more than 5 parameters at
one time. On the other hand, although N should be a relative‐
ly big value to ensure high accuracy, for most problems, 3rd-
order approximation often yields quite good results. There‐
fore, it is not likely for Nb to be much greater than 50,
which signifies that the computation burden of Galerkin
method is usually acceptable in practical applications.

B. Approximation of Implicit Functions Governed by Para‐
metric NLP

Consider the parametric NLP (2) that determines an im‐
plicit function x(p). Similar to the NLP where p is a deter‐
ministic value, the parametric NLP can be solved by the inte‐
rior point method based on the logarithmic barrier function
likewise.

First, introduce the vector of parametric slack variables
u(p)=[u1u2us]ÎRs that satisfies u(p)³ 0 and g(xp)+
u(p)= 0, where u(p) denotes u is an implicit function of p.

Then, formulate the parametric augmented Lagrange func‐
tion

L(xp)= f (xp)- (y(p))Th(xp)-

(z(p))T (g(xp)+ u(p))- μ∑
k = 1

s

lg(uk (p)) (24)

where y(p)ÎRr and z(p)ÎRs are the parametric Lagrange
multipliers for equality and inequality constraints, respective‐
ly; and μ> 0 is the barrier parameter.

Finally, obtain the NAEs by the KKT condition, namely

ì

í

î

ï
ï
ï
ï

0= fx (xp)- (y(p))Thx (xp)- (z(p))T gx (xp)

0= h(xp)

0= g(xp)+ u(p)

0=Z(p)U(p)+ μe

(25)

where subscript x denotes the Jacobian matrix with respect
to x; Z(p) and U(p) are the diagonal matrices composed of
vectors z(p) and u(p), respectively; and eÎRs is the vector
whose components are all 1.

By utilizing the above formulation, the parametric NLP
(2) can be solved by a new method [32] based on polynomi‐
al approximation, Galerkin method and interior point method.

On the one hand, for a given μ, (25) determines an implic‐
it function x(pμ) as well as implicit functions y(pμ), z(pμ)
and u(pμ), where μ is treated as a constant. By employing
the polynomial approximation method in Section IV-A, their
approximates xN (pμ), yN (pμ), etc. can be obtained.

On the other hand, μ is an algorithmic parameter that grad‐
ually decreases from an initial value during the iterative pro‐
cess of interior point method. When μ becomes small
enough, the solution x(pμ) of (25) becomes the optimum so‐
lution x(p) of (2), and xN (pμ) becomes the desired explicit
polynomial approximation xN (p) of the parametric NLP. For
more details of this new method, please refer to [32].

It should be noted that the method also provides another
two useful explicit functions yN (p) and zN (p), which are
polynomial approximations of y(p) and z(p), respectively.
The first one can indicate how sensitive the objective func‐
tion is to the equality constraints as p changes. The second
one can be used to identify which inequality constraints are
active for different values of p.

C. Approximation of Implicit Functions Governed by Para‐
metric DAEs

Consider the parametric DAEs (3). The essential differ‐
ence between (3) and (1) is that (1) defines a time-invariant

TABLE I
SIZE OF BASES IN POLYNOMIAL APPROXIMATION

N

3

3

3

2

3

4

2

3

4

l

2

3

4

5

5

5

10

10

10

Nb

10

20

35

21

56

126

66

286

1001
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function x(p), whereas (3) defines the time-dependent para‐
metric trajectories x(tp) and y(tp). Therefore, the polynomi‐
al approximation (18) of x(p) needs to be rebuilt to accom‐
modate t. The trick to do this is making expansion coeffi‐
cients time-variant.

Let xN (tp) and yN (tp) be Nth-order polynomial approxima‐
tions of x(tp) and y(tp), respectively, and their elements
xN

k (tp) (k = 12n) and yN
q (tp) (q= 12m) are denoted

by

ì

í

î

ï
ï
ï
ï

xN
k (tp)=∑

i = 1

Nb

cx
ki (t)Φ i (p)

yN
q (tp)=∑

i = 1

Nb

cy
qi (t)Φ i (p)

(26)

where cx
ki and cy

qi are the time-variant coefficients. Corre‐
spondingly, the derivative of xk with respect to time is

dxk

dt
»

dxN
k

dt
=∑

i = 1

Nb

Φ i (p)
dcx

ki

dt
(27)

The residual functions are defined by using the idea in
Section IV-A, i.e., xN (tp) and yN (tp) should make (3) hold
as much as possible. Considering (26) and (27), the residual
functions of n differntial equations and m algebraic equa‐
tions are defined as

ì

í

î

ïï
ïï

Rf
k (p)= fk (xNyNp)-∑

i = 1

Nb

Φ i (p)
dcx

ki

dt

Rg
q (p)= gq (xNyNp)

(28)

where k = 12n; and q= 12m.
By projecting the residual functions onto the space

spanned by test basis {Ψ j (p)}( j = 12Nb), which is deter‐
mined by traditional or generalized Galerkin method, we ob‐
tain the following Galerkin equations.

