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Scenario-based Unit Commitment Optimization
for Power System with Large-scale Wind Power

Participating in Primary Frequency Regulation
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Abstract——Continuous increase of wind power penetration
brings high randomness to power system, and also leads to seri‐
ous shortage of primary frequency regulation (PFR) reserve for
power system whose reserve capacity is typically provided by
conventional units. Considering large-scale wind power partici‐
pating in PFR, this paper proposes a unit commitment optimiza‐
tion model with respect to coordination of steady state and tran‐
sient state. In addition to traditional operation costs, losses of
wind farm de-loaded operation, environmental benefits and
transient frequency safety costs in high-risk stochastic scenarios
are also considered in the model. Besides, the model makes full
use of interruptible loads on demand side as one of the PFR re‐
serve sources. A selection method for high-risk scenarios is also
proposed to improve the calculation efficiency. Finally, this pa‐
per proposes an inner-outer iterative optimization method for
the model solution. The method is validated by the New Eng‐
land 10-machine system, and the results show that the optimiza‐
tion model can guarantee both the safety of transient frequency
and the economy of system operation.

Index Terms——Unit commitment optimization, primary fre‐
quency regulation (PFR), wind power, transient frequency safety,
high-risk stochastic scenario, inner-outer iterative optimization.

I. INTRODUCTION

THE total amount of wind power connected to power
system increases year by year. In 2017, the global in‐

stalled capacity of wind power increased by 52492 MW, and
the cumulative installed capacity reached 539123 MW, an in‐
crease of 11% compared with the end of 2016 (487279
MW) [1]. The grid-integration problems of wind farms have
become research hotspots [2]-[4]. Usually, the rotor speed of
wind turbine is decoupled from system frequency. Thus,
when the system frequency changes, unlike conventional

units adjusting the output through governor control or rotat‐
ing kinetic energy change, the output of wind power genera‐
tion cannot change with frequency. Such wind power adjust‐
ment characteristic may affect the safety of system frequen‐
cy and the situation will be more serious as wind power ca‐
pacity increases. Because of the significant uncertainty of
wind power, power systems with large-scale wind power
penetration need more reserve capacity to ensure the frequen‐
cy security [5]. However, the reserve capacity generally pro‐
vided by conventional units decreases due to the decreasing
capacity proportion of conventional units, which makes it
necessary for wind power generations to participate in PFR.
Unit commitment optimization with wind power participat‐
ing in PFR can provide guarantees for a coordinated opera‐
tion of conventional units and wind power generations, and
make full use of all kinds of sources in power systems.

The start-up, shutdown and power generation costs of con‐
ventional units, spinning reserve capacity costs and wind cur‐
tailment costs are generally considered in the objective func‐
tion of the unit commitment model [6]-[8]. The PFR capabil‐
ity of wind power generations is not considered in most of
the current studies for unit commitment, and only the ran‐
domness of wind power output is considered [6]-[13]. With
the consideration of stochastic wind power, the fuzzy mathe‐
matical model, the chance-constrained programming and the
scenario method are usually used to establish the unit com‐
mitment model [6], [7], [9]-[13]. References [12], [13] per‐
form unit commitment optimization in multiple stochastic
scenarios to balance the economy and safety of system. Con‐
fidence level is usually used as a scenario-selection index to
reduce the number of stochastic scenarios, which may ignore
low-probability but high-risk scenarios and lead to high risk
of system operation. Constraints of power balance, unit out‐
put limitation, ramp rate, minimum on/off time, and so on,
are generally used by unit commitment. Reference [14] intro‐
duces an analytical calculation method for transient frequen‐
cy security constraints, but it can only be used in the power
system where all unit governor-prime movers are identical.
In [15], [16], system frequency security constraints are add‐
ed to the unit commitment model, but the PFR capability of
wind power is not considered and only central forecasting
scenarios are considered. Both primary and tertiary reserve
constraints in the unit commitment model for conventional
units are considered in [17], but the impact of wind power
access needs to be analyzed further. In brief, the actual PFR
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capability of the power system is related to its operation sce‐
nario, but frequency safety characteristics of the power sys‐
tem in high-risk stochastic scenarios are rarely evaluated in
existing literature, and environmental benefits are generally
ignored.

