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Residential HVAC Aggregation Based on
Risk-averse Multi-armed Bandit Learning for

Secondary Frequency Regulation
Xinyi Chen, Qinran Hu, Qingxin Shi, Xiangjun Quan, Zaijun Wu, and Fangxing Li

Abstract——As the penetration of renewable energy continues
to increase, stochastic and intermittent generation resources
gradually replace the conventional generators, bringing signifi‐
cant challenges in stabilizing power system frequency. Thus, ag‐
gregating demand-side resources for frequency regulation at‐
tracts attentions from both academia and industry. However, in
practice, conventional aggregation approaches suffer from ran‐
dom and uncertain behaviors of the users such as opting out
control signals. The risk-averse multi-armed bandit learning ap‐
proach is adopted to learn the behaviors of the users and a nov‐
el aggregation strategy is developed for residential heating, ven‐
tilation, and air conditioning (HVAC) to provide reliable second‐
ary frequency regulation. Compared with the conventional ap‐
proach, the simulation results show that the risk-averse multi-
armed bandit learning approach performs better in secondary
frequency regulation with fewer users being selected and opting
out of the control. Besides, the proposed approach is more ro‐
bust to random and changing behaviors of the users.

Index Terms——Heating, ventilation, and air conditioning
(HVAC), load control, multi-armed bandit, online learning, sec‐
ondary frequency regulation.

I. INTRODUCTION

HIGH penetration of wind and solar has brought great
challenges in stabilizing the frequency of power grids.

Conventionally, the generators track system loading levels to
maintain the system frequency within a safe range [1]. How‐
ever, as renewable energy resources are gradually taking the
place of conventional ones, it lowers the system inertia [2],
deteriorates the characteristics of system frequency response

[3], and jeopardies the system stability [4]. This raises inter‐
ests of researchers on exploring the potential of demand-side
resources to enhance the system stability.

With the rapid development of advanced metering infra‐
structure and communication technology, demand-side re‐
sources including electric vehicles [5], batteries [6] and ther‐
mostatically controlled loads [7] are enabled as candidates to
provide frequency regulation service. As for the capacity, the
residential loads account for a significant proportion among
all the candidates [8] - [10]. Through proper control strategy,
electric water heater (EWH) [11], heating, ventilation, and
air conditioning (HVAC) [12] can be aggregated to provide
frequency regulation services.

Previous research efforts have been made on achieving
load aggregation with faster response time, larger flexibility,
higher economic efficiency and user-friendliness [13] - [15].
For instance, a hierarchical framework is applied to control
HVACs to participate in primary frequency regulation (PFR)
[16]. Reference [17] investigates the ramping rate flexibility
of thermostatically controlled loads with motors and com‐
pressors. From the perspective of economic efficiency, a
multi-agent demand control system is proposed in [18] to
maximize the total customer welfare of spinning reserves. To
satisfy the thermal comfort of the users, a load grouping con‐
trol strategy is presented in [19] to select thermostatically
controlled loads based on temperature distance and power
rating similarity. Reference [20] presents a thermostatic load
control strategy for both primary and secondary frequency
regulation (SFR), which considers more practical issues such
as daily demand profile and load rebound. However, the de‐
mand control strategy adopted in [20] is the random switch‐
ing (RS) approach that ignores opt-out behavior of the users
to the regulation commands.

Demand response programs usually offer user option to
opt-out while receiving the control signal. The reasons of
opt-out are various such as having important events and feel‐
ing uncomfortable. Thus, due to the uncertain opt-out behav‐
ior, the aggregated demand in practice may differ from the
scheduled target and can hardly serve as reliable resource
for SFR. To tackle this issue, we propose a control strategy
based on a risk-averse multi-armed bandit (MAB) learning
approach. Through the online learning process, the load ag‐
gregator can understand the opt-out behavior of the users, so
as to mitigate the influence on the uncertain response of us‐
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ers for load aggregation. The contributions of this work can
be summarized as follows. Firstly, risk-averse MAB learning
approach has been applied to learn uncertain responses of
the users to SFR commands of load aggregator. Secondly,
the proposed approach improves the reliability of aggregat‐
ing residential HVAC for SFR while reducing the number of
called and opt-out behaviors of the users. Thirdly, the pro‐
posed approach is robust to the random and changing behav‐
iors of the users.