ì

í

î

ïï
ïï

fk (xNyNp)Ψ j (p) -∑
i = 1

Nb

Φ i (p)Ψ j (p)
dcx

ki

dt
= 0

gq (xNyNp)Ψ j (p) = 0

(29)

where k = 12n; q= 12m; and j = 12Nb.
Note that p disappears after working out the inner prod‐

uct. Hence, (29) is a set of DAEs with respect to {cx
ki} and

{cy
qi}, where {cx

ki} acts as n´Nb state variables and {cy
qi} acts

as m´Nb algebraic variables. By solving the DAE set [26],
the coefficients {cx

ki} and {cy
qi} can be obtained, and thus the

explicit approximate polynomial solutions xN (tp) and yN (tp)
for the parametric DAEs are obtained.

D. Galerkin Method Combined with Generalized Polynomial
Chaos (gPC) for Stochastic Problems

In addition to PPs, the Galerkin method can also be used
to solve stochastic problems where parameters are random
variables. Under this circumstance, this method is usually
combined with the gPC.

The gPC method [24] is an extension of Wiener’s polyno‐
mial chaos [36], and has become a popular method for sto‐
chastic analysis of complex systems such as fluid dynamics

[37] and control engineering [38].
Let x(Z) denote model of the stochastic problem, and Z =

[Z1Z2Zl] denote the vector of independent random vari‐
ables with a joint probability density function (PDF) ρ(Z)=

∏
i = 1

l

ρ i (Zi). The specialty of gPC is choosing univariate orthog‐

onal polynomial sequence with respect to the PDF ρ i (Zi) for
each Zi when constructing the polynomial basis. This choice
may make the resultant polynomial approximation optimal in
the sense of probability measure.

The orthogonal (and also optimal) polynomials correspond‐
ing to different probability distributions can be found in the
Askey scheme [16], [24], four of which are listed in Table
II. For other distributions, the corresponding orthogonal poly‐
nomials can be acquired by the Stieltjes or Chebyshev algo‐
rithm [39], or these distributions can be transformed to distri‐
butions with known orthogonal polynomials in the Askey
scheme [25].

By combining Galerkin method with gPC, a new method
for stochastic problems, called stochastic Galerkin method,
is established. This method can be regarded as a special
polynomial approximation based on Galerkin method, and
thus most contents in previous sections can be generalized to
this new method. Only small changes should be made, i. e.,
replacing the parameters p with random variables Z, choos‐
ing polynomial basis to be corresponding orthogonal polyno‐
mial basis, and letting the weight function in the inner pro‐
duction definition (22) to be the PDF ρ(Z). Under this cir‐
cumstance, the inner product is defined as

f (Z)g(Z) = ∫
S
f (Z)g(Z)ρ(Z)dZ (30)

where f (Z) and g(Z) are two arbitrary functions; and S is
the definition domain of Z.

Let the Nth-order polynomial approximation of the kth ele‐
ment of the function vector x(Z):Rl ®Rn denoted by

xN
k (Z)=∑

i = 0

Nb

ckiΦ i (Z) k = 12n (31)

where Φ i (Z) is the basis function, which is the product of
univariate orthogonal polynomial in each dimension. By uti‐
lizing the aforementioned Galerkin method, the coefficient
cki and polynomial approximation xN

k (Z) can be obtained.
The probability distribution and statistical characteristics

of x can be calculated by the acquired polynomial approxi‐
mation. The expectation and variance functions of xkk =
12n are

TABLE II
SOME PROBABILITY DISTRIBUTIONS AND THEIR CORRESPONDING

ORTHOGONAL POLYNOMIALS

Distribution

Gaussian

Gamma

Beta

Uniform

Orthogonal polynomial

Hermite

Laguerre

Jacobi

Legendre

Support

(-¥¥)

[0¥)

[ab]

[ab]
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ì

í

î

ïï
ïï

E(xk)»E(xN
k )= xN

k 1 = ck0

Var(xk)»Var(xN
k )= xN

k xN
k -E2 (xN

k )=∑
i = 1

Nb

c2
ki χ i - c2

k0

(32)

where ck0 is the coefficient of constant term; and χ i =
Φ i (Z)Φ i (Z) .