Wind power generations can have reserve capacity
through de-loaded operation [18]-[20]. Virtual inertia control
and droop control should also be added to make wind power
generations have the similar PFR function as conventional
units [19] - [24]. However, wind power generations are sel‐
dom involved in PFR in the unit commitment model, and
even if they are used in PFR, the control method is usually
very simple. Wind turbines participate in PFR only through
the inertia control which provides very limited reserve for
system PFR, and only one scenario is considered [25].

The rest of this paper is organized as follows. Section II
proposes a unit commitment optimization model considering
the coordination of steady state and transient state for power
system with large-scale wind power participating in PFR. In
the transient-state part, the scenario-selection method based
on the ratio of the remaining risk (RR) of PFR to the total
remaining risk (TRR) of PFR is further studied. The solution
method for the unit commitment model is put forward. Sec‐
tion III tests the abovementioned unit commitment model us‐
ing the New England 10-machine system. Section IV draws
the conclusions.

II. UNIT COMMITMENT OPTIMIZATION WITH LARGE-SCALE

WIND POWER PARTICIPATING IN PFR

A. Unit Commitment Optimization Model Considering Coor‐
dination of Steady State and Transient State

In this paper, a scenario-based unit commitment optimiza‐
tion model considering the coordination of steady state and
transient state is built to solve the unit commitment problem
for the power system with large-scale wind power participat‐
ing in PFR. The operation mode of the power system is de‐
termined in steady state in the expected scenario of maxi‐
mum probability, and the transient frequency analysis of the
system using the steady-state unit commitment results is per‐
formed in transient state in stochastic fluctuation scenarios.
The objective function considering the steady-state operation
cost C1 and the transient-state control cost C2 in stochastic
scenarios is built, as shown in (1). Besides the conventional
unit start-up cost and the coal consumption cost, the wind
power de-loaded cost and the carbon emission cost are add‐
ed into the steady-state operation cost, in order to reflect the
loss of wind farm participating in PFR through de-loaded op‐
eration and the environmental benefits, as shown in (2). In
this paper, rotor over-speed control is combined with pitch
angle control to realize wind generation de-loaded operation,
which makes wind power generations give out more PFR
power when needed. Equation (3) is the transient-state con‐
trol cost in high-risk stochastic scenarios including various
normal or abnormal disturbances such as one or two devices
out of operation, and stochastic fluctuations of load and pow‐
er supply. The maximum frequency deviation affected by
both the inertia and PFR reserve capacity of power system is
multiplied by a certain weight as one of the transient-state

control costs, which is defined as transient frequency safety
cost in this paper. Besides, interruptible loads are adopted in
this paper as one of the PFR reserve sources in transient-
state process. The cost of wind power curtailment is also
considered in the transient-state control costs. Furthermore,
wind turbine operation conditions in the same wind farm are
supposed to be same, and the power energy cost of units dur‐
ing the PFR process is neglected.

min C =C1 +C2 (1)
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where T is the time series; N G is the conventional unit se‐
ries; N W is the wind farm series; yit is the binary variable
that is equal to 1 if unit i is started up in interval t and 0 oth‐
erwise; SUCit is the start-up cost of conventional unit i in in‐
terval t (shutdown cost is approximately zero); uit is the bi‐
nary variable that is equal to 1 if unit i is on in interval t
and 0 otherwise; C(Pit) is the output fuel cost of convention‐
al unit i in interval t; Pit is the power scheduled for conven‐
tional unit i in interval t; djt is the de-loaded level of wind
farm j in interval t; Pjt is the maximum output of wind farm
j in interval t; C C

t is the carbon emission cost in interval t;
Ps is the probability of scenario s; qL

kt is the unit electricity
price of interruptible load k in interval t; qW

jt is the unit elec‐
tricity price of wind farm j in interval t; S is scenario series;
NIL is the interruptible load series; ILkts is the load shedding
imposed on interruptible load k in interval t of scenario s;
WLjts is the amount of wind power curtailment for wind
farm j in interval t of scenario s; qf is the weight of maxi‐
mum frequency deviation; Dfnadirts is the maximum frequency
deviation in interval t of scenario s; SUC hot

