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A Hybrid Model for Short-term PV Output
Forecasting Based on PCA-GWO-GRNN
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Abstract——High-precision day-ahead short-term photovoltaic
(PV) output forecasting is essential in PV integration to the
smart distribution networks and multi-energy system, and pro‐
vides the foundation for the security, stability, and economic op‐
eration of PV systems. This paper proposes a hybrid model
based on principal component analysis, grey wolf optimization
and generalized regression neural network (PCA-GWO-GRNN)
for day-ahead short-term PV output forecasting, considering
the features of multiple influencing factors and strong uncer‐
tainty. This paper first uses the PCA to reduce the dimension of
meteorological features. Then, the high-precision day-ahead
short-term PV output forecasting based on GWO-GRNN model
is realized. GRNN is used to regressively analyze the input fea‐
tures after dimension reduction, and the parameter of GRNN is
optimized by using GWO, which has strong global searching
ability and fast convergence. The proposed PCA-GWO-GRNN
model effectively achieves a high precision in day-ahead short-
term PV output forecasting, which is demonstrated in a case
study on a real PV plant in Jiangsu province, China. The re‐
sults have validated the accuracy and applicability of the pro‐
posed model in real scenarios.

Index Terms——Photovoltaic output forecasting, principal com‐
ponent analysis (PCA), grey wolf optimization (GWO), general‐
ized regression neural network (GRNN).

I. INTRODUCTION

PHOTOVOLTAIC (PV) power generation technology is
becoming an essential component of the smart grid as

PV plants are being connected to the smart distribution net‐
work (SDN) on a large scale. The effective way to make full
use of PV generation system is to keep the total output pow‐
er of multi-energy system relatively stable, reduce power
fluctuation, improve power quality and reduce the impact on

the power grid. However, the output of PV plant has strong
randomness and intermittent because of the significant effect
by a number of factors such as solar irradiance, temperature,
and humidity. Therefore, large-scale PV integration in SDN
has a strong impact on the safety and stability of power sys‐
tem operations. In summary, to reduce the impact of large-
scale PV penetration and ensure the secure and economic op‐
eration of power systems, it is imperative to achieve an accu‐
rately day-ahead short-term PV output forecasting by an ef‐
fective model [1]-[4].

Existing short-term PV output forecasting approaches can
be mostly categorized as physical or statistical methods. The
physical method is built on solar irradiance transfer equa‐
tion, PV module operation equation, and/or other physical
equations. This category relies on detailed and precise geo‐
graphic location information as well as the weather and solar
irradiance data of the PV plants to create the model in an of‐
ten-complicated process [5]. For example, [6] establishes a
mathematical model of the PV cell and the PV inverter with
high simulation precision to calculate the output of PV sys‐
tem at different irradiances and ambient temperatures. The
physical method involves many links and its parameters are
difficult to be solved, and the physical formula itself also
has some errors, thus the anti-interference ability and robust‐
ness of the physical method are poor [7], [8]. The statistical
method is based on statistical rules between input and output
factors of the PV forecasting model. It does not require com‐
plicated geographic information of PV power stations [9],
which simplifies the forecasting process by statistical meth‐
ods such as the Markov chain [10], support vector machine
(SVM) [11], and artificial neural networks (ANNs) [12]. Ref‐
erence [13] establishes five kinds of long short-term memory
(LSTM) network models to forecast PV output, which con‐
siders the temporal changes in PV plant when constructing
the forecasting models. These models have better forecasting
accuracy than multiple linear regression (MLR) and bagged
regression tree (BRT) models. Reference [14] proposes a hy‐
brid improved multi-verse optimizer algorithm (HIMVO) to
optimize the SVM for PV output forecasting. The HIMVO
has higher convergence rate, better optimization ability and
stability than other optimization algorithms. However, SVM
is difficult to be implemented for large-scale training sam‐
ples. The combined model of PV output forecasting is also
one of current research hotspots. In [15], an ensemble tech‐
nique is proposed, which creates a set of individual recursive
arithmetic average models on the forecasting of power out‐
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puts. The data-driven ensemble model can be applied to situ‐
ations where a large amount of data needs to be processed
and performs better than the other forecasting techniques. In
[16], a model called short-term PV power dynamic weighted
combination forecasting based on the least squares (LS) mod‐
el is proposed. This model is superior to other single models
in forecasting PV power. However, the weighting of the com‐
bined model has always been a difficult problem.