The higher moments and probability distribution functions
of xkk = 12n can be calculated by the values of the
polynomial function xN

k (Z) at many samples of Z generated
by MCS or Latin hypercube sampling. This sampling is inex‐
pensive and thus efficient, since it is very simple to compute
the values of a polynomial.

V. EXAMPLES OF POWER SYSTEM PPS SOLVED BY

GALERKIN METHOD

Polynomial approximation based on Galerkin method is a
powerful tool to tackle many PPs in power system analysis.
This section presents four application examples and some po‐
tential applications. These examples can be modeled as three
types of typical PPs introduced in Section II, and solved by
Galerkin method according to the process introduced in Sec‐
tion IV.

A. PPF

PPF, introduced by Borkowska [9], aims to analyze the
probability uncertainty of system states caused by system pa‐
rameters with probability uncertainty such as the fluctuation
of loads, power outputs of DGs. Its results are valuable for
system analysis such as assessing the risk that system states
exceed the operational limit.

Mathematically, PPF is the stochastic parametric NAE
problem 0= f (xp) described by (1). Here p denotes the vec‐
tor of uncertain parameters such as stochastic power injec‐
tions at wind farms, photovoltaic plants, and load nodes; x
denotes the vector of system states such as the nodal voltage
amplitudes and phase angles (or the real part and imaginary
part); and f (×) denotes the power flow equations.

This problem can be tackled by two approaches in the
context of polynomial approximation based on Galerkin
method. The first approach follows the general solving strate‐
gy of PPs in Section IV-A, i.e., first approximating the rela‐
tionship between state variables and parameters, and then
calculating the probability distributions of system states by
taking the probability distributions of parameters into ac‐
count. The second approach combines the Galerkin method
and gPC in Section IV-D, i. e., considering the probability
distributions of parameters when approximating the parame‐
ter-state relationship. The two approaches are basically the
same, whereas the latter is better from the perspective of
probability measure.

There are a few studies on solving the PPF problem by
Galerkin method. In [28], [40] and [41], methods based on
the rectangular coordinate and polar coordinate are proposed,
respectively. In [29], a method considering the correlation of
wind generation is proposed.

Figure 4 extracted from [29] shows the PDF calculation

results of the IEEE 30-bus system with two stochastic param‐
eters. The power outputs of wind farms at nodes 18 and 19
are modeled as stochastic parameters following Weibull dis‐
tribution, and the PDF of voltage amplitude at node 30 is de‐
picted to compare the accuracy of Galerkin method and CM.
It can been seen that Galerkin method combined with gPC
can achieve a high accuracy almost the same with the MCS,
whereas the CM has conspicuous inaccuracy because the lin‐
earization technique that the CM is based on cannot reflect
the nonlinearity of power flow equations. This result vali‐
dates that Galerkin method can retain the nonlinearity of
power flow equation and thus yields accurate calculation re‐
sults.

B. Approximation of Local SVSRB

The voltage stability largely depends on the loads, which
are regarded as parameters here. The SVSRB is the hypersur‐
face that splits the parameter space into the stable subspace
and the unstable one. According to the criteria of static volt‐
age stability, the SVSRBs can be classified into saddle-node
bifurcation surfaces and practical security-constrained surfac‐
es, etc.

The saddle-node bifurcation surface can be modeled as:

ì

í

î

ïï
ïï

f (xp)= 0

ηT fx = 0

ηTη= 1

(33)

where fx is Jacobian matrix of power flow equations; and η
is the left eigenvector that corresponds to the zero eigenval‐
ue of fx. The practical security-constrained surface can be
modeled as:

{f (xp)= 0

vk - -V k
= 0 (34)

where vk is certain concerned electrical quantity such as the
nodal voltage amplitude and generator reactive output; and

-V k
is the corresponding critical value such as minimal bus

voltage or maximal reactive power output of generator.
Equation (33) contains 2n+ l variables and 2n+ 1 equa‐

tions, where n and l denote the sizes of x and p, respective‐
ly. Therefore, there are l - 1 independent variables, and thus
(33) determines an (l - 1)-variate implicit function p1 =
g(p2p3pl). Similarly, (34) contains n+ l variables and n+

MCS
gPC
CM

250

200

150

100

50

0

PD
F

0.740 0.745 0.750 0.760 0.765 0.7700.755
Voltage amplitude at node 30 (p.u.)