i is the hot start-
up cost of unit i; SUC cold

i is the cold start-up cost of unit i;
T͂ off

it is the off-time of unit i in interval t; T off
i is the off-time

limit for unit i; T cold
i is the cold start-up time of unit i; ai, bi,

ci are the fuel cost coefficients of conventional unit i; qC is
the CO2 transaction price; σi is the carbon emission intensity
of conventional unit i; ν is the carbon emission benchmark
of unit electricity; and Dt is the total power generation of
system in interval t, including conventional units and wind
farms.

The steady-state constraints include start-up constraint,
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output constraint, ramp up and down constraints and mini‐
mum on/off time constraint for conventional units. Since the
above constraints have been extensively studied in the con‐
ventional unit commitment problem, the details are not pre‐
sented. Other relevant constraints are as follows.
1) Steady-state Constraints

1) System power balance constraints:
System power balance constraints considering the de-load‐

ed operation of wind farms are as follows:

∑
iÎN G

uit Pit +∑
jÎN W

(1- djt)Pjt = Lt +DLosst (7)

where Lt is the load demand of time interval t; and DLosst is
the line loss of time interval t.

2) Wind farm de-loaded level constraints
The operation characteristics of wind turbines lead to the

de-loaded level constraints of wind farm as below.

0£ djt £ dmax (8)

where dmax is the maximum de-loaded level of wind farm.
3) PFR reserve capacity constraints
Considering the day-ahead forecasting error of wind pow‐

er and load power, the basic constraints for the PFR reserve
capacity of the power system are required, and the reserve
sources include conventional units and wind farms. The up‐
per reserve capacity constraints are shown in (9) and (10),
and the lower reserve capacity constraints are similar to (9)
and (10).

P f
it =min (P max

i -Pituit χit

Dfmax -Ddb
i

Ri
) (9)

∑
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djt Pjt ³ εt∑
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Lnt +∑
jÎN W

ξjt Pjt (10)

where P f
it is the total PFR reserve capacity from convention‐

al unit i in interval t; P max
i is the maximum technical output

of conventional unit i; χit is the binary variable that is equal
to 1 if unit i works in the mode that cannot provide primary
frequency response in interval t and 0 otherwise; Dfmax is the
maximum frequency deviation; Ddb

i is the frequency dead
band of unit i; Ri is the frequency regulation constant of con‐
ventional unit i; εt is the prediction error coefficient of load
in interval t; Φl is system bus series; and ξjt is the prediction
error coefficient of wind power for wind farm j in interval t.
2) Transient-state Constraints

It is necessary to consider the frequency safety constraints
of the power system in transient-state constraints, including
maximum frequency deviations, steady-state frequency devia‐
tions and initial frequency drop rates. Besides, the con‐
straints for wind power curtailment and interruptible loads in
high-risk stochastic scenarios should be considered as well.

1) The security constraints of the transient frequency off‐
set of the power system in stochastic scenarios is as follows:

| Dfssts |£ | Dfnadirts |£ Dfmax (11)

where Dfssts is the steady-state frequency deviation in inter‐
val t of scenario s. Due to the complexity and diversity of
the power system, the system frequency obtained by tradi‐
tional computational analysis methods is generally not very
accurate, thus the transient frequency in this paper is mainly
obtained by using simulation softwares such as DIGSILENT/

PowerFactory.
2) To ensure that the system frequency variation rate is

not greater than the limit value in each stochastic scenario,
the following constraint is added:

|RoCoFts |£RoCoFmax (12)

where RoCoFts is the variation rate of frequency in interval
t of scenario s; and RoCoFmax is the maximum variation rate
of frequency.

3) Interruptible load constraints:

0£ ILnts £ ILmax
nts (13)

where ILnts and ILmax
nts are the amount of interruptible loads

at bus n in interval t of scenario s and the maximum
amount, respectively.

