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Abstract——For optimal operation of microgrids, energy man‐
agement is indispensable to reduce the operation cost and the
emission of conventional units. The goals can be impeded by
several factors including uncertainties of market price, renew‐
able generation, and loads. Real-time energy management sys‐
tem (EMS) can effectively address uncertainties due to the on‐
line information of market price, renewable generation, and
loads. However, some issues arise in real-time EMS as battery-
limited energy levels. In this paper, Lyapunov optimization is
used to minimize the operation cost of the microgrid and the
emission of conventional units. Therefore, the problem is multi-
objective and a Pareto front is derived to compromise between
the operation cost and the emission. With a modified IEEE 33-
bus distribution system, general algebraic modeling system
(GAMS) is utilized for implementing the proposed EMS on two
case studies to verify its applicability.

Index Terms——Battery, energy management system (EMS),
flexible and delay-tolerant load, Lyapunov optimization, mi‐
crogrid, optimal power flow, renewable generation.

I. INTRODUCTION

MICROGRIDS are low- or medium-voltage power net‐
works comprising various distributed energy resourc‐

es [1]. Electrical demand in a grid-connected microgrid is
provided by renewable energy sources (RESs), batteries, con‐
ventional generation (CG) units, and the main grid. Energy
management is an essential part of microgrids and is imple‐
mented for various objectives such as cost minimization [2].

Day-ahead energy management methods are primarily in‐
troduced for the energy management of microgrids [3]. How‐
ever, the prediction error of loads, RESs, and market prices

introduce difficulties that must be addressed in day-ahead en‐
ergy management methods. Therefore, the statistical informa‐
tion of data is used to address these uncertainties in stochas‐
tic energy management systems (EMSs). Several stochastic
methods have been implemented to manage the uncertainties
[3]. Scenario-based robust methods [4], [5], information-gap
decision theory [6], [7], and risk management methods [8]
are some of the approaches to address uncertainties in day-
ahead EMSs. In [9], a day-ahead robust EMS is proposed, in
which the uncertainties of loads and RESs are addressed us‐
ing Taguchi’s orthogonal array method, and the uncertainty
of market price by a robust optimization method.

Statistical information is used in stochastic EMS methods.
Furthermore, scenario-based stochastic day-ahead EMS meth‐
ods lead to large computation burdens as many scenarios are
addressed.

Online information of RES, load, and market price is use‐
ful data for designing real-time EMS (RT-EMSs). The RT-
EMS [10] is designed based on a model predictive control
strategy that utilizes both the current state and the latest pre‐
dicted information. Several real-time approaches have also
been introduced [11]-[14].

RT-EMSs can be executed without any statistical informa‐
tion. In this case, errors arising from imperfect predictions
are eliminated. Meanwhile, in some microgrids, electrical de‐
mand can be classified into two categories: basic usage and
quality usage [15]. Basic usage leads to being provided im‐
mediately, whereas quality usage is flexible for the load.
Quality usage is provided according to the requested quality
of service (QoS) of the customer. In addition, according to
demand response programs, loads can be delay-tolerant,
which means that loads must be provided before the pre‐
ferred deadline of the customer. It is challenging to maintain
both the battery energy in the operation range and the satis‐
faction of the desired QoS in RT-EMSs. The proposed RT-
EMS based on Lyapunov optimization can effectively ad‐
dress the abovementioned complexities without any statisti‐
cal information. RT-EMS methods are used to schedule ener‐
gy resources timely and with low computation burden.

In recent studies, Lyapunov optimization for real-time en‐
ergy management has been investigated. In [16], two optimi‐
zation problems for RT-EMSs are proposed and solved by
Lyapunov optimization. The objectives include cost minimi‐
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zation of importing power from external sources and profit
maximization with an additional decision variable of price
setting to supply delay-tolerant loads by renewable sources
and external units. However, the operation constraints of ex‐
ternal units are not considered in [16]. In [17], an RT-EMS
is formulated by Lyapunov optimization to supply delay-tol‐
erant loads. Battery energy storage systems (BESSs), RESs,
and electric utility provide the loads for the research in [17].
Although the minimization of energy supplied by CGs from
the electric utility is intended in [17], the operation cost of
battery is not considered. Distributed energy management of
BESSs, which is implemented by storage aggregators using
Lyapunov optimization, is proposed in [18].

BESS management using Lyapunov optimization in finite
time horizons has been studied [19], [20]. Two types of deg‐
radation costs of BESS are considered. Loads are provided
by RESs, BESSs, and the exchanged power with the main
grid. Furthermore, delay-intolerant loads are supplied in
[19], whereas delay-tolerant loads and a cost function for re‐
ducing the delay of load provision are considered [20]. How‐
ever, some operation constraints are not considered, which
are essential for the sound performance of RT-EMSs. A two-
stage RT-EMS for a grid-connected microgrid with RESs,
CGs, BESSs, and flexible loads has been proposed in [21].
With an objective function of operation cost minimization
based on Lyapunov optimization, an RT-EMS in a microgrid
considering operation limitations of the system using optimal
power flow equations has been proposed in [22], which is
not considered in [15]-[21]. The time-coupled constraints of
BESS energy limitation and QoS provision for flexible loads
are addressed with the Lyapunov optimization framework.

In this paper, the desired goals of the RT-EMS are to pro‐
vide delay-tolerant loads before the deadline and maintain
the load shedding for flexible loads lower than the customer
requests. The customer of QoS satisfaction is also among the
goals, which supplies delay-tolerant loads before the dead‐
line and maintains BESSs in a desirable energy capacity
range. The microgrid is operated in a connected mode and
can exchange the power with the main grid. Furthermore, op‐
timal power flow equations are considered, and voltages of
buses are maintained in the desired range by additional con‐
straints. The underlying network of the microgrid yields
more realistic optimal values, which is similar to practical
implementations.