Fig. 4. PDFs of voltage amplitude at node 30 of IEEE 30-bus system ob‐
tained by benchmark MCS with 105 samples, 3rd-order Galerkin method
combined with gPC, and CM.
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1 equations, and thus also determines an (l - 1)-variate implic‐
it function.

Mathematically, both (33) and (34) belong to parametric
nonlinear algebraic problems (1), and thus can be solved by
Galerkin method according to Section IV-A. Let the resultant
polynomial approximation be denoted by gN (p2p3pl),
and then the acquired SVSRB can be denoted by the equa‐
tion B(p)= p1 - gN (p2p3pl)= 0.

Figure 5 extracted from [31] shows a two-parameter SVS‐
RB, which is a curve in R2, where p1 =PL7 and p2 =QL7 are
the active and reactive power at node 7 of IEEE 10-bus sys‐
tem, respectively. The polynomial approximation constructed
by Galerkin method is p1 = 43.02- 0.1536p2 - 0.00436p2

2 -
7.369´ 10-5 p3

2. It can be seen that this polynomial approxi‐
mation is almost identical to the exact SVSRB (obtained by
sampling), whereas the tangent hyperplane and 2nd-order tan‐
gent hypersurface (based on the 1st- and 2nd-order Taylor ex‐
pansions, respectively) have notable error. The accuracy ad‐
vantage of the Galerkin method roots in its global character‐
istic compared with the Taylor expansion-based local meth‐
ods.

C. Approximation of Global SVSRB

The previous subsection introduces how to acquire the lo‐
cal SVSRB defined by a single stability criterion. In practi‐
cal power systems, there may exist many stability criteria,
each of which corresponds to an SVSRB. A straightforward
approach for obtaining the global SVSRB is to calculate
these SVSRBs separately and then splice them together. Nev‐
ertheless, this approach is computationally intensive and the
splicing process is troublesome. This subsection introduces a
new approach that obtains the global SVSRB at one go by
modeling this problem as the parametric NLP.

With other l - 1 parameters (p2p3pl) fixed, increasing
p1 until an arbitrary stability criterion is violated, and then
the resultant parameter point p is certainly on the global
SVSRB, as illustrated by Fig. 6. Therefore, the global
SVSRB can be modeled as the parametric NLP prob‐
lem [32]:

ì

í

î

ïï
ïï

max
x

p1

s.t. f (xp1 ; p2p3pl)= 0

g(xp1 ; p2p3pl)£ 0

(35)

where g(×) is the vector consisting of all stability constraint
functions.

The above parametric NLP problem can be solved by the
Galerkin method according to Section IV-B. Let the resultant
polynomial approximation denoted by gN (p2p3pl), and
then the acquired global SVSRB can be denoted by the equa‐
tion B(p)= p1 - gN (p2p3pl)= 0. Furthermore, the La‐
grange multipliers corresponding to inequality constraints are
also approximated and can be used to identify which inequal‐
ity constraints are active for different points of parameter p
on the global SVSRB.

D. Parametric Time-domain Dynamic Simulation

Apart from power system steady states (e.g., power flow),
parameter uncertainty also has great impact on system dy‐
namic states and performance, resulting in the parametric
time-domain dynamic simulation problem.

This problem can be modeled as the parametric DAE
problem (3) solved by Galerkin method according to Sec‐
tion IV-C, as elaborated in [33], [34]. If parameters are fur‐
ther random variables, Galerkin method can be combined
with the gPC in Section IV-D. The solution provides explic‐
it and accurate system dynamic trajectories xN (tp) and
yN (tp) at each possible value of parameter p, and is very
useful to analyze the impact of parameters on system dy‐
namic behavior.

Figure 7 extracted from [34] depicts the post-fault trajecto‐
ries of the difference between power angles of generators 2
and 1 (δ21) in the IEEE 3-generator 9-bus system. The power
output of generator 2 (PG2) is the studied parameter and var‐
ies from 55 MW (rated value) to 135 MW. It can be seen
that when PG2 = 80 MW, which varies slightly from the rated
value, both the trajectory obtained by Galerkin method and
that of the sensitivity method track the exact trajectory well
before t = 2 s. Nevertheless, after that time, the latter devi‐
ates obviously from the exact one whereas the former retains
its accuracy. When PG2 = 135 MW, which varies largely, the
former still has good approximation accuracy for nearly all
the time, whereas the latter loses its accuracy since t = 0.5 s.
This result validates that Galerkin method can yield an accu‐
rate system dynamic trajectory, whereas the sensitivity meth‐
od may not.
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Polynomial approximation; Exact SVSRB