4) Wind power curtailment constraints of wind farm:
0£WLjts £(1- djt)Pjts (14)

where Pjts is the maximum output of wind farm j in interval
t of scenario s.

B. Selection of High-risk Stochastic Scenarios

In order to ensure the safe operation of power system, it
is necessary to verify the transient frequency stability of the
unit combination results in all possible system scenarios. If
the applicability of the result is poor, it needs to be correct‐
ed to improve the robustness of the final optimization result.
Suppose that each scenario for day-ahead unit commitment
includes 24 time intervals which are the same as those of
unit commitment, and that each scenario keeps unchanged in
each interval. Considering load fluctuations, wind power
fluctuations and equipment failures, scenario tree tool (STT)
is used to randomly generate multiple disturbance scenarios
together with their probabilities, which form the whole sce‐
nario set for the day-ahead unit commitment optimization.
STT uses the historical wind power, load consumption and
fault data as inputs. Monte Carlo simulation is used to gener‐
ate the required set of scenario trees.

Considering multiple kinds of disturbance in power sys‐
tem, the number of stochastic scenarios is huge. Fortunately,
among massive disturbance scenarios, only part of those
high-risk scenarios will trigger the revision of unit commit‐
ment results. In order to improve the calculation efficiency, a
new scenario-selection method which can keep both high-
probability scenarios and low-probability but high-risk sce‐
narios is built to form an optimization scenario set in this pa‐
per. The ratio of the RR of PFR in each scenario to the TRR
of PFR in the whole scenario set is built as the key basis for
scenario select to preserve high-risk scenarios. RR is defined
as the scenario occurrence probability multiplied by the pow‐
er deficit (or surplus) outside the safe range of PFR reserve
of power system in this scenario. The threshold of RR is set
as a proportion of TRR. TRR is defined as the sum of RRs
of all scenarios, and its threshold can be pre-set according to
the security requirement of system operation. From an initial
empty set, the specific steps to determine a reasonable opti‐
mization scenario set is as follows:

Step 1: based on the optimized unit commitment results of
the previous iteration, TRR is calculated.

Step 2: if the TRR is less than its pre-set threshold, the pro‐
cess of scenario selection ends; otherwise, RRs of scenarios
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that have never been selected in any previous iteration are cal‐
culated, then the scenarios whose RR values exceed the thresh‐
old are selected and set as a scenario subset to be aggregated.

Step 3: the scenarios in the scenario subset to be aggregat‐
ed are clustered into one scenario which is then added to the
optimization scenario set [26], and the probability of each
scenario in the optimization scenario set is recalculated.

Step 4: based on the model of Section II-A, the unit com‐
mitment result is further optimized in the optimization sce‐
nario set, and then return to Step 1.

This method can not only preserve high-risk scenarios,
but also reduce the scenario number greatly, which can pro‐
vide a practical way to reduce the risk of system operation.
The specific flow chart is shown in Fig. 1, where i is the se‐
quence number of scenario set to be aggregated; k is the sin‐
gle scenario sequence number after aggregation; and ρsum (·) is
the probability summation of the scenario set to be aggregated.

C. Unit Commitment Solution Based on Inner-outer Iterative
Optimization

An inner-outer iterative optimization method for unit com‐
mitment is established in this paper, as shown in Fig. 2. In
the outer cycle, the optimization scenario set is determined
using the method proposed in Section II-B. In the inner cy‐
cle, using Benders decomposition method, the unit commit‐
ment problem is decomposed into steady-state optimization
of unit commitment and transient optimization of interrupt‐
ible loads and wind power curtailment. The mathematical ex‐
pressions after the decomposition are as follows.

1) The objective function of the steady-state unit commit‐
ment optimization is shown in (15), and the constraints in‐
clude (7)-(10) and other related steady-state constraints.

min{ω* +∑
t = t0

T é

ë
êê∑

iÎN G

yit·SUCit +

}ù
û
ú
úDt ( )∑

iÎN G

uitC(Pit)+∑
jÎN W

qW
jt djt Pjt +C C

t (15)

where ω* is the Benders cut and corresponds to the mis‐
match at each cycle of transient optimization problem in
Benders decomposition.