Therefore, in contrast to the studies in [15]-[17] and [20]-
[22], the objective of this paper is to supply both the flexi‐
ble and delay-tolerant loads. Furthermore, the goal of this pa‐
per is to minimize both operation cost and emission func‐
tion, which are not considered in [15] - [22]. Therefore, the
RT-EMS is a multi-objective problem. The Pareto front is ob‐
tained to address RT-EMS multi-objective problem, which
yields the best solutions for decision makers of microgrids.
Therefore, decision makers can select desirable solutions ac‐
cording to their priorities. Moreover, [15]-[21] using Lyapu‐
nov optimization have addressed the problem without consid‐
ering the underlying distribution network. It is a complicated
problem when considering the underlying distribution net‐
work, line losses, and optimal power flow equations in

EMS. Further nonlinear equations are added to the problem,
which is complex in computation. However, addressing this
problem in one time slot as a real-time problem reduces the
computation burden. Optimal power flow equations enhance
the accuracy results of EMS, and the bus voltage is main‐
tained in the desired range and the line losses are addressed
in advance. Therefore, less computation is required in lower
layers of EMS.

This paper is an extended version of a conference paper
[23]. Moreover, an additional case study, i. e., a modified
IEEE 33-bus distribution system, is presented to verify the
performance of the method, and the effect of different param‐
eters on the RT-EMS is evaluated. The contributions of this
paper are as follows:

1) An RT-EMS in a microgrid is implemented based on
Lyapunov optimization for supplying flexible and delay-toler‐
ant loads.

2) It has not been investigated that RT-EMS can minimize
the operation costs and emission of CG units simultaneously.
In this paper, the abovementioned problem is addressed with
a Pareto front.

The rest of this paper is organized as follows. The Lyapu‐
nov optimization method is introduced in Section Ⅱ. In Sec‐
tion Ⅲ , the microgrid system is modeled and the formula‐
tion of RT-EMS is presented. Simulation results are present‐
ed in Section Ⅳ . Finally, conclusions are provided in Sec‐
tion Ⅴ.

II. LYAPUNOV OPTIMIZATION METHOD

It is chanllenging to maintain both the battery energy in
the defined range and QoS satisfaction according to the cus‐
tomer request in real-time management [15]. Lyapunov opti‐
mization can effectively address these complexities [22].
Compared with the optimal solution, results of the Lyapunov
optimization are suboptimal, and it deviates from the global
optimal value.

In Lyapunov optimization, the objective is to minimize
the long-term time-average value of the expected cost func‐
tion. Therefore, the optimization problem is modeled as (1)
[24]. Formulas (2) and (3) are the equality and the inequality
constraints, respectively.

min lim
t®¥

sup( ȳ0 (t)) (1)

s.t.

lim
t®¥

sup( ȳl (t))£ 0 "lÎ{12...L} (2)

lim
t®¥

sup(ēj (t))= 0 "jÎ{12...J} (3)

α(t)ÎAω(t) (4)

where Aω(t) is the feasible region for the decision variables;
ȳ0 (t) is the time average expectation value of the objective
function in the optimization problem; α(t) is the decision
variable; ȳl (t) and ēj (t) are the time averages of expected val‐
ues of the inequality constraint yl (t) and the equality con‐
straint ej (t), respectively, which are defined as:

ȳl (t)=
1
t∑τ = 0

t - 1

E(tyl (τ)) (5)
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ēj (t)=
1
t∑τ = 0

t - 1

E(ej (τ)) (6)

According to the Lyapunov optimization method, virtual
queues are defined for time-average expected values of the
equality and inequality constraints defined by (2) and (3), re‐
spectively [24].

Different queues can be defined [15], [19]. Virtual queues
Zl (t)"lÎ{01L}, and Hj (t) "jÎ{01J} for (2) and
(3) are defined as:

Zl (t + 1)=max{Zl (t)+ yl (t)0} (7)

Hj (t + 1)=Hj (t)+ ej (t) (8)

where Zl (t) and Hj (t) are queues [22]. Then, the constraints
in (2) and (3) are satisfied.

Definition: a process Zl (t) is mean rate stable if

lim
t®¥

E ( )||Q(t)

t
= 0 (9)

Note that Zl ( )t and Hj (t) are also called backlogs, which
indicate the amount of work needed to perform [24]. In Ly‐
apunov optimization, an objective is to push the backlogs to‐
ward a lower congestion state. Additionally, another objec‐
tive is to minimize the penalty [24], which is defined as the
operation cost and the emission in this paper. The drift-plus-
penalty function is the weighted sum of the costs and back‐
logs. According to the Lyapunov optimization method, mini‐
mizing the upper bound of the drift-plus-penalty function
will stabilize virtual queues and minimize the costs. In [24],
it is shown that the optimum obtained by the Lyapunov opti‐
mization method is suboptimal for the actual stochastic time-
average problem and provides a definite bound from the opti‐
mum solution.

Remark: virtual queues for satisfying the time-coupled
constraints of batteries as well as flexible and delay-tolerant
loads are defined in Section III-F. The stability of the de‐
fined virtual queues satisfies the expected time-average con‐
straints [15], [17], [22].

III. SYSTEM MODEL

A typical model of microgrid is shown in Fig. 1. The
RESs, BESSs, CGs, and main grid supply the electrical de‐
mand. A two-way information flow is considered in the mi‐
crogrid to enable the EMS. The time slot is defined as a dis‐
crete time interval.

Information flow; Power flow

Real-time EMS

Main grid

CG

Flexible
electrical

loads

AC
DC Electrical

loadsPV

AC
AC

AC
AC

WT

~

AC
DC

BESS

Fig. 1. Typical model of microgrid.

Emission reduction of the CG unit is another goal of this
paper. Minimizing both the operation cost and the emission
function are conflicting objectives. To find a compromise be‐
tween the operation cost and the emission of the CG units,
the Pareto front is applied. The weighted sum of the opera‐
tion cost and emission function is minimized to obtain the
Pareto front, which includes Pareto optimal solutions. The
solutions on the Pareto front are the optimal solutions, and
they are non-dominated according to the Pareto optimality
definition. Other points outside the Pareto front are dominat‐
ed and other solutions with better objective values exist.