PV output is directly related to solar irradiance, but it is
also affected by multiple complex meteorological factors, in‐
cluding temperature, humidity, and precipitation and others
[17]. Nevertheless, too many meteorological input features
will reduce the sensitivity of the PV output forecasting mod‐
el to solar irradiance. In the meantime, such variables often
exhibit high randomness, and the implementation of data
mining is difficult. As a kind of artificial intelligence fore‐
casting algorithm, the ANN algorithm is a computational al‐
gorithm based on animals’ central nervous systems (especial‐
ly the brain), which can be used for pattern recognition and
machine learning. As a powerful regression tool with a dy‐
namic network structure, the generalized regression neural
network (GRNN) belongs to the category of ANNs, which
has strong nonlinear mapping capability, high error tolerance
and robustness. However, the most critical challenge is how
to determine the spread parameter appropriately when the
GRNN model is employed to deal with the actual problems.
At present, most researchers select the spread parameter val‐
ue by sufficient experiments or experience, which consumes
much time but cannot guarantee the forecasting accuracy.
Therefore, in this paper, the spread parameter value of the
GRNN model is automatically determined by the grey wolf
optimization (GWO) algorithm. Compared with the particle
swarm optimization (PSO) algorithm, the GWO algorithm
has fewer modulation parameters and is less difficult to be
realized. Also, the search ability and search speed of GWO
algorithm are stronger and faster than those of the PSO algo‐
rithm. Based on the above analysis, this paper proposes a
new hybrid model to forecast PV output through a three-step
process of principal component analysis (PCA), GWO and
GRNN, as shown in Fig. 1. With a focus on day-ahead short-
term PV output forecasting, the main contributions of this pa‐
per are:

PCA

PV plant
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GRNN
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Fig. 1. PV output forecasting model based on PCA-GWO-GRNN.

1) In order to eliminate the collinearity of the input fea‐
tures of meteorological conditions, reduce the dimension of
the input features, and avoid the model from overfitting, the

PCA is used to reduce the dimensionality of the input fea‐
tures of meteorological conditions.

2) A day-ahead short-term PV output forecasting model
based on GWO-GRNN is proposed. Among them, GRNN is
used to fit the complex nonlinear relationship between PV
output and input features. And the parameter of GRNN is op‐
timized by GWO with strong global searching capacity. The
case study verifies that the model proposed in this paper has
strong forecasting accuracy and robustness.

The rest of the paper is organized as follows. The PCA is
adopted to reduce the dimension of multi-weather factors
and extract the features in Section II. Section III illustrates
the basic theories of GRNN and GWO. Section IV presents
a case study using a real PV plant in Jiangsu province, Chi‐
na, which verifies the accuracy and robustness of the pro‐
posed forecasting model. Section V draws the conclusions.

II. DIMENSION REDUCTION OF METEOROLOGICAL INPUT

FEATURES BASED ON PCA

The energy used for PV output is completely derived from
the solar irradiance, thus the solar irradiance directly affects
the PV output. In addition, the output of PV plants is also af‐
fected by many other meteorological factors such as tempera‐
ture, atmospheric pressure, and humidity. However, too
many meteorological input features will cause the forecast‐
ing model to have a complicated structure, increase the train‐
ing burden and affect the learning speed. Moreover, it will
reduce the sensitivity of the forecasting model to solar irradi‐
ance.

The meteorological input features for PV output forecast‐
ing often have strong correlation. In this paper, the PCA is
adopted to simplify the meteorological input features into a
comprehensive meteorological factor. The PCA mainly finds
a small set of linear combination variables to replace the
original variables, so as to achieve the purpose of effectively
separating the commonality between the data vectors while
retaining the original variable information [18]-[21].

Assume that there are n samples and each sample has p
variables, we can create an n × p data matrix. The process
of PCA includes six steps as follows.