The rest of this paper is structured as follows. Section II
proposes the model of HVAC in demand aggregation. Sec‐
tion III presents the dynamic control strategy based on the
MAB learning approach for SFR. Section IV illustrates the
performance of the proposed approach with case studies.
Section V concludes this paper.

II. HVAC MODEL CONSIDERING USER BEHAVIOR

A. HVAC Model

The first-order differential equation is adopted to model
the temperature variation process based on the assumption
that the temperature change is almost linear within the nar‐
row temperature deadband [20]. The heat cycle process and
power consumption profile of HVAC are depicted in Fig. 1
with cooling mode [21].

In Fig. 1, Tmax and Tmin are the upper and lower bounds for
room temperature, respectively; and TDB is the temperature
deadband. The HVAC unit operates with a cycling time τ,
the falling curves indicate “on” state of the HVAC during
time period ton, and the rising curves represent the opposite
during time period toff. Concrete equation of room tempera‐
ture Tin is as follows [22]:

C
dTin (t)

dt
=

Tout (t)- Tin (t)

R
- s(t)Q (1)

where C and R are the thermal capacitance and resistance, re‐
spectively; Tout is the outdoor temperature; Q is the thermal
power; and s(t) is the on/off state of HVAC.

The discrete form of (1) is:

Tin (t +Dt)= Tin (t)+
Dt
C ( )Tout - Tin (t)

R
- s(t)Q (2)

s(t) is governed by a switching law [23]:

s(t) =

ì

í

î

ïï
ïï

0 s ( )t -Dt = 1Tin ( )t £Tmin

1 s ( )t -Dt = 0Tin ( )t ³Tmax

s ( )t -Dt otherwise

(3)

In this case, the total HVAC load profile can be obtained:

P (t)= 1
η∑i = 1

N

si (t)Qi (4)

where η is the performance of coefficient of an HVAC; N is
the total number of HVACs; and Qi is the heat output of
HVAC i.

The parameters of HVAC are given in Table Ⅰ [24].

On the basis of thermal model of 1 HVAC, the potential
of 50000 HVACs in SFR on a typical hot summer day in
Houston [20] can be derived, as shown in Fig. 2. The maxi‐
mal load that can be aggregated is Pmax; the load baseline is
Pbase; and the upward and downward frequency regulation ca‐
pacities are Pup and Pdown, respectively. It can be seen that
large-scale HVACs have great flexibility and adjustment ca‐
pability to participate in SFR.

B. User Behavior Model in Real-world Practice

Based on the aggregated load profile of HVACs, the re‐
serve capacity for SFR at different time can be easily esti‐
mated. Furthermore, when a disturbance occurs, the dynam‐
ic demand control strategy determines which HVAC to
switch on/off according to the SFR requirement and re‐
serve. An RS approach is carried out in the previous re‐
search, where the users are stochastically called with a
probability of poff [20].

poff =
PSFR (t)

PAC (t)
(5)

t

t

ton toff

Power

T
Tmax

Tmin

TDB

τ

Fig. 1. On/off curve of HVDC and power consumption.

TABLE I
PARAMETERS OF HVAC THERMAL MODEL

Symbol

R

C

Q

TDB

Tmin

Tmax

η

Value

2.0 ℃/kW

2.0 kWh/℃

6.25 kW
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23.5 ℃

24.5 ℃

2.5
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Fig. 2. Aggregated load profile of 50000 HVACs.

1161



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 6, November 2020

where PSFR (t) is the expected power aggregation for SFR;
and PAC (t) is the available reserve.

However, the above approach optimistically estimates the
behaviors of the users. Usually, in the residential demand re‐
sponse contracts, users always have the option to opt-out
from the regulation commands. The complexity and random‐
ness of their behaviors in the real-world increase the difficul‐
ty of performing reliable load aggregation.

In this paper, we model the response of each user to fre‐
quency regulation command as a probability function which
follows Bernoulli distribution Xi~Bern(pi):

Xi = {1 pi

0 1- pi

(6)

where Xi = 1 means the user i follows the command and Xi =
0 means user i opts out the command; and pi is the participa‐
tion probability that user i follows the command, thus the ex‐
pected load change is E(Xi)= pi, and the variance is σ 2

i =
pi (1- pi).