Consequently, it is essential to consider the conflicting ob‐
jectives and obtain the best solution for both of them. Fur‐
thermore, the goal of decision maker determines the impor‐
tance of the objectives. In this paper, the weighted average
of the operation and emission costs are considered as (10)
using the weights λop and λem to attain the tradeoff between
these two objectives. Therefore, the objective is to minimize
C(t), which is a combination of the operation cost Cop (t) and
the emission function Cem (gt):

C(t)= λopCop (t)+ λemCem (gt) (10)

λop + λem = 1 (11)

Cop (t)=∑
g

Cg (gt)+∑
b

Cb (bt)+∑
fl

Cfl ( flt)+C0 (t) (12)

where Cg (gt), Cb (bt), Cfl ( flt), and C0 (t) are the operation
costs of CG, battery, load shedding, and the exchanged pow‐
er with the main grid, respectively.

A. CG Units

A CG unit is modeled by its fuel cost (13), the emission
function (14), and operation constraints (15) - (17). The fuel
cost is modeled by a quadratic function [22] as:

Cg (gt)= α2
g (Pg (gt)Dt)+ βg Pg (gt)Dt + cg (13)

where Pg (gt) is the active power of CG unit g; Dt is the
time duration of each slot; and αg, βg, and cg are the cost co‐
efficients of CG fuel cost.

In addition to fuel cost, the emission function is modeled
as a quadratic function:

Cem (gt)= α2
em (Pg (gt)Dt)+ βem Pg (gt)Dt + cem (14)

where αem, βem, and cem are the coefficients of CG emissions.
The output power is limited by the upper and lower

bounds in (15) and the ramp rate limitations in (16):

P min
g (g)£Pg (gt)£P max

g (g) (15)

-Rg (g)P max
g (g)£Pg (gt)-Pg (gt - 1) £Rg (g)P max

g (g) (16)

where P max
g (g) and P min

g (g) are the upper and lower bound
limitations, respectively; and Rg(g) is the ramp limitation of
CG unit g. Moreover, the output active power and reactive
power of CG units are limited, considering the ratings of
CGs as:

P 2
g (gt)+Q2

g (gt)£ S 2
g (gt) (17)

where Qg (gt) and Sg (gt) are the output reactive power and
apparent power of CG unit g, respectively.
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B. Battery

We consider the operation cost of the battery as (18) to pe‐
nalize the fast charging and discharging of the battery, which
would otherwise degrade the battery as:

Cb (bt)= a2
b (Pb (bt)Dt)+ cb (18)

where Pb (bt) is the output power; and αb and cb are the cost
coefficients of battery b.

At each time slot, the battery energy is calculated based
on the charging and discharging power of the battery as:

E(bt + 1)=E(bt)+ ηch Pbch (bt)Dt - ηdis Pbdis (bt)Dt (19)

where E(bt) is the battery energy state at each time slot t;
ηch and ηdis are the charging and discharging efficiencies of
the battery; and Pbch (bt) and Pbdis (bt) are the charging and
discharging power of battery b, respectively.

Note that the battery cannot be charged and discharged si‐
multaneously. Therefore, Pbdis and Pbch are zero when the
battery is in the charging and discharging modes, respective‐
ly. Moreover, the battery has a limited power and energy ca‐
pacity. Therefore, constraints (20) and (21) are used to satis‐
fy the output power and battery energy limitations.

-P max
b (b)£Pb (bt)£P max

b (b) (20)

Emin (b)£E(bt)£Emax (b) (21)

where P max
b is the maximum output power; and Emax (b) and

Emin (b) are the upper and lower bounds of energy level of
the battery b, respectively.

Pb (bt)= ηch Pbch (bt)- ηdis Pbdis (bt) (22)

The limited capacity of battery inverter reduces the range
of reactive power drawn from the battery as:

P 2
b (bt)+Q2

b (bt)£ S 2
b (bt) (23)

where Qb (bt) and Sb (bt) are the output reactive power and
apparent power of BESS b, respectively.

C. Flexible Electrical Loads

In modern microgrids, load flexibility is beneficial in
many aspects [20]. Generally, loads can be classified into
three categories, as depicted in Fig. 2.

When the demand is high and costly generation units sup‐
ply the demand, cost reduction can be facilitated by load
flexibility. However, to provide reasonable power quality to
customers, the load shedding cost is considered [22] as:

Cfl ( flt)= β fl (P
max
fl ( flt)Dt -P 2

fl ( flt)Dt) (24)

where Pfl ( flt) and P max
fl ( flt) are the provided and maximum

requested flexible demands, respectively; and β fl is the con‐
sumer sensitivity to the load shedding.

A large β fl causes large costs and indicates that the con‐
sumer is more sensitive to load shedding. The long-term
time-average expected value of the load shedding percentage
is required to be lower than the tolerance control parameter
α fl defined in (25), which is set according to the customer re‐
quest [22].

lim
t®¥

1
T∑t = 0

T - 1

E (Λ(Pfl ( flt)))£ α fl (25)

Λ(Pfl ( flt))=
P max

fl ( flt)-Pfl ( flt)

P max
fl ( flt)-P min

fl ( flt)
(26)

where P min
fl ( flt) is the minimum allowed load shedding. α fl

in (25) controls QoS, and a small α fl implies less load shed‐
ding and higher satisfaction of customers. Assume that the
load is bounded as:

P min
fl ( flt)£Pfl ( flt)£P max

fl ( flt) (27)

Qmin
fl ( flt)£Qfl ( flt)£Qmax

fl ( flt) (28)

where Qfl ( flt), Qmax
fl ( flt), and Qmin

fl ( flt) are the provided re‐
active power, upper bound limitation, and lower bound limi‐
tation of the flexible loads, respectively.