Calculate TRR with optimization result

End

Start

Y

N

Generate the whole scenario set

Let i=0, k=0, and let the initial scenario set
to be aggregated be an empty set Di

Aggregate Di into a scenario and record it as ak, and the
scenario probability after aggregation is ρak=ρsum(Di)

Add ak to the optimization scenario set, and reallocate the
probability of the existing scenarios in the scenario set

Optimize the unit commitment for the optimization scenario set

Is TRR within
the threshold?

Let i=i+1, k=k+1, and in the remaining unselected 
scenarios, select out scenarios whose PFR remaining

risks are greater than the threshold and set them to be as Di

=′ρaj ρaj ρam
k
∑
m=1

j=1, 2, …, k

Fig. 1. Scenario-selection process based on ratio of RR of PFR to TRR of
PFR.

End

Start

Generate the whole scenario set

Select scenarios according to the ratio of RR of PFR
to TRR of PFR, then cluster the selected scenarios
into a single scenario and add it to the optimization

scenario set

Solve steady-state unit commitment
problem in the expected scenario

Output steady-state unit commitment result and cost

Output transient-state control costs 

T=0

T=24?

T=T+1

Carry out transient optimization
of the optimization scenario set in
the T interval based on the known

unit commitment result

Generate
optimization cuts

(system PFR reserve
capacity and inertia

constraints)

Generate
Bender

cuts

Are frequency safety
constraints satisfied?

Calculate TRR under optimization result

Does it meet the
convergence criteria?

Output final unit commitment result

Is TRR within
the threshold?

N

N

Y

Y

Y

N

Y

N

Fig. 2. Solution of unit commitment based on inner-outer iterative optimi‐
zation.
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2) The objective function of the transient optimization is
shown in (16), and the constraints are the same as (13)
and (14).

min∑
sÎ S

Ps

é

ë
ê
ê

ù

û
ú
úDt ( )∑

k ÎN IL

qL
kt·ILkts +∑

jÎN W

qW
jt·WLjts + qf || Dfnadirts

(16)

In the transient optimization process, since the system fre‐
quency in the transient problem cannot be analytically ex‐
pressed by the unit on-off and output status, it cannot be fur‐
ther optimized through generating Benders cuts. Therefore,
when the transient frequency in optimization scenarios does
not meet the safety requirements, optimization cuts with
practical physical significance are adopted in this paper to
further optimize the unit commitment result for system fre‐
quency safety. For example, if the frequency characteristics
in interval t of scenario s do not meet the security require‐
ments, it indicates that the system has insufficient PFR capa‐
bility, and it is necessary to increase the PFR reserve capaci‐
ty and the inertia of power system, as shown in (17) and
(18). Also, if the frequency characteristics in interval t of
scenario s meet the security requirements, in order to ensure
that frequency characteristics will not deteriorate, the con‐
straints of the PFR reserve capability of power system
should also be added, as shown in (19) and (20).

Rsum
ts + ILmax

ts > R̂sum
ts + IL

max

ts (17)

H sum
ts > Ĥ sum

ts (18)

Rsum
ts + ILmax

ts ³ R̂sum
ts + IL

max

ts (19)

H sum
ts ³ Ĥ sum

ts (20)

where Rsum
ts is the the total PFR reserve capacity in interval t

of scenario s, including the reserve capacity of conventional
units and the reserve capacity of wind farms; ILmax

ts is the
maximum interruptible load capacity that can be invoked in
interval t of scenario s; H sum

ts is the inertia time parameter in
interval t of scenario s, including inertia time constants of
conventional units and virtual inertia parameters of wind
farms; and symbol Ù is the index of known variables under
the previous iteration result.

Besides, when the power surplus of power system is
large, the frequency security can be guaranteed directly by
the large-scale wind power curtailment or unit cut-off opera‐
tion, thus the constraints for the lower PFR reserve capacity
are not included.