Practically, we can hardly obtain accurate value of pi,
which affects the performance of SFR with HVACs. There‐
fore, we adopt an online learning approach to estimate pi

and aggegate the optimal set of users to improve the perfor‐
mance of their HVACs in SFR.

III. DEMAND CONTROL STRATEGY BASED ON MAB

A. Frequency Regulation Scheme

The flowchart of frequency regulation scheme is shown in
Fig. 3, in which HVACs are aggregated for SFR.

Suppose a disturbance happens. After PFR, the system fre‐
quency reaches a new steady state. Calculate the present fre‐
quency deviation | Df (t) | from the rated value. Once the devi‐
ation exceeds the frequency threshold Dfth, SFR would be
performed. Since the demand side is required to simulate the
droop characteristic of the generation side to restore the sys‐
tem frequency to the normal range, the SFR droop coeffi‐
cient is estimated by:

kS =
max(PAC)

|| DfmSFR

(7)

where max(PAC) is the maximum SFR reserve of HVAC;

and | DfmSFR | is the maximum frequency deviation that the

system can sustain for SFR. Then, at time t, the expected ag‐
gregated demand target for SFR can be calculated by:

Dtart =min ( )ks | Df (t) | PAC (t) (8)

The smaller value is picked between the theoretical expec‐
tation and the actual reserve on demand side for SFR at time
t in case the HVAC capacity is insufficient. The same formu‐
la can be used for upward and downward frequency regula‐
tion.

Next, the load aggregator selects the users to send the fre‐
quency regulation commands according to the target Dtart. If
the user responds to the request, corresponding HVAC will
be temporarily switched on/off, otherwise no action will be
performed. For achieving reliable frequency regulation, our
objective is to minimize the square difference between the
actual aggregated power of HVAC after user response Daggt

and the target Dtart in expectation:

min E ( )Daggt -Dtart

2

(9)

B. Risk-averse MAB

During each frequency regulation event, the load aggrega‐
tor receives Dtart from the dispatching center, and then se‐
lects a group of users S (t)Í[N] with unknown participation
probability profile p1p2pn to minimize the aggregated
power deviation from the target. It is similar to combinatori‐
al MAB (CMAB) problem: the decision-maker is allowed to
choose some revenue-generating arms from a set each time,
where the distribution of rewards for each machine is un‐
known. The objective for decision-maker is to maximize the
rewards after a limited number of trials. Different from maxi‐
mizing revenue, we aim to minimize the expected mismatch
between the actual aggregated power and Dtart in order to
achieve reliable frequency regulation.

Response probabilities of the users are unknown in reali‐
ties, the aggregator should learn response behavior of the us‐
ers online and adjust selection strategy according to the feed‐
backs of previous events. Since the feedback can only be ob‐
tained when the user is selected within a limited number of
events, there is a trade-off between the exploitation of the
known information and exploration of more information.
Specifically, the exploitation means selecting users based on
present estimated participation probability p̂, and the explora‐
tion means selecting users that have not been adequately
called for more information.

Disturbance happens

PFR

Normal state

A new steady state

Y

N

N

Y

|∆f(t)|>∆fth?

Calculate present reserve PAC(t) for SFR

Aggregation target: Dtar,t=min(ks|∆f(t)|,PAC(t))

Start

Select users to send
frequency regulation commands

Does user
respond?

Temporarily switch on/off HVAC

No operation execute

End

Fig. 3. Flowchart of frequency regulation scheme.

1162



CHEN et al.: RESIDENTIAL HVAC AGGREGATION BASED ON RISK-AVERSE MULTI-ARMED BANDIT LEARNING FOR SECONDARY FREQUENCY...

For the CMAB problem, there exist many related algo‐
rithms such as ϵ-greedy, Thompson sampling [25], Exp3 al‐
gorithm [26], combinatorial upper confidence bound
(CUCB) [27], contextual CUCB [28]. Most algorithms are
designed to achieve the objective of maximizing rewards or
minimizing average costs. However, unlike both objectives,
for frequency regulation, it is critical to minimize the gap be‐
tween the actual power aggregation and the target. Other‐
wise, it will cause additional power imbalance and frequency
fluctuation. A learning algorithm CUCB-avg is proposed to
handle this problem, which is demonstrated to perform bet‐
ter than the classic CUCB algorithm [29].