Step 1: standardize the original data into valid data.
Step 2: calculate the correlation coefficient matrix R.
Step 3: compute eigenvalues and eigenvectors. Firstly, the

characteristic equation | λI -R |= 0 is solved and the Jacobian
method is used to find the eigenvalues λ j (j = 12p),
where I is the identity matrix and λ is the eigenvalue. The ei‐
genvalues are arranged in order of size, i.e., λ1 ³ λ2 ³³ λp ³
0. Then, the eigenvectors a j (j = 12p) corresponding to
the eigenvalues λ j are found.

Step 4: calculate the principal component contribution rate
and the cumulative contribution rate. The contribution rate

of principal component is formulated as η i = λ i ∑
k = 1

p

λk i =

12m. The cumulative contribution rate is defined by ρk =

∑
k = 1

i

λk ∑
k = 1

p

λk i = 12m, where m is the number of princi‐

pal components. In general, the principal component is tak‐
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en, corresponding to the eigenvalues with cumulative contri‐
bution rate of 85%-95%.

Step 5: calculate the principal component value. The value
of each principal component is calculated according to (1).

ì

í

î

ï

ï
ï
ïï
ï

ï

ï
ï
ïï
ï

z1 = a11 x1 + a12 x2 ++ a1j xj ++ a1p xp

z2 = a21 x1 + a22 x2 ++ a2j xj ++ a2p xp


zi = ai1 x1 + ai2 x2 ++ aij xj ++ aip xp


zm = am1 x1 + am2 x2 ++ amj xj ++ amp xp

(1)

where aij (i = 12mj = 12p) is the element of the ei‐
genvector matrix; and zi (i = 12m) is the value of princi‐
pal component.

Step 6: calculate the comprehensive meteorological factor.
The comprehensive meteorological factor F can be obtained
from the linear weighted sum of the above m principal com‐
ponents, as shown in (2).

F = η1 z1 + η2 z2 ++ η i zi ++ ηm zm (2)

where η i is the contribution rate.

III. GRNN BASED ON GWO

Recently, ANNs have entered the PV output forecasting
realm, and a number of approaches are developed based on
Elman neural network [22], back propagation (BP) neural
network [23], and LSTM neural network [24], etc. However,
these networks are all global approximation networks, and
one or more weights of these networks have effect on each
output, resulting in a slower learning speed. In addition,
these networks have randomness when determining the
weights, resulting in an uncertain relationship between the in‐
put and output after each training, which makes the forecast‐
ing results different. Moreover, the determination of the num‐
ber of layers of these networks and the number of hidden
layer nodes lack theoretical guidance. As an improved algo‐
rithm of radial basis function (RBF) neural network, GRNN
is a local approximation neural network [25]. The establish‐
ment of GRNN has a clear theoretical basis, there is no need
to perform a cyclic training process, and there is no need to
adjust the connection weights between neurons during the
training process. Therefore, GRNN has the advantages of sat‐
isfactory robustness and fast calculation rate. And GRNN al‐
so has a stronger nonlinear mapping ability and a flexible
network structure with high fault tolerance [26]-[28]. As a re‐
sult, GRNN is a suitable tool for forecasting the PV output
with many factors and complex randomness [29].

The GWO algorithm is a swarm intelligence algorithm
proposed by [30] with good self-organizing learning ability,
simple parameters, easy implementation, and good global
searchability [31], [32]. And by comparing with other four
famous meta-heuristic algorithms (PSO algorithm, gravity
search algorithm, differential evolution algorithm and fast
evolutionary programing algorithm) on 29 test functions, the
simulation test proves its superiority. In this paper, the GWO
algorithm is adopted to the selection of the spread parameter
of GRNN to enhance the performance of GRNN, which can

also be found in our previous study [33].

A. GRNN

GRNN is composed of the input, the pattern, the summa‐
tion, and the output layers. The corresponding input and out‐
put vectors can be denoted by X = [X1X2Xn ] and h=

[ h1h2hm ], respectively. The GRNN structure is shown

in Fig. 2.