D. Delay-tolerant Electrical Loads

In addition to flexible loads, some delay-tolerant loads are
considered. Consumers with delay-tolerant loads can tolerate
their loads with delay. The provision of delay-tolerant loads
before the maximum delay requires additional time-coupled
constraints. In an RT-EMS, the time-coupled constraint of de‐
lay-tolerant load satisfaction is defined as a queue [17]. De‐
lay-tolerant loads are stored in a queue, which is defined and
updated as [16]:

QDT (DTt + 1)=max{QDT (DTt)-PDT (DTt)0+P max
DT (DTt)}

(29)

where DT is the delay-tolerant load; and PDT (DTt) and
P max

DT (DTt) are the provided and requested DT, respectively.
Furthermore, certain percentage of the delay-tolerant load

is considered as a basic load. Therefore, constraint (30) is
added to force certain percentage of supplied delay-tolerant
loads. Furthermore, (31) is utilized to ensure that the load
added to the queue defined by (29) is provided.

PDT (DTt)³P min
DT (DTt) (30)

PDT (DTt)£P max
DT (DTt)+QDT (DTt) (31)

where P min
DT (DTt) is the lower bound limitation of DT.

E. Model of Optimal Power Flow

The constraints of power distribution network are modeled
[25] in this sub-section, which satisfies the operation con‐
straints of the power grid and enables RT-EMS to maintain
the voltage in the desired range.

Pbusi (t)=Pfli ( flt)+PDTi (DTt)+Pbi (bt)-Pgi (gt)-PWTi -
PPVi "iÎ I \{0} (32)

where Pbusi (t), PWTi, and PPVi are the active power, WT gener‐
ation, and PV generation at bus i, respectively. Moreover,
we can obtain:

Qbusi (t)=Qfli ( flt)+QqDTi (DTt)+Qbi (bt)-Qgi (gt) (33)

Electrical load

Flexible load Delay-tolerant loadBasic load

Load can be shedded
according to requested

QoS of customer.

Load can be shifted
and has to be satisfied

up to tolerable
time delay.

Basic load has to
be satisfied

immediately as it
is requested.

Fig. 2. Classification of electrical load.
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where Qbusi (t) and QqDTi (DTt) are the reactive power and
provided power of delay-tolerant loads at bus i, respectively.

The power Pbusj (t) is calculated as:

Pbusj (t)=Plineij (t)- rijlij (t)-∑
k

Plinejk (t) (34)

where Plineij(t), lij (t)= I 2
ij , lij (t) and rij are the active power

flow, square of current magnitude in p.u., current magnitude,
and resistance of the line from bus i to bus j, respectively.

The power Qbusj (t) is calculated as:

Qbusj (t)=Qlineij (t)- xijlij (t)-∑
k

Qlinejk (t) (35)

where Qlineij (t) and xij are the reactive power flow and reac‐
tance of the line from bus i to bus j, respectively.

Moreover, we can obtain:
V 2

busj (t)=V 2
busi (t)- (2rlineij Plineij (t)+ xlineijQlineij (t))+

(r 2
lineij + x2

lineij)llineij (t) (36)

where Vbusi (t) is the voltage at bus i.

llineij (t)=
P 2

lineij (t)+Q2
lineij (t)

V 2
busi (t)

(37)

Instead of (37), inequality (38) is utilized to avoid non-
convexity in the optimization problem [22], [25].

llineij (t)³
P 2

lineij (t)+Q2
lineij (t)

vbusi (t)
(38)

where vbusi = |Vbusi (t)|
2, llineij (t)= |Ilineij (t)|

2, and Ilineij is the current
from bus i to j.

The constraint (38) is a rotated second-order cone con‐
straint. The canonical form of a second-order cone and a ro‐
tated second-order cone constraint are defined as (39)
and (40).

||Ax + b||£ cT x + d xÎRn (39)

{xT x £ yz

y ³ 0

z ³ 0

xÎRnyzÎR (40)

The constraint (38) is in the form of a rotated second-or‐
der constraint as:

P 2
lineij (t)+Q2

lineij (t)£ llineij (t)vbusi (t) (41)

Constraint (42) is used to restrain the bus voltages in the
allowable range:

vmin
bus £ vbusi (t)£ vmax

bus "iÎ I \{0} (42)

A microgrid exchanges power with the main grid in a grid-
connected mode. It can import the power when the power of
other units is insufficient to supply the demand. Further‐
more, surplus electrical energy in a microgrid can be export‐
ed to the main grid to gain profits. The exchanged power
with the main grid can be calculated according to (43)
and (44).

Pbus0 (t)=∑
j

Pline0j (t) (43)

Qbus0 (t)=∑
j

Qline0j (t) (44)

where Pbus0 (t) and Qbus0 (t) are the exchanged active and reac‐
tive power with the main grid, respectively.

The cost of exchanged power with the main grid can be
obtained as:

C0 (t)= τ(t)Pbus0 (t)Dt (45)

where τ(t) is the market price; and Pbus0 (t) is positive (nega‐
tive) when power is imported (exported) from (to) the main
grid. The main grid can provide limited power to the mi‐
crogrid owing to the transmission line. The limitations of
main grid power sources is modeled as:

P min
grid £Pbus0 (t)£P max

grid (46)

where P max
grid and P min

grid are the maximum and minimum limita‐
tions of the power exchanged with the main grid, respectively.