Tangent hyperplane; 2nd-order tangent hypersurface

Fig. 5. A two-parameter SVSRB.

p1

p2, p3, …, pl�1

pl

max p1

SVSRB

Domain of parameter

Fig. 6. Optimization model of global SVSRB.
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E. Potential Applications

In addition to the above applications in published litera‐
ture, the polynomial approximation based on Galerkin meth‐
od also has many potential applications. The introduced
method provides a polynomial-form surrogate model simpli‐
fying the original model, and can be applied to problems
that sensitivity method can deal with. Some potential applica‐
tions on parameter design and DG uncertainty are as follows.

OPF [42] aims to minimize certain cost, e. g., generation
cost, by adjusting control variables. The uncertainty of inte‐
grated large-scale DGs has necessitated the extension of
OPF to stochastic optimal power flow (SOPF). A research
perspective for SOPF is to study the impact of uncertainty
of DG power outputs (namely parameters) on the optimal so‐
lution of OPF. This problem can be modeled as parametric
NLP (2), and thus solved by Galerkin method according to
Section IV-B. Another perspective is to find the optimal solu‐
tion under the chance-constraint model [43], and how to ap‐
ply Galerkin method to this problem is worth exploring.

Power system dynamic control such as model predictive
control [44] is a fundamental tool to maintain system securi‐
ty and stability. It is usually not easy to optimize the control
model because it involves complicated differential equations
representing system dynamic behavior, e. g., transient pro‐
cess, mid-long term process. The Galerkin method can be
used to approximate the relationship between control vari‐
ables (namely parameters) and state variables just like solv‐
ing (3). With state variables replaced by the acquired polyno‐
mial functions of control variables, the control model be‐
comes an explicit model composed of only control variables
and their simple functions, and is easy to solve.

Generator parameters, e. g., excitation parameters, have
great impact on power system small-disturbance stability and
should be optimized. Given a parameter value, a group of
system eigenvalues and the stability margin can be calculat‐
ed, which yields a PP like (33). Galerkin method can be ap‐
plied to this problem, and results in a polynomial function
describing the relationship between parameters and stability,
by which parameters can be tuned.

When studying the characteristics of the internal network,
it is necessary to perform external network equivalence. A

PP can be established by regarding tie-line transmission pow‐
er as functions of mutable variables (namely parameters) of
the external network. Then, Galerkin method can be used to
solve this problem, and thus the impact of the external net‐
work is equivalent to the acquired polynomial approximation.

Besides, there are some parametric or stochastic problems
solved by polynomial approximation based on collocation
methods, e. g., available delivery capability assessment con‐
sidering DG uncertainty [45]. Most of them can also be
solved by the introduced Galerkin method.

VI. CONCLUSION AND FUTURE WORK

This paper provides a review of the theory of polynomial
approximation based on Galerkin method and its applica‐
tions in power system PPs as well as stochastic problems.

The PP aims to seek an explicit function describing the re‐
lationship between uncertain parameters and system states.
The acquired explicit function is significant for studying the
impact of uncertain parameters on system states or perfor‐
mances. This paper introduces three types of typical PPs,
namely parametric NAEs, NLP, and DAEs. Besides, the sto‐
chastic problem is treated as a special case of PPs whose pa‐
rameters are additionally following certain probability distri‐
butions, and thus can be solved by Galerkin method as well.

In terms of mathematical theory, this paper elaborates the
introduced method. Galerkin method is a function approxi‐
mation method that seeks an explicit approximate function
by projection technique. Combined with polynomial approxi‐
mation, Galerkin method can provide the PP with an accu‐
rate and quasi-optimal polynomial solution.

In terms of applications, this paper presents some exam‐
ples of power system PPs, namely PPF, SVSRB, and para‐
metric time-domain dynamic simulation. These examples can
be modeled as three types of typical PPs and solved by the
introduced method. The acquired solutions are global and re‐
main accurate in strong linearity case compared with those
acquired by popular sensitivity methods.

There are many prospective works for the introduced
method and its applications in power systems. So far, this
method only has a handful of applications in power system
analysis. Actually, many more power system problems such
as those in Section V-E can be modeled as the three types of
typical PPs and thus solved by this method.

Another worthwhile work is to refine this method. The
computation burden of this method may become very large
when system scale and parameter number are large. Promis‐
ing approaches for reducing the computation burden include
constructing a sparser basis, adopting dimension reduction
techniques, etc.
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