The number of input layer neurons is the same as the in‐
put dimension of the training samples, and each neuron
transmits the input data directly to the pattern layer.

The number of pattern layer neurons is consistent with the
number of training samples, and the transfer function is the
RBF:

Ki = exp ( - ( )X -Xi

T ( )X -Xi

2σ 2 ) (3)

where Ki is the transfer function; and σ is the spread parame‐
ter.

The summation layer utilizes two summation ways: one is
to calculate the weighted sum of the output of each neuron
in the pattern layer; the other is to calculate the arithmetic
sum of the outputs of the neurons in the pattern layer. The
two types of formulas are shown in (4) and (5), respectively.

SNj =∑
i = 1

n

hij exp ( )-
( )X -Xi

T ( )X -Xi

2σ 2
j = 12m (4)

SD =∑
i = 1

n

exp ( )-
( )X -Xi

T ( )X -Xi

2σ 2
(5)

where SNj is the weighted sum; SD is the arithmetic sum;
j = 12m; and hij is the jth element in the ith training sam‐
ple, and the value of j is 1 during PV output forecasting.

The output layer adopts a linear function to output the re‐
sult, and the estimation of the corresponding neuron j is:

hj =
SNj

SD
(6)

GRNN has only one parameter that needs to be deter‐
mined, i.e., the spread parameter σ. If σ is too large, the fore‐
casted value will approximate the mean of the target value in
all training samples. If σ is too small, the generalization ability

�
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Fig. 2. GRNN structure.
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of the forecasting model will be limited. Therefore, in order to
determine the best value of σ, the GWO is applied to find the
optimal value and improve the forecasting accuracy of GRNN.

B. GWO Algorithm

The GWO algorithm imitates the leadership hierarchy and
hunting mechanism of grey wolves in nature. Compared
with the PSO algorithm, the GWO algorithm does not de‐
pend on the setting of the parameters, and has both stronger
search ability and faster search speed. α, β, δ, and ω are em‐
ployed to simulate the leadership hierarchy as shown in Fig.
3 [33]. The primary stages of grey wolf hunting are as fol‐
lows: ① searching and tracking the prey; ② chasing and en‐
circling the prey until it stops moving; ③ attacking the prey.

To simulate the social hierarchy of wolves in GWO algo‐
rithm, we define three wolves α, β, and δ, and denote the re‐
maining wolves as ω, according to the hierarchy. Among
them, wolf α is the optimal solution, wolves β and δ are the
sub-optimal solutions, and the remaining wolves ω are candi‐
date solutions. The wolf pack approaches the optimal solu‐
tion in the search space through the initial solution of three
individual wolves α, β, and δ. The locations of wolves are
then updated and evolved, while the distance from the prey
is updated until the optimal solution is obtained. Figure 4
shows the positioning of the grey wolf and its prey, and the
parameters involved in the equation to update the position of
the grey wolf in the search space [30]. The position of the
prey would be in a random place within a circle that is de‐
fined by the positions of α, β, δ in the search space. R is the
radius of that circle.

The distance D between a wolf and the prey should be de‐
termined in advance before hunting:

D= |CΦp (i)-Φ (i) | (7)

where Φp (i) and Φ (i) are the locations of the prey and the

wolf at the iteration i, respectively; and C = ( )ci is the coeffi‐

cient vector.

ci = 2r1 (8)

where r1 is the spatial distance coefficient in [0, 1].
As the distance between the individual wolf and the prey

decreases, the position of the individual wolf is constantly
updated by:

Φ (i + 1)=Φp (i)- ξD (9)

where ξ is the coefficient vector.

ξ = 2ar2 - a (10)

where a decreases from 2 to 0 as the number of iterations in‐
creases; and r2 is the same random coefficient as r1 in [0, 1].