F. RT-EMS Problem

In this paper, the RT-EMS method is used to schedule
BESSs as well as flexible and delay-tolerant loads, i.e., com‐
ponents that complicate the RT-EMS problem. Constraint
(19) shows that the energy level of BESS at a future time
slot relies on the charging and discharging power at that
time slot. Therefore, BESS is a time-coupled element that
forces the time-coupled constraint to the problem. Further‐
more, the limited energy capacity of BESS enforces con‐
straint (21) to the problem. The real-time energy manage‐
ment of BESS is challenging as the BESS might be charged
or discharged inappropriately [17] - [22]. Other time-coupled
constraints in the problem are the QoS range of the flexible
loads, i. e., constraint (25), and the provision of delay-toler‐
ant loads. Constraint (25) is a time-coupled one because the
overall QoS of the loads depends on the shedding load of
the entire day. Furthermore, the delay-tolerant loads are time-
coupled constraints in the problem, because unsupplied loads
should be provided until the deadline is imposed by the cus‐
tomers. And the unsupplied delay-tolerant loads would cause
the dissatisfaction of the customer.

Therefore, an appropriate method to address these com‐
plexities is required. In Lyapunov optimization, time-coupled
constraints are addressed with queues and are satisfied by
stabilizing the queues, which inhibits the full charging or dis‐
charging of BESS. Furthermore, load queues are stabilized
to satisfy their requirements. In other RT-EMS methods such
as the greedy algorithm, the problem is solved at each time
slot without considering future data. Consequently, battery
energy is used in the first time slot inefficiently, as will be
described in Section IV. The Lyapunov optimization proce‐
dure is shown in Fig. 3.

Start

Define virtual queue for time-coupled constraints

Define Lyapunov function

Define drift-plus-penalty funcion

Obtain upper bound of drift-plus-penalty function

Minimize drift-plus-penalty function
upper bound subject to constraints

End

Fig. 3. Procedure of RT-EMS based on Lyapunov optimization method.
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In the Lyapunov optimization method, time-coupled con‐
straints are converted to virtual queues, the objective of
which is to maintain stable virtual queues and mean rates.
And time-coupled constraints can be satisfied by the stable
queues [24]. Therefore, time-coupled equality and inequality
constraints are firstly defined by virtual queues. Next, the
quadratic Lyapunov function is defined. Subsequently, the
drift-plus-penalty function is introduced, which is the weight‐
ed sum of the drift function and the costs as a penalty. The
upper bound of the drift-plus-penalty function is obtained. Fi‐
nally, constant terms are removed from the upper bound and
the remaining function is minimized subject to the operation
constraints, excluding time-coupled limitations.

RES, market price, and load are uncertainties in the mi‐
crogrid. Minimizing the time-average expected value of the
operation costs is the objective of this paper.

Problem I:

{min lim
t®¥

1
t

E(C(t))

s.t. (11)(15)- (17)(19)- (23)(25)- (36)(38)- (44)(46)
(47)

EMSs in microgrids are used for various objectives such
as operation cost and emission minimization. The objective
of the RT-EMS is to perform energy management at each
time slot. However, the optimal solution for long-term man‐
agement in Problem I, i.e., (47), is not obtained by cost mini‐
mization at each time slot, ignoring subsequent and previous
states. Furthermore, time-coupled constraints including the
limitation of battery energy in (21), provision of QoS for
flexible loads in (25), and supply of delay-tolerant loads in
(29) must be satisfied. The Lyapunov optimization proposes
a suitable algorithm to address time-coupled constraints and
achieves long-term management, as shown in [20] - [22]. In
this method, time-coupled constraints are satisfied by main‐
taining stable mean rates of virtual queues.
1) Battery Virtual Queue

Battery energy is the time-coupled constraint as shown in
(21), which is related to the previous charging and discharg‐
ing states of the battery. Instead of retaining the battery ener‐
gy rate in (21), the average battery charging and discharging
is considered to be zero:

lim
t®¥

1
t∑τ = 0

t - 1

E(Pb (bτ)Dt)= 0 (48)

The virtual queue following Section II-A and (8) to satisfy
constraint (21) is defined as:

Bb (bt + 1)=Bb (bt)+Pb (bt)Dt (49)

Summing virtual queue B over time τÎ{01t - 1} and
considering the expectation and infinite limits, we can obtain:

lim
t®¥ ( )E(Bb (bt))

t
-

E(Bb (b0)

t
= lim

t®¥

1
t∑τ = 0

t - 1

E(Pb (bτ)Dt)

(50)

It is assumed that Bb (b0) is bounded, thus we can obtain:

lim
t®¥

E(Bb (b)0)

t
= 0 (51)

If queue Hj is mean rate stable, (51) is held. Subsequently,
the right-hand side of (50) will be equal to zero. Consequent‐

ly, constraint (48) will be satisfied.
2) Virtual Queues of Flexible Loads

To satisfy constraint (25), a virtual queue is defined based
on (7) as [21]:

Zfl ( flt + 1)=max{Zfl ( flt)- α fl0+Λ(Pfl ( flt))} (52)

Applying the expectation, summing over the time
τÎ{01t-1}, and applying the infinite limits, we can ob‐
tain:

lim
t®¥ ( )E(Zfl ( flt))

t
-

E(Zfl ( fl0)

t
³-α l + lim

t®¥

1
t∑τ = 0

t - 1

E (Λ(Pfl ( flt)))

(53)

Remark: if the virtual queue Zfl is mean rate stable, the
left-hand side of (53) is zero, and constraint (25) is held [24].
3) Delay-aware Virtual Queue

For the modeling delay in the provision of delay-tolerant
demands, the delay-aware virtual queue HDT (DTt) is de‐

fined as:
HDT (DTt + 1)=max{HDT (DTt)-PDT (DTt)0}+ ϵDT1QDT (DTt)> 0

(54)

where ϵDT is used to specify the requested service deadline
of the customer. The virtual queue HDT (DTt) is identified

with the same serving rate as QDT (DTt). However, it has a

different arrival rate, i.e., 1QDT ( )DTt > 0, which is greater than ze‐

ro when the load queue QDT (DTt) is not empty. Otherwise,

the arrival rate is zero. The arrival rate ensures that the virtu‐
al queue HDT (DTt) enlarges when the delay-tolerant load

queue QDT (DTt) is not empty.