R̂sum
ts =∑

iÎN G

P̂ f
it +∑

jÎN W

d̂jt Pjts-∑
iÎN G

γits P̂
f
it (21)

Ĥ sum
ts =∑

iÎN G

ûit

Si

SB

Hi +∑
jÎN W

Sj

SB

Ĥjts -∑
iÎN G

γits

Si

SB

Hi (22)

where Si is the rated active power of conventional unit i; Sj

is the rated active power of wind farm j; SB is the system-
based active power; γits is the binary variable that is equal
to 1 if conventional unit i is unexpectedly stopped in inter‐
val t of scenario s and 0 otherwise; Hi is the inertia time
constant of conventional unit i; and Hjts is the virtual inertia
parameter of wind farm j in interval t of scenario s.

In order to meet the economic requirement of power sys‐

tem, Benders cuts shown in (23) are needed to modify the
constraints of the steady-state unit commitment problem in
the (m- 1)th inner cycle until the convergence criterion

| ( )ω*
m -ω*

m- 1 ω*
m- 1 |£ ζ is satisfied [12], where ζ is the con‐

vergence tolerance.
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yit = ŷitm- 1 ® πitm- 1

uit = ûitm- 1 ® ϕitm- 1

Pit = P̂itm- 1 ® μitm- 1

djt = d̂jtm- 1 ® ϑjtm- 1

(24)

where ŷitm- 1, ûitm- 1, P̂itm- 1, and d̂jtm- 1 are the known values
of each dispatching variable obtained by the (m- 1)th inner
cycle; and πitm- 1, ϕitm- 1, μitm- 1, and ϑjtm- 1 are the marginal
values of each dispatching variable in the steady-state prob‐
lem, which are calculated from the transient problem in the
(m- 1)th inner cycle. In this paper, Benders cuts are functions
of scheduling variables such as the unit status, the power
generation, and the de-loaded level of wind farm. These cuts
are lower estimation of operation cost in each cycle of the
transient optimization problem.

The inner-outer iterative optimization steps are as follows.
Step 1: in the expected scenario of day-ahead forecasting,

the steady-state unit commitment optimization problem is
solved, and then go to Step 2. Equation (9) is a non-linear
term with minimum function, which can be converted into
an equivalent explicit linear form according to [17]. Consid‐
ering that the treatment of other non-linear terms such as (4)
has been extensively studied in the conventional unit com‐
mitment, it is not discussed in this paper. Therefore, mixed-
integer quadratic programming (MIQP) is used to solve the
steady-state unit commitment problem in this paper.

Step 2: the transient frequency analysis of the steady-state
unit commitment results obtained in Step 1 is carried out us‐
ing the optimization scenario set formed by the outer cycle.
That is, the transient optimization for each time interval is
performed with (16) as the objective function, and (13) and
(14) as the constraint conditions. Due to the complexity and
diversity of power system, the system frequency obtained by
traditional analytical methods is not always accurate. In or‐
der to obtain more accurate and reasonable optimization re‐
sult, the transient frequency characteristics of power system
in (11) and (12) can be obtained by simulation softwares
such as DIGSILENT/PowerFactory. If the transient frequen‐
cy characteristics of power system in any optimization sce‐
nario do not satisfy security constraints (11) and (12), the op‐
timization cuts (17)-(20) are formed and used to modify the
constraints of the steady-state unit commitment problem in
the inner cycle, and then return to Step 1. Otherwise, if con‐
straints (11) and (12) are satisfied in all optimization scenari‐
os, the transient-state control cost is obtained, and then pro‐
ceed to Step 3.
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Step 3: according to the optimization result obtained in
Step 2, if the cost convergence criterion is not met, the mar‐
ginal value of each dispatch variable in steady-state optimiza‐
tion problem will be calculated. Then, Benders cuts are
formed and used to modify the constraints of the steady-
state unit commitment problem, and return to Step 1. Other‐
wise, the inner cycle unit commitment optimization ends.