Wolves α, β, and δ are assumed to be the first wolves clos‐
est to the prey in the wolf pack. The positions of the remain‐
ing wolves ω are updated by:

Dα = |CαΦα (i)-Φ (i) | (11)

Dβ = |CβΦβ (i)-Φ (i) | (12)

Dδ = |CδΦδ (i)-Φ (i) | (13)

Φ1 =Φα - ξ1 Dα (14)

Φ2 =Φβ - ξ2 Dβ (15)

Φ3 =Φδ - ξ3 Dδ (16)

Φ (i + 1)=
Φ1 +Φ2 +Φ3

3
(17)

where Φα, Φβ, and Φδ are the current positions of wolves α,
β, and δ, respectively; Cα, Cβ, and Cδ are the coefficient vec‐
tors of wolves α, β, and δ, respectively; ξ1 ξ2, and ξ3 are the
coefficient vectors; and Dα, Dβ, and Dδ are the distances be‐
tween the individual wolfs α, β, δ and the head wolf in the
remaining wolves ω, respectively.

The GWO algorithm locates the range of prey (optimal so‐
lution) through the positions of wolves α, β, and δ, as it
gradually reduces the distance from the prey before finally
catching it. Compared with other intelligent algorithms that
search for the optimal solution, the GWO algorithm is capa‐
ble of a multi-position search, which significantly improves
the global search capacity.

C. Process of Proposed Model

This paper proposes a hybrid model based on PCA-GWO-
GRNN for the PV output forecasting, which can be divided
into the following five steps.

Step 1: data preprocessing.
Step 2: dimension reduction. The PCA is adopted to sim‐

plify the meteorological input features into a comprehensive
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meteorological factor.
Step 3: sample selection. The historic weather type, tem‐

perature, and day of year (DOY) are used as indicators to
identify similar days for GRNN training. According to the
meteorological conditions on the day of forecasting with the
weather forecast, the samples with the same weather type as
the day of forecasting are selected from the historical day to
constitute the set A. Samples in set A whose daily maximum
temperature is within ±3 ℃ from the day of forecasting are
selected to form set B. Similarly, the samples in set B,
whose DOY is within 30 days from the day of forecasting,
are selected to form set C, which is called the set of similar
days and used for parameter optimization and model training.

Step 4: parameter optimization. The samples in set C are
divided into 10 folds for cross-validation, among which one
fold is selected as the validation set, and the other 9 folds
are combined as the training set. Then, we can use the fore‐
casting error of GRNN as the fitness function of GWO algo‐
rithm to optimize the parameter σ of GRNN. The relevant
initial parameters of the GWO algorithm are set as follows:
the number of wolves is 20, the number of iterations is 50,
and the variable dimension is 1. Finally, the optimal value
among the 10 validations will be chosen.

Step 5: offline training. After determining the optimal pa‐
rameter of the GRNN model, the training sample set is used
for offline training of the GRNN model. The PV output fore‐
casting model is then obtained after importing the input fea‐
ture data on the day of forecasting to the trained GRNN
model. The flowchart of short-term PV output forecasting
based on PCA-GWO-GRNN is shown in Fig. 5.

IV. CASE STUDY

In this case study, the focus is on verifying the accuracy
and robustness of the proposed model for day-ahead short-
term PV output forecasting [34], [35]. To this end, the actual
PV output data from a PV plant in Jiangsu province, China

from January 1, 2018 to December 31, 2018 are collected,
which have a 15-minute interval from 08:00 to 17:00. In or‐
der to verify the accuracy and superiority of the proposed
model based on the PCA-GWO-GRNN, three forecasting
models, including GWO-GRNN, PCA-LSTM, and PCA-
PSO-BP models, are used for PV output forecasting. The
forecasting results of the four models are compared and veri‐
fied.

A. Forecasting Accuracy Evaluation

In this paper, after obtaining the final PV output forecast‐
ing value, the nominal mean absolute error (nMAE) and root
mean square error (RMSE) are used to evaluate the forecast‐
ing accuracy [36], [37], as shown in (18) and (19), respec‐
tively.

EM =
1
n∑t = 1

n || ŷt - ŷst

yz

´ 100% (18)

ER =
1
n∑t = 1

n

( )ŷt - ŷst

2

(19)

where n is the number of forecasting points; ŷt is the PV out‐
put forecasting value at time t; ŷst is the actual PV output at
time t; and yz is the installed PV capacity.