The time-coupled constraints of the battery and load, i.e.,
(21) and (25), respectively, are omitted in the optimization
problem (47), whereas constraints (49) and (52) are added.

Problem II:

ì

í

î

ï
ï
ï
ï

min lim
t®¥

1
t

E(C(t))

s.t. (11)(15)- (17)(19)- (23)(27)- (36)(38)- (44)

(46)(49)(52)(54)

(55)

However, constraint (21) is maintained to ensure that the
battery energy is in the desired range.
4) Drift-plus-penalty Function

Minimizing the drift-plus-penalty will minimize and stabi‐
lize the queue backlogs. Meanwhile, it minimizes the cost
function. We firstly define the Lyapunov function for the vir‐
tual queues as:

L(Θ(t))=
1
2

é

ë
êêβb∑

b

B2
b (bt)+∑

fl

Z 2
fl ( flt)+∑

DT

(Q2
DT (DTt)+

H 2
DT (DTt))

ù

û
úú (56)

where Θ(t)= {BbZflQDTHDT}; and βb is the weight for the

battery queue that yields a difference between the battery
and load queues.

Then, we introduce the one-slot conditional Lyapunov
drift as:
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D(Θ(t))=E [ ]L(Θ(t + 1))- L(Θ(t)) |Θ(t) (57)

Minimizing the Lyapunov drift will minimize the queue
backlogs which stabilize the queue mean rates and satisfy
the described inequality constraints. However, only minimiz‐
ing the Lyapunov drift would incur more costs. Hence, the
operation cost and the emission function are added to the ob‐
jective function. Furthermore, the goal of RT-EMS is to min‐
imize the operation cost and emission simultaneously. The
cost is penalized by a penalty factor V. In this case, both
time-coupled constraints and cost minimization are satisfied.

D(Θ(t))+VE ( )C(t) |Θ(t) (58)

The Lyapunov optimization method minimizes the upper
bound of (58) instead of directly minimizing (58).

The conditional terms are eliminated because queues are
known at each time slot. Squaring both sides of (49), the bat‐
tery virtual queue is bounded as:

B2
b (bt + 1)-B2

b (bt)£ 2Bb (bt)Pb (bt)Dt +
max{(P max

b )2 (P min
b )2}Dt2 (59)

Lemma 1: for real positive variables a, b, and q, inequali‐
ty (60) is held [17]:

max{((q- b)0+ a)2}£ q2 + a2 + b2 + 2q(a- b) (60)

Using (60), squaring both sides of (52), and considering
Λ (Pflflt)£ 1, we can obtain:

Z 2
fl ( flt + 1)- Z 2

fl ( flt)£ 2Zfl ( fl,t)(Λ(Pfl ( fl,t))- α fl)+ 1+ α2
fl

(61)

By squaring both sides of (29) and (54) and considering
the inequality (60) in Lemma 1, we can obtain:

Q2
DT (DTt + 1)-Q2

DT (DTt)£(2P max
DT (DT))2 +

QDT (DTt)(P max
DT (DTt)-PDT (DTt)) (62)

H 2
DT (DTt + 1)-H 2

DT (DTt)£ ϵ 2
DT + (P max

DT (DT))2 +
HDT (DTt)(ϵDT -PDT (DTt)) (63)

Substituting (59), (61), (62), and (63) into (58) and apply‐
ing the conditional expectation, we can obtain:

D(Θ(t))+VE ( )C(t) |Θ(t) £B+ βb∑
b

Bb (bt)E ( )Pb (bt)Dt |Θ(t) +

∑
fl

Zfl ( flt)E ( )|

|
|
|

-Pfl ( flt)

P max
fl ( flt)-P min

fl ( flt)
Θ +∑

DT

(-HDT (DTt)-

QDT (DTt))E ( )PDT (DTt) |Θ +VE ( )C(t) |Θ(t) (64)

B=
1
2∑flDT

[ ](1+ α2
fl + (2P max

DT (DT))2 +P max
DT (DT)+ ϵ 2

DT) +

1
2
βb max((P max

b )2 (P min
b )2)Dt2 (65)

The Lyapunov optimization method minimizes the upper
bound of (58) instead of directly minimizing (58), which in‐
volves calculating the upper bound of one-slot conditional
Lyapunov drift function, considering the Lyapunov optimiza‐
tion method framework in [24]. This means that the term re‐
lated to the cost function VE(C(t)|Θ(t)) is maintained.

In Lyapunov optimization, instead of directly minimizing
the drift-plus-penalty function, the upper bound of (64) is
minimized. At each time, the virtual queues Θ(t) and system

states including the power generated by RES, market price,
and decision variables, i.e., Pb (bt), Pg (gt), Pfl ( flt),
PDT (DTt), Pgrid (t), are calculated by solving the following
optimization problem.

Problem III:

ì

í

î

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

min{V (C(t))+ βb∑
b

Bb (bt)Pb (bt)Dt -

∑
fl

Zfl ( fl,t)
Pfl ( flt)

P max
fl ( flt)-P min

fl ( flt)
-

}∑
DT

(HDT (DTt)+QDT (DTt))PDT (DTt)

s.t. (11)(15)- (17)(19)- (23)(27)- (36)(38)- (44)(46)
(49)(52)(54)

(66)

IV. SIMULATION RESULTS

Two case studies are considered to evaluate the perfor‐
mance of the proposed method. The first case study is a mi‐
crogrid obtained from [22], whereas the second one is a
modified IEEE 33-bus distribution system [26]. The pro‐
posed RT-EMS method, i.e., Problem III, is evaluated in the
general algebraic modeling system (GAMS) optimization
tool. The LINDOGLOBAL nonlinear solver is used to ad‐
dress the nonlinear optimization of Problem III.

A. Case 1

Figure 4 shows the schematics of the microgrid test sys‐
tem used in case 1, in which simulations are performed in 5-
min time slots. The electrical load is shown in Fig. 5.