Meanwhile, the algorithm introduced above ignores the
risk together with the rewards. However, the behaviors of
the users are random and changing. The load aggregators
should not only consider the expected aggregation power
that the users can achieve but also avoid the risk of users
with high power expectation but erratic performance. Similar
consideration often arises in financial investments. For exam‐
ple, in the stock market, investors may not only consider
whether stocks will bring high returns but also their varia‐
tion to avoid risk when making long-term investments.
Therefore, to ensure reliable frequency regulation, load ag‐
gregators may prefer users that provide stable responses. In
this paper, we adopt risk-averse MAB learning approach
[30] for load aggregation, and the algorithm is designed as
follows:

In Algorithm 1, ρ1 and ρ2 are the constants; P1P2Pn

are the HVAC power of each user; n is the total number of
users; and St ={ε1ε1εm} is the set of selected users.

The core of the above algorithm is to sort users in de‐
scending order as:

vti =Pi p̂ti - ρ1 P 2
i σ̂

2
ti + ρ2 ln(t)/nti (10)

Apparently, this formula gives the priority to choose those
users with high estimated participation probability and fewer
times of receiving frequency regulation signals, where the
trade-off between the exploitation and exploration is reflect‐
ed. The second term of (10) is to lower users’ priority
whose responses exhibit great variability. Thus, the risk
brought from uncertain behaviors of the users can be mitigat‐
ed.

Note that the highest order term of time complexity is the
log-linear time, which scales well in risk-averse MAB learn‐
ing approach.

C. Control Framework

The schematic of control framework is shown in Fig. 4.
Load aggregator aggregates users to participate in power sys‐
tem operation [31], [32]. The demand controller of the load
aggregator is responsible for measuring the bus frequency
and collecting the information about how many users are reg‐
istered for frequency regulation. Once the frequency devia‐
tion above the threshold is detected or receives commands
from the power grid dispatching center, the demand control‐
ler sends regulation commands to users for frequency regula‐
tion based on the risk-averse MAB learning approach. If the
user responds to the control signals, on/off switching action
will be executed on connected appliances. The response of
each user is fed back to the demand controller [21].

IV. CASE STUDY

In this section, the modified IEEE RTS 24-bus, 10-ma‐
chine system [20] is employed to test the performance of the
proposed control strategy for SFR, as shown in Fig. 5. The
simulation environment is built on MATLAB PSAT toolbox
(V.2.1.11) [33] with 100 MW system base power.

A. Comparison of Different Approaches

We compare the risk-averse MAB based load aggregation
approach with RS and offline approaches. Since the previous
study [20] does not consider the opt-out behavior of the us‐
ers, for the sake of fairness of comparison, we improve RS
to some extent, and the number of users called is calculated
by:

NRS = Dtart E ( )P̄ (11)

Algorithm 1

1. Input: ρ1, ρ2, P1P2Pn, Dtart

2. Initialization:
for each user iÎ [N ] do

Initialize estimate of participation probability p̂ti, estimate of vari-
ance σ̂ 2

ti, and historical called times nti.
end for

3. for each time t = 1 to T do
Calculate priority index for each user i:

vti =Pi p̂ti - ρ1 P 2
i σ̂

2
ti + ρ2 ln(t)/nti

4. Rank users in descending order with vti:
vtε1

³ vtε2
³³ vtεn

5. Select m (m³ 0) users in sequence until:

∑
i= 1

m

Pεi
p̂tεi

³Dtart

Let m= n if∑
i= 1

m

Pεi
p̂tεi

£Dtart.