III. SIMULATION RESULTS

The New England 10-machine system shown in Appendix
A Fig. A1 is used to verify the proposed model in this paper.
The system consists of 6 thermal power units, 1 hydropower
unit and 3 wind farms. All units have PFR capability. The
maximum active power of thermal power units G1-G6 is
1200 MW, 595 MW, 680 MW, 510 MW, 680 MW and 595
MW, respectively. The maximum active power of hydropow‐
er unit G7 is 850 MW. Wind farms G8-G10 are connected
to bus 38, 32 and 37, respectively, and the rated power of
G8-G10 is 1660 MW, 1300 MW and 1080 MW, respective‐
ly. Thus, the wind power penetration rate is about 25%-50%.
The rated power of each wind turbine is 2 MW, and the op‐
eration condition of each wind turbine in the same wind
farm is supposed to be the same. In the simulation, the maxi‐
mum de-loaded level of wind farm is supposed to be 40%.

A. Selection of High-risk Stochastic Scenarios

100 scenarios are arbitrarily selected from the whole sce‐
nario set as examples, then these scenarios are filtered ac‐
cording to the method in Section II-B. As shown in Fig. 3,
10 scenarios whose ratios of RR of PFR to TRR of PFR ex‐
ceed the threshold (blue line) in single scenario are obtained.
The probability ps of selected high-risk scenario and the
power shortage (or surplus) outside the safe range of the
PFR reserve capacity of power system under the previous it‐
eration result, i.e., DPSs, are shown in Table I. Taking scenar‐
io 14 as an example, the conventional unit G1 has a shut‐
down at the beginning of the 10th time interval and recovers
at the end of the interval. Besides, the load power and the
wind power fluctuate greatly during the whole process of the
scenario. Although the probability of scenario 14 is the low‐
est among the selected 10 scenarios, its power shortage (or
surplus) of PFR process is the largest, which makes the ratio
of RR of scenario 14 to TRR still high, thus it is also select‐
ed out. It can be seen that the scenario selection method can
avoid the omission of small-probability but high-risk scenari‐
os and effectively control the actual operation risk of power
system. For the whole scenario set, through multiple cycles
of selecting and clustering of the high-risk stochastic scenari‐
os, the final optimization scenario set including four high-
risk stochastic scenarios is obtained.

B. Unit Commitment Optimization

The price of interruptible load and the corresponding max‐
imum frequency offset weight are supposed to be 145 $/
MWh and qf = 1.45´ 105 $/Hz, respectively. Based on the
proposed unit commitment model, the CPLEX software is
used to solve the day-ahead unit commitment problem. The
results are shown in Fig. 4 and Fig. 5, and the total cost is
$8.23 million.

From Figs. 4 and 5, the following results can be obtained.
1) Due to the low coal consumption, the output of thermal

power units G3 and G5 is not subject to the fluctuation of
net load (the difference between load power and wind pow‐
er), and remains at a high output level during the entire opti‐
mization period. On the contrary, the coal consumption of
other thermal power units is relatively high, thus their output
changes with the fluctuation of net load. Among them, G1
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TABLE I
RESULTS OF ps AND DPSs IN DIFFERENT SCENARIOS
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has a higher proportion of total output because of its large
capacity. When the net load of power system is small in
some intervals, for example, the first two intervals, since the
coal consumption of thermal power unit G4 is the largest, it
is optimized for shutdown. In that case, the system demand
for PFR reserve can be shared by wind farms and other con‐
ventional units to improve the economic benefit.

2) Gradually increasing prediction error is added in the ex‐
periment to study the influence of scenario prediction on
unit commitment optimization. The PFR reserve capacity of
wind farms basically increases with the increase of predic‐
tion error. With a high penetration of wind power, the total
PFR reserve capacity of wind farms is relatively large,
which becomes an important source of PFR reserve for pow‐
er system. In addition, the hydropower unit G7 prepares
more PFR reserve capacity than thermal power units because
of the larger PFR reserve capacity.

3) The de-loaded priority of wind farm is related to the
price of de-loaded wind power. For example, the price of de-
loaded wind power of G8 is lower than that of other wind
farms, so G8 has priority for de-loaded operation.

In order to compare the influences of different factors in
the optimization model, based on the unit commitment mod‐
el proposed in this paper (model a), three other optimization
models are derived from model a, which are as follows:

1) Model b: only the power regulation capacity of inter‐
ruptible loads in model a is removed.

2) Model c: only the transient frequency safety cost of
model a is neglected.