The QoS control parameter is set to α fl = 0.5. The cost co‐
efficient of load shedding is set to β fl = 700. Wind and solar
generations are shown in Fig. 6. The real-time price of ex‐
changed power with the main grid is depicted in Fig. 7. As
mentioned previously, no statistical information is required
in the real-time energy management using the Lyapunov opti‐
mization method. CG and battery characteristics are listed in
Tables I and II, respectively.

L1, L4, L7, L8: delay-tolerant loads; L2, L3, L5, L6: flexbile loads

ESS

CG35 kV/10 kV

L6L1

L2

L5L4 L7

L8

L3

Main grid

WT

PV

Fig. 4. Schematics of test system for microgrid in case 1.
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1) Case 1: Multi-objective RT-EMS
In the proposed RT-EMS, the objective is to minimize

both the operation costs and the emission function of the
units. As these objectives are conflicting, it is a multi-objec‐
tive optimization problem. Hence, the Pareto front is ob‐
tained by varying the values of λop and λem, which have al‐
ready been defined in Section III. The Pareto-optimal solu‐
tions are shown on the Pareto-front line in Fig. 8.

The power production of CG unit is illustrated in Fig. 9
for two different values of λem. Figure 9 shows that the incre‐
ment of λem reduces the power of CG unit due to the emis‐
sion of the CG units. Meanwhile, the output power of the

BESS increases by the increment of λem to supply the remain‐
ing loads, as depicted in Fig. 10. The power of the RESs is
used for charging the BESS and its amount is increased by
the increment of λem. The power exchanged with the main
grid is shown in Fig. 11. It is shown that by increasing the
value of λem, the amount of imported power increases. The
solution time for each time slot in case study I is calculated
in 1.5 s, which is an appropriate duration for an RT-EMS
with 5-min time slots.

2) Case 1: Effect of V
To analyze the effect of V, the operation costs for V are

obtained as shown in Fig. 12. As discussed in Section III,
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Fig. 11. Exchanged power with main grid in case 1.
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TABLE I
CHARACTERISTICS OF CG UNIT IN CASE 1

αg

27

βg

13

αem

11.57

βem

6.3

cg

0

P max
g (MW)

6

P min
g (MW)

0

Sg (MVA)

6

Rg

0.3

TABLE II
BESS CHARACTERISTICS IN CASE 1

αb

57

cb

0

P max
b (MW)

2

Emax (MWh)

20

Emin (MWh)

0.1

Sb (MVA)

20

ηch

1

ηdis

1
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the penalty, i. e., operation cost, is reduced when V is de‐
creased due to the increment in the weight of operation costs.

Moreover, the battery energy levels are illustrated in Fig.
13 for V. Increasing V is equivalent to decreasing the weight
of the BESS virtual queue in the objective function, which
is stabilized to maintain the energy level of BESS in an ap‐
propriate range. Therefore, the increment of V results in the
reduction of the energy level of BESS over time at the end
of the scheduled time.

The QoS values are depicted in Fig. 14 for V. By increas‐

ing V, the value of Λ (Pfl ( flt)) decreases due to the incre‐

ment in the weight of the operation costs and the weight re‐
duction of the QoS virtual queue.

3) Case 1: Effect of Battery Coefficient βb

The effects of βb on the operation and battery costs and
battery energy are illustrated in Figs. 15 and 16, respective‐
ly.

The total cost increases with the increase of βb. Further‐
more, the high value of βb increases the battery power fluctu‐
ation due to the priority of the queue stability. Consequently,
the fluctuations increase the battery and total costs. The bat‐
tery energy shows that the increment of βb increases the bat‐
tery level.

4) Case 1: Effect of ϵDT

ϵDT is used to control the provision time of the delay-toler‐
ant loads. In this paper, it is set to be 2. However, to demon‐
strate the effect of this parameter on the provision time, the
maximum deadline for different values of ϵDT is calculated.
In Table III, the maximum delay time and the objective func‐
tion values for load 1 are presented. Table III shows that in‐
creasing ϵDT will decrease the delay time. The value of the
queues HDT (DTt) and QDT (DTt) in the objective function
(66) can be increased by decreasing the provision time and
increasing ϵDT. However, ϵDT should be selected so that ϵDT £
ϵ max

DT . When ϵDT is greater than ϵ max
DT , it will cause the provi‐

sion of the loads at the requested time. Therefore, the flexi‐
bility of the delay-tolerant loads for procrastination is no lon‐
ger advantageous. ϵ max

DT is 10 in this case study, which is ob‐
tained by the simulation. βb and V are set to be 50 and 10,
respectively.

5) Performance Comparison with Greedy Method
The greedy method is introduced in [16], [22] to demon‐

strate the efficiency of the proposed real-time method. The
greedy method is modelled as Problem Ⅳ (67), in which the
constraint (68) is used to ensure that the energy levels of
BESS remain in the range. Constraint (69) is to guarantee
that the flexible loads are provided according to the toler‐
ance of the customer. Furthermore, to satisfy the delay-toler‐
ant loads, constraint (70) is utilized to ensure that the delay-
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TABLE III
IMPACT OF ϵDT

ϵDT

0

2

5

Maximum delay time (s)

64
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Objective function value

4053
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Fig. 12. Comparison of operation costs for V in case 1.
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tolerant loads are satisfied before or at the deadline. The con‐
straint is used in [16], which indicates that the loads are sat‐
isfied and the remainder is satisfied at the deadline. Assume
that the percentage of the delay-tolerant loads are provided
at the requested time. Constraint (71) is applied for the sup‐
ply of the delay-tolerant loads at the requested time.