6. Output: St ={ε1ε2εm}.
7. Update:

for each called user jÎ St do
ì

í

î

ï
ï
ï
ï

p̂t + 1j =
p̂tjntj +Xtj

ntj + 1

σ̂ 2
t + 1j = p̂t + 1j (1- p̂t + 1j)

nt + 1j = ntj + 1
8. end for
9. end for

Regulation commandParticipate/opt-out;

HVAC EWH

Community 1 Community 2
� �

Community 3

HVAC HVAC Dishwasher

Dispatching centerCommand Command

on/off on/off on/off

Demand
controller 1

Load
aggregator 1

Demand
controller 2

Load
aggregator 2

Washing
machine

House 1 House i House i+1 House j House j+1 House n� �

Fig. 4. Schematic of control framework.
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where E(P̄) is the expected mean of power of HVACs based
on the estimated participation probability of p̂ of the user.

Meanwhile, the offline approach is often used to verify
the effectiveness of online learning approaches, where the re‐
sponse probability of all users to the regulation commands is
pretended to be known.

Assume that a disturbance of power supply shortage of 74
MW occurs at bus 2 at 15: 00. There are 50000 users (one
HVAC per user) who have signed up for providing frequen‐
cy regulation service distributed at load buses 15, 19, and
20, and the average power consumption for each HVAC is
P̄ » 2.5. According to the load profile presented in Fig. 2, the
upward regulation capacity is 115.3160 MW for SFR, and
the maximum reserve is 115.3753 MW. The maximal fre‐

quency deviation | DfmSFR | that system can sustain for SFR is

set to be 0.2 Hz, and the frequency droop ks is calculated as:

ks =
max(PAC)

|| DfmSFR

=
115.3753

0.2
= 576.8764 (12)

Meanwhile, the number of HVAC available for SFR is cal‐
culated as:

n=
115.3160´ 106

2.5´ 103
= 46126 (13)

We consider that the actual participation probabilities of
users p1p2pn obey the uniform distribution [0,1]. Since
these values are unknown in practice, the initial estimates of
them in RS and risk-averse MAB learning approaches are
p̂1p̂2p̂n, and the mean p̂ is set to be 0.65.

When the system frequency falls below the threshold of
59.97 Hz, PFR is activated. And the responsive load capaci‐
ty and frequency droop for PFR are 34.40 MW and 200.0
MW/Hz, respectively [20]. After that, the system frequency
reaches the new steady state of about 59.9514 Hz at 19 s, as
shown in Fig. 6.

The system frequency should be further brought back to
the normal level (60 ± 0.04 Hz) through SFR by turning off
the HVACs. According to (8), the target reduction of HVACs
is 28.09 MW. Figure 7 plots the frequency regulation results
of offline, RS, and risk-averse MAB approaches. The results
of risk-averse MAB approach at the 20th, 80th, and 200th

events are provided respectively. It can be observed that the
risk-averse MAB based demand control strategy always per‐
forms better than RS in raising the frequency level, and grad‐
ually gets closer to the offline approach with the accumula‐
tion of learning process about the behaviors of the users.

Figure 8 shows 95% confidence intervals of actual aggre‐
gated power and relative reduction deviations from the target
of different approaches during 200 frequency regulation
events. The power value aggregated by the proposed risk-
averse MAB based control strategy gradually approaches the
results of the offline approach after learning the behaviors of
the users, outperforming RS strategy which remains a mis‐
match of about 6.49 MW from the target. It is also observed
in Fig. 8(b) that the relative deviation of the risk-averse
MAB learning approach falls to less than ±5% after dozens
of events while the relative deviation of RS always remains
about 23%. The results verify the regulation reliability of
our proposed approach and its solid performance in multiple
Monte Carlo cases.

Besides, Fig. 9 reveals that RS sends frequency regulation
commands to more users and nearly half of them opt out,
while the risk-averse MAB has better results in both aspects.
Even both of them have very limited knowledge of users at
the very beginning, MAB calls fewer users because it selects us‐
ers with high expectations until reaching the adjustment target.

In practical application, the selection for each time comes
with a cost and user fatigue. Therefore, the risk-averse MAB
approach not only ensure the reliability of the load aggrega‐
tion but also guarantee the economy and user-friendliness,
which achieves the win-win results for both the load aggre‐

Frequency observation nodes

1

PV

2 7

4 5
8

63 9 10

24 11 12

15
14 13

16 19 20
23

222118
17

Aggregate
responsive loads

Fig. 5. IEEE RTS 24-bus system.
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Fig. 6. System frequency after PFR.
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Fig. 7. Comparison of frequency regulation results.
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gators and users.