B. Data Preprocessing

Taking the features of PV into account, the irradiance,
temperature, atmospheric pressure, wind speed, relative hu‐
midity, and precipitation are used as input features. The in‐
put variables x1 - x8 and output variable y of the forecasting
model are shown in Table I. And all input features are nor‐
malized to [-1,1].

C. Principal Component Analysis of Meteorological Factors

According to Table I, five meteorological variables x1, x2,
x3, x4, and x5 are analyzed by principal component analysis,
and five index variables are obtained. The eigenvalues of the
covariance matrix of the five variables are shown in Table II.

As shown in Table II, the cumulative contribution rate of
the first three principal components reaches 84.20%, thus the
first three principal components are taken as the input fea‐
tures of the forecasting model in this paper. According to the
PCA model in Section II, the proportion coefficient of princi‐
pal components is shown in Table III.

Start

End

Offline training of GRNN

Update location

Update paremeter

Output forecasting result

Use PCA to realize the
dimension reduction of

 meteorological input features

Select similar day as
training sample set

Optimize the parameter of
GRNN with GWO algorithm 

Establish a GRNN
forecasting model

Initialize the wolves by limits
of the position of the gray wolf

Determine fitness value of
each individual gray wolf

according to the fitness function

Rank wolves according to fitness
(the top three are wolfs α, β and

δ, respectively)

Is the
condition met?

Determine the position of
wolf α and get result

Y

N

Fig. 5. Flowchart of short-term PV output forecasting based on PCA-
GWO-GRNN.

TABLE I
INPUT AND OUTPUT VARIABLES OF FORECASTING MODEL

Variable

x1

x2

x3

x4

x5

x6

x7

x8

y

Definition

Temperature at forecasting time

Atmospheric pressure at forecasting time

Relative humidity at forecasting time

Wind speed at forecasting time

Precipitation at forecasting time

Solar irradiance at forecasting time

Solar irradiance at 15 min before forecasting time

Solar irradiance at 15 min after forecasting time

PV output at forecasting time
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The sample values of the first three principal components
can be obtained as follows:

ì

í

î

ïï
ïï

z1 = 0.69x1 - 0.7x2 - 0.02x3 + 0.13x4 + 0.11x5

z2 =-0.12x1 - 0.13x2 + 0.78x3 - 0.35x4 + 0.49x5

z3 =-0.16x1 + 0.08x2 - 0.07x3 + 0.76x4 + 0.63x5

(20)

The weighted summation is based on the weighted contri‐
bution rate of each principal component to obtain a compre‐
hensive meteorological factor:

F = 0.3767z1 + 0.2505z2 + 0.2148z3 (21)

The input features for the proposed model are the compre‐
hensive meteorological factor and the solar irradiance at fore‐
casting time and 15 min before and after the forecasting time.

D. Forecasting Result and Discussion

In order to verify the accuracy and superiority of the PCA-
GWO-GRNN model, GWO-GRNN, PCA-LSTM, PCA-PSO-
BP and the proposed model are used to forecast the output
of the PV plant from July 4 to 31, 2018 (28 days in four
weeks). Among them, the similar day selection of the four
models adopts the same way as proposed in this paper, and
the input and output variables are also the same. The neural
network and its optimization algorithm are implemented us‐
ing MATLAB 2018(b) and PCA is implemented using
SPSS 19.

The 28 consecutive forecasting days include 6 sunny
days, 12 cloudy days, 1 day of overcast day, and 9 rainy
days. For each of the four weather types, 1 day is selected
for qualitative analysis. The actual output and forecasting re‐
sults of the four models are shown in Figs. 6-9.

Figure 6 shows the forecasting and actual curves of PV
output on a sunny day. The variation of actual PV output
curve is well-regulated. The forecasting curves of the four
models are all close to the actual curve and the result of the
proposed model is closest to the actual PV output.

Figure 7 shows the forecasting and actual curves of PV
output on a cloudy day. Compared with the sunny day, the

thickness and movement of clouds in cloudy weather are dif‐
ficult to forecast. Between 14:00 and 17:00, the PV output
changes very drastically, and the four forecasting curves and
the actual curve have a large deviation. For the period with
large forecasting error, the forecasting curve of PCA-GWO-
GRNN model is closer to the actual curve, which can signifi‐
cantly reduce the forecasting error.