Problem Ⅳ:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

min C(t)

s.t (11)(15)- (17)(19)- (23)(27)- (34)(36)- (39)(41)

(Emin (b)-E(bt)) Dt£Pb (bt)£ (Emax (b)-E(bt)) Dt

Λ(Pflflt)£ α fl

P max
DT (DTi)-PDT (DTi)£PDT (DTt) "i = t -DL

PDT (DTt)³ γP max
DT (DTt)

(67)

Considering λem = 0.1 and λop = 0.9, the operation costs,
emissions, and total costs of the simulation results for the
proposed RT-EMS method and greedy method are given in
Table IV, which indicate that the proposed RT-EMS method
enforces less cost to the operator of the microgrid. Whereas
the greedy method incurs more costs. Furthermore, the ob‐
tained energy level of the BESS is depicted in Fig. 17 for
the proposed RT-EMS method and the greedy method. Fig‐
ure 17 shows that the final energy level obtained by the pro‐
posed RT-EMS method reaches half of Emax, and the energy
level is not exhausted during the day. Additionally, Fig. 17
depicts that the energy level obtained by the greedy method
reaches its minimum allowable level, i. e., Emin. Therefore,
BESS cannot be used at other times if it is required for the
provision of the loads.

B. Case 2: Modified IEEE 33-bus Distribution System

The modified IEEE 33-bus distribution system, which is
depicted in Fig. 18, is used in case 2 to further investigate
the proposed RT-EMS method. The characteristics of this
system are adopted from [27]. Note that in case 2, simula‐
tions are performed in 10-min time slots. In this paper, a CG
unit is added to bus 22 of the modified IEEE 33-bus distribu‐
tion system. The characteristics of the CG unit and BESSs

in case 2 are shown in Tables V and VI, respectively. The
load in bus 32 is shown in Fig. 19, and other loads exhibit
the same pattern with the scaled amounts [27] proportional
to bus 32, which are shown in Table VII. The loads in buses
2-17 are flexible, whereas the remaining loads are delay tol‐
erant. The RES power generation is shown in Fig. 20. The
initial BESS energy levels are considered as half of their en‐
ergy capacity; β fl and α fl are 500 and 0.5, respectively.

0

Main grid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

23 24 25

ESS
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19 20 21 22

26 27 28 29 30 31 32 33
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PV
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Fig. 18. Schematics of modified IEEE 33-bus distribution system.

TABLE V
CHARACTERISTICS OF CG UNIT

αg

40

βg

0

αem

400

βem

-5

cg

0

P max
g (MW)

1

P min
g (MW)

0

Sg (MVA)

2

Rg

0.3

TABLE VI
CHARACTERISTICS OF BESS

b

1

2-4

αb

100

100

cb

0

0

P max
b (MW)

1.5

1.0

Emax (MWh)

2

1
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Fig. 19. Electrical load of bus 32.
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TABLE IV
PERFORMANCE OF PROPOSED RT-EMS METHOD COMPARED WITH GREEDY

METHOD

Performance

Proposed RT-EMS
method

Greedy method

Operation cost ($)

4241

4446

Emission ($)

418

410

Total cost ($)

3823

4036
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W
h) 12
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0
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Time slot (5 min)

Proposed RT-EMS method
Greedy method

Fig. 17. Proposed RT-EMS method compared with the greedy method.
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1) Case 2: Effect of V
To demonstrate the effect of V, βb is set to be 100. The ef‐

fect of V on the operation costs is depicted in Fig. 22. As
shown in Fig. 22, the operation cost increases with the in‐
crease of V. The energy level of one of the BESSs for V =
0.3 is shown in Fig. 23.

By decreasing V, the energy fluctuation of BESS increases
to satisfy the energy level of BESS in constraint (21), as the
weight of the operation costs decreases. Additional costs are
considered to be reduced. The calculated solution time for
each time slot in case 2 is 2.2 s, which is an appropriate du‐
ration for RT-EMS with 5-min time slots.
2) Case 2: Impact of βb

The effects of βb on the operation and BESS costs are
shown in Fig. 24. To demonstrate the effect of βb, V is set to
be 0.3. It can be concluded that the increment of βb incurs
higher costs. The majority of the operation cost is related to
the BESS costs, due to the increase in output power fluctua‐
tions of BESS. The energy levels of one BESS are shown in
Fig. 25. The power fluctuations of BESS increase with βb. It
also leads to the increment in the value of constraint (21),
which is satisfied by the drift-plus-penalty function. Note
that constraint (21) is satisfied by stabilizing the defined vir‐
tual queue, which is achieved by minimizing the upper
bound of drift-plus-penalty function in (66).

V. CONCLUSION

RT-EMS of a microgrid is employed in this paper based
on the Lyapunov optimization method without any statistical
information. The loads in the microgrid are classified into
two categories: flexible and delay-tolerant demands. Lyapu‐
nov optimization is adopted to address the time-coupled con‐
straints related to battery energy as well as the QoS of flexi‐
ble and delay-tolerant loads. For each time-coupled con‐
straint, a virtual queue is defined. In this paper, the objective
of RT-EMS is to minimize the operation cost and the emis‐
sion function simultaneously. Hence, the Pareto front is ap‐
plied. In addition, the underlying operation limitations are
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Fig. 22. Operation costs for V in case 2.

TABLE VII
LOAD SCALE WITH RESPECT TO LOAD AT BUS 32

Bus No.

11

5, 6, 9, 10

3, 18, 19

2

31

32

20, 21, 22, 23

12, 13, 15, 16,

17, 26, 27, 28, 33

7, 8, 30

4, 14, 29

24, 25

Load scale with respect to
load at bus 32

0.21

0.29

0.43

0.48

0.71

1.00

0.43
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0.29
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Fig. 21. Real-time market price.
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Fig. 23. Energy level of BESS for V = 0.3.
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considered. Finally, the performance of RT-EMS is investi‐
gated in two case studies, including a modified IEEE 33-bus
distribution system. The results based on different control pa‐
rameters are derived, which indicate that the proposed online
Lyapunov optimization method effectively utilizes the energy
sources and BESSs. Furthermore, the desirable energy level
in the BESSs is maintained and the QoS of flexible and de‐
lay-tolerable loads is provided.
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