B. Impacts of Initial Estimated Probability Average p̂

The mean of initial estimate of p̂ is 0.65, which is higher
than the actual average value p̄. Since p̂ is one indispensable
input of user-selection approaches, its impact on the results
of different approaches under diverse settings is discussed.
We consider two more cases: ① p̂ is about 0.5, so the guess
about the behavior of the user is very close to the truth; ②
p̂= 0.4, which underestimates the actual response of the user.

Figure 10 demonstrates that the power aggregation perfor‐
mance of RS is highly sensitive to the initial guess of user
participation probability. However, no matter how the initial
setting of p̂ changes, MAB can always gradually approxi‐
mate the optimization results of the offline approach by
learning the behavior of the user, indicating that the pro‐
posed approach is reasonably robust to the initial estimate
of p̂.

Figure 11 shows that the number of users called and opt-
out based on the risk-averse MAB learning approach is al‐
ways lower than those of RS in 200 events under different
initial estimated probability settings. Besides, with the in‐
crease of p̂, RS calls fewer users, and the number of opt-out
users also decreases, which is reasonable because RS overes‐
timates the power aggregation expectation when sending

commands. The performance of the risk-averse MAB learn‐
ing approach once again confirms its robustness and indi‐
cates its reliability, economy and user-friendliness for load
aggregation.

C. Impacts of Changes in Behaviors of Users

In practice, the behaviors of the users have great uncer‐
tainty and randomness. Hence, the response probability is
not always a constant value. It may be affected by the satis‐
faction level of frequency regulation program, temperature
tolerance, outdoor temperature, personal lifestyle, and neigh‐
borhood effect. In this case, a variation ratio for the behav‐
iors of the users is introduced. We assume that 10% of users
would change their response probability for every 20 events.
Other settings are consistent with Section Ⅳ-A.

Figure 12 shows that even if the actual response patterns
of the users change, the aggregated power of the risk-averse
MAB can still gradually approximate that of the offline ap‐
proach with a small fluctuation, whereas RS still remains a
mismatch of about 6.50 MW from the target. It is also ob‐
served that the relative reduction deviation of the proposed
approach is reduced to below 5% after dozens of events. Fig‐
ure 13 shows the frequency regulation results of offline, RS,
and risk-averse MAB learning approaches at the 20th, 80th,
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and 200th events, demonstrating that the MAB-based load ag‐
gregation strategy can maintain better performance when fac‐
ing the changing behaviors of the users.

In terms of economy and user-friendliness, Fig. 14 also
demonstrates the robustness of the risk-averse MAB concern‐
ing the number of called and opt-out users with changes in
response probabilities.
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Fig. 14. Number of called and opt-out users of different approaches with
changing behaviors of users. (a) Called users. (b) Opt-out users.

V. CONCLUSION

This paper presents a control strategy for aggregating resi‐
dential HVACs to participate in SFR based on the risk-
averse MAB. Based on the thermal model of individual
HVAC, the aggregated load profile is estimated. Then, the

frequency regulation reserve of HVACs for the up-down reg‐
ulation and droop coefficient of SFR can be determined. In
the aggregation process, the risk-averse MAB learning ap‐
proach is implemented to understand the opt-out behavior of
the users to frequency regulation commands. Through the on‐
line learning process of risk-averse MAB, the load aggrega‐
tor can mitigate the uncertainty of aggregated demand and
provide better SFR service.

Compared with conventional approach, the proposed
MAB-based approach can achieve a better frequency regula‐
tion performance while fewer users are called and opt-out.
The simulation results verify that the proposed approach is
robust to the random and changing behaviors of the users.
These advantages are beneficial for load aggregators to pro‐
vide efficient and economical SFR service.

In the future, we plan to consider the impact of the fa‐
tigue effect of the users in responding to repeated demand
aggregation control signals.

REFERENCES

[1] P. J. Douglass, R. Garcia-Valle, P. Nyeng et al., “Smart demand for
frequency regulation: experimental results,” IEEE Transactions on
Smart Grid, vol. 4, no. 3, pp. 1713-1720, Sept. 2013.