Figure 8 shows the forecasting and actual curves of PV
output on an overcast day. Since the number of training sam‐
ples on overcast days is small, and the forecasting accuracy
of BP neural network and LSTM neural network for small
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Fig. 6. Forecasting results on a sunny day.
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Fig. 7. Forecasting results on a cloudy day.
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Fig. 8. Forecasting results on an overcast day.
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Fig. 9. Forecasting results on a rainy day.

TABLE II
EIGENVALUE OF COVARIANCE MATRIX OF FIVE VARIABLES

Component

1

2

3

4

5

Eigenvalue

1.88

1.25

1.07

0.71

0.08

Contribution rate
(%)

37.67

25.05

21.48

14.19

1.61

Cumulative
contribution rate (%)

37.67

62.72

84.20

98.39

100.00

TABLE III
PROPORTION COEFFICIENT OF PRINCIPAL COMPONENT

Principal
component

1

2

3

x1

0.69

-0.12

-0.16

x2

-0.70

-0.13

0.08

x3

-0.02

0.78

-0.07

x4

0.13

-0.35

0.76

x5

0.11

0.49

0.63
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sample data is insufficient, the forecasting results of the
PCA-LSTM model and PCA-PSO-BP model differ greatly
from the actual curve. The forecasting curve of the proposed
model can better reflect the overall change trend of the actu‐
al power.

Figure 9 shows the forecasting and actual curves of PV
output on a rainy day. The PV output on rainy days has
more uncertainty and randomness. The forecasting results of
all four models are significantly different from the actual
curve. However, the curve of proposed model is closer to
the actual curve.

The comparison of accuracy about Figs. 6-9 is shown in
Table IV. As shown in Table IV, the average value of nMAE
of the proposed model is 2.55%, which is reduced by
2.41%, 1.86% and 3.30%, compared with the GWO-GRNN,
PCA-LSTM, and PCA-PSO-BP models, respectively. The av‐
erage RMSE is 122.32 kW, which is also significantly lower
than the other three models. The results indicate that the pro‐
posed model has a superior performance in day-ahead short-
term PV output forecasting.

To further analyze the model performance, due to the
large dispersion of the daily error of the PV output forecast‐
ing, the forecasting error of different weather types for 28
days is shown in Table V.

According to the error statistics in Table V, for different
weather types, the forecasting accuracy of the PCA-GWO-
GRNN model is better than that of the other three models.
Although the forecasting error of PV output on an overcast
day is 4.09%, which is much worse than the forecasting ac‐
curacy of other weather types, its nMAE and RMSE are still

higher than those of the other three models. In the whole
case, compared with the other three models, the PCA-GWO-
GRNN model has lower nMAE and RMSE. Therefore, the
proposed model has higher accuracy.

V. CONCLUSION

The model proposed in this paper based on PCA-GWO-
GRNN solves the problem of large number of input features
and strong randomness in the day-ahead short-term PV out‐
put forecasting. This paper makes the following contribu‐
tions:

1) PCA is adopted to reduce the dimension of meteorologi‐
cal input features and extract variables containing more than
85% of the original information. It can simplify the dimen‐
sionality of the input features of the model while ensuring
accuracy.

2) GRNN can well fit the complex nonlinear relationship
between PV output and input features, and further improve
the ability to fit regression by introducing GWO algorithm
to optimize its parameter. Thus, the proposed model is an ap‐
propriate mathematical tool to achieve high-precision PV out‐
put forecasting. Furthermore, because of the good forecast‐
ing performance, the proposed model can also provide refer‐
ence for wind power output, power load and heat load fore‐
casting in the future.

3) The results show that the forecasting model proposed
in this paper fully excavates the effective information in the
input features with high robustness and forecasting accuracy,
which can offer effective solutions to the day-ahead short-
term PV output forecasting and provide a basis for the opti‐
mal operation of multi-energy systems.
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