3) Model d: only the PFR function of wind farms in mod‐
el a is removed.

In the optimization scenario set obtained from Section III-
A, due to the uncertainty of large-scale wind power and load
power, model d cannot satisfy basic constraints for the PFR
reserve capacity of power system. As a result, the interrupt‐
ible loads will be shed largely, and the economy and safety
of power system will be terrible. Hence, the optimization re‐
sults of other three models in the same scenarios are com‐
pared, as shown in Fig. 6 and Appendix A Table AI.

When model b is used, the total output of conventional
units during the 2nd, 5th, 7th, 8th, 9th, 10th, 11th, 14th, 15th, 16th,
17th, 18th and 21st time intervals is higher than that of model
a. This is because without considering the power regulation
capacity of interruptible loads, the PFR reserve capacity of

power system and the de-loaded level of wind farms in
some extreme cases increase to make system frequency meet
the security requirements. The total cost is increased by
$0.48 million compared with that of model a. The compari‐
son of the maximum frequency deviations of four optimiza‐
tion scenarios S1-S4 with different unit commitment models
is shown in Fig. 7, where S1(a) represents the maximum fre‐
quency deviations of scenario S1 with model a, and the rest
symbols are defined in analogy.

At the cost of abandoning economic benefit, although the
optimization result of model b under normal disturbances
can ensure that the maximum frequency deviations of power
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system are lower than those of model a in some time inter‐
vals, the system frequency deviations cannot meet the securi‐
ty requirements when severe disturbances occur, such as the
10th interval of scenario S1 (the maximum frequency devia‐
tion is 1.8690 Hz), the 10th interval of scenario S2 (the maxi‐
mum frequency deviation is 2.280 Hz), and the 15th interval
of scenario S4 (the maximum frequency deviation is 1.3495
Hz). At the same time, it can be found in Appendix A Table
AI that during the 10th and 15th intervals, the de-loaded lev‐
els of wind farms all reach the maximum value, and conven‐
tional units are all turned on, which makes the system pro‐
vide its maximum PFR reserve capacity as far as possible.
However, the system frequency still cannot meet the security
requirements and the frequency over-limit range is very
large. It can be seen that in high-risk stochastic scenarios,
the participation of interruptible loads in PFR can improve
the safety and economy of the overall system operation.

In contrast, frequency security requirements can be satis‐
fied when model c is adopted, and the total output of the
conventional units is lower than that of model a in some in‐
tervals, thus reducing the operation cost of the system to a
certain extent. But in the optimization scenarios, the frequen‐
cy security of model c is inferior to that of model a in the
whole period. For example, in the frequency deviation range
of 0.49 Hz to 0.5 Hz, close to frequency limit, the maximum
frequency deviation corresponding to model c appears 6
times, while it only appears once with model a. It can be
seen that considering the safety cost of system transient fre‐
quency, the system frequency characteristics will be better,
and that the system frequency can be kept as far as possible
from the dangerous boundary to ensure the safe operation of
system, especially under severe disturbances.

IV. CONCLUSION

In addition to conventional units participating in PFR,
wind farms are also considered as PFR participants of power
system. A scenario-based unit commitment model consider‐
ing the coordination of steady state and transient state is pro‐
posed for unit commitment problem. Interruptible loads and
transient frequency offset are also considered in the transient
process. The results show that this unit commitment model
ensures not only the economic performance of power system
operation but also the frequency safety of power system in
various high-risk stochastic scenarios.

The ratio of the RR of PFR in the scenario to the TRR of
PFR in the whole scenario set is taken as the key basis for
scenario selection. Using this method, the number of optimi‐
zation scenarios decreases significantly, and the omission of
low-probability but high-risk scenarios is avoided, so the sys‐
tem operation risk can be effectively controlled within an ac‐
ceptable range.

Finally, combined with the scenario selection method, a
solution method for the unit commitment model is construct‐
ed based on the comprehensive consideration of the inertia
of power system and PFR reserve demand.

This paper assumes that the operation conditions of wind
turbines in the same wind farm are approximately the same,
and the situation of multi-type wind turbines in the same
wind farm needs further study.
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