[2] Y. Bian, H. Wyman-Pain, F. Li et al., “Demand side contributions for
system inertia in the GB power system,” IEEE Transactions on Power
Systems, vol. 33, no. 4, pp. 3521-3530, Jul. 2018.

[3] H. Bevrani, A. Ghosh, and G. Ledwich, “Renewable energy sources
and frequency regulation: survey and new perspectives,” IET Renew‐
able Power Generation, vol. 4, no. 5, pp. 438-457, Sept. 2010.

[4] A. Palomino and M. Parvania, “Data-driven risk analysis of joint elec‐
tric vehicle and solar operation in distribution networks,” IEEE Open
Access Journal of Power and Energy, vol. 7, pp. 141-150, Mar. 2020.

[5] H. Liu, Z. Hu, Y. Song et al., “Vehicle-to-grid control for supplementa‐
ry frequency regulation considering charging demands,” IEEE Transac‐
tions on Power Systems, vol. 30, no. 6, pp. 3110-3119, Nov. 2015.

[6] Q. Zhai, K. Meng, Z. Dong et al., “Modeling and analysis of lithium
battery operations in spot and frequency regulation service markets in
Australia electricity market,” IEEE Transactions on Industrial Infor‐
matics, vol. 13, no. 5, pp. 2576-2586, Oct. 2017.

[7] L. Zhao, W. Zhang, H. Hao et al., “A geometric approach to aggre‐
gate flexibility modeling of thermostatically controlled loads,” IEEE
Transactions on Power Systems, vol. 32, no. 6, pp. 4721-4731, Nov.
2017.

[8] R. D’hulst, W. Labeeuw, B. Beusen et al., “Demand response flexibili‐
ty and flexibility potential of residential smart appliances: experiences
from large pilot test in Belgium,” Applied Energy, vol. 155, no. 1, pp.
79-90, Oct. 2015.

[9] S. Nistor, J. Wu, M. Sooriyabandara et al., “Capability of smart appli‐
ances to provide reserve services,” Applied Energy, vol. 138, no. 15,
pp. 590-597, Jan. 2015.

[10] M. Afzalan and F. Jazizadeh, “Residential loads flexibility potential
for demand response using energy consumption patterns and user seg‐
ments,” Applied Energy. doi: 10.1016/j.apenergy.2019.113693

[11] T. Clarke, T. Slay, C. Eustis et al., “Aggregation of residential water
heaters for peak shifting and frequency response services,” IEEE
Open Access Journal of Power and Energy, vol. 7, pp. 22-30, Nov.
2020.

[12] O. Erdinç, A. Taşcıkaraoğlu, N. G. Paterakis et al., “End-user comfort
oriented day-ahead planning for responsive residential HVAC demand
aggregation considering weather forecasts,” IEEE Transactions on
Smart Grid, vol. 8, no. 1, pp. 362-372, Jan. 2017.

[13] Q. Shi, F. Li, Q. Hu et al., “Dynamic demand control for system fre‐
quency regulation: concept review, algorithm comparison, and future
vision,” Electric Power Systems Research, vol. 154, pp. 75-87, Jan.
2018.

[14] F. Pallonetto, M. De Rosa, F. D’Ettorre et al., “On the assessment and
control optimisation of demand response programs in residential build‐
ings,” Renewable and Sustainable Energy Reviews. doi: 10.1016/j. rs‐
er.2020.109861

[15] H. Hao, B. M. Sanandaji, K. Poolla et al., “Potentials and economics

0 20 40 60 80 100 120 140 160 180 200
No. of FRE

No. of FRE

(a)

0 20 40 60 80 100 120 140 160 180 200

(b)

0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29

95
%

 C
I o

f a
gg

re
ga

te
d

po
w

er
 (p

.u
.)

-25
-20
-15
-10

-5
0
5

Re
la

tiv
e 

re
du

ct
io

n
de

vi
at

io
n 

(%
)

RS; Risk-averse MABOffline;

Fig. 12. 95% confidence intervals of load reduction results of different ap‐
proaches with changing behaviors of users. (a) Actual aggregated power. (b)
Relative reduction deviations from target.

0 10 20 30 40 50 60
t (s)

59.86
59.88

59.92
59.94
59.96
59.98

60.02
60.00

Fr
eq

ue
nc

y 
(H

z)

59.90

Offline
RS
Risk-averse MAB (20th)
Risk-averse MAB (80th)
Risk-averse MAB (200th)

Fig. 13. Comparison of frequency regulation results with changing behav‐
iors of users.

1166



CHEN et al.: RESIDENTIAL HVAC AGGREGATION BASED ON RISK-AVERSE MULTI-ARMED BANDIT LEARNING FOR SECONDARY FREQUENCY...

of residential thermal loads providing regulation reserve,” Energy Poli‐
cy, vol. 79, pp. 115-126, Apr. 2015.

[16] X. Wu, J. He, Y. Xu et al., “Hierarchical control of residential HVAC
units for primary frequency regulation,” IEEE Transactions on Smart
Grid, vol. 9, no. 4, pp. 3844-3856, Jul. 2018.

[17] B. M. Sanandaji, T. L. Vincent, and K. Poolla, “Ramping rate flexibili‐
ty of residential HVAC loads,” IEEE Transactions on Sustainable En‐
ergy, vol. 7, no. 2, pp. 865-874, Apr. 2016.

[18] S. Weckx, R. D’Hulst, and J. Driesen, “Primary and secondary fre‐
quency support by a multi-agent demand control system,” IEEE Trans‐
actions on Power Systems, vol. 30, no. 3, pp. 1394-1404, May 2015.

[19] S. Lin, D. Liu, F. Hu et al., “Grouping control strategy for aggregated
thermostatically controlled loads,” Electric Power Systems Research,
vol. 171, pp. 97-104, Jun. 2019.

[20] Q. Shi, F. Li, G. Liu et al., “Thermostatic load control for system fre‐
quency regulation considering daily demand profile and progressive re‐
covery,” IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6259-
6270, Nov. 2019.

[21] Y. Shen, Y. Li, Q. Zhang et al., “State-shift priority based progressive
load control of residential HVAC units for frequency regulation,” Elec‐
tric Power Systems Research. doi: 10.1016/j.epsr.2020.106194

[22] D. S. Callaway, “Tapping the energy storage potential in electric loads
to deliver load following and regulation, with application to wind ener‐
gy,” Energy Conversion and Management, vol. 50, no. 5, pp. 1389-
1400, May 2009.

[23] Q. Shi, C. Chen, A. Mammoli et al., “Estimating the profile of incen‐
tive-based demand response (IBDR) considering technical models and
social-psychological factors,” IEEE Transactions on Smart Grid, vol.
11, no. 1, pp. 171-183, Jan. 2020.

[24] J. L. Mathieu, M. Dyson, and D. S. Callaway, “Using residential elec‐
tric loads for fast demand response: the potential resource and reve‐
nues, the costs, and policy recommendations,” in Proceedings of the
2012 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific
Grove, USA, Aug. 2012, pp. 189-203.

[25] D. J. Russo, B. Van Roy, A. Kazerouni et al., “A tutorial on thompson
sampling,” Foundations and Trends in Machine Learning, vol. 11, no.
1, pp. 1-6, Nov. 2017.

[26] A. Mohamed, A. Lesage-Landry, and J. A. Taylor, “Dispatching ther‐
mostatically controlled loads for frequency regulation using adversarial
multi-armed bandits,” in Proceedings of 2017 IEEE Electrical Power
and Energy Conference (EPEC), Saskatoon, Canada, Oct. 2017, pp.
338-343.

[27] W. Chen, Y. Wang, Y. Yuan et al., “Combinatorial multi-armed bandit
and its extension to probabilistically triggered arms,” The Journal of
Machine Learning Research, vol. 17, no. 1, pp. 1746-1778, Jan. 2016.

[28] S. Li, B. Wang, S. Zhang et al., “Contextual combinatorial cascading
bandits,” in Proceedings of the 33rd International Conference on Ma‐
chine Learning, New York, USA, Jun. 2016, pp. 1245-1253.

[29] Y. Li, Q. Hu, and N. Li, “Learning and selecting the right customers
for reliability: a multi-armed bandit approach,” in Proceedings of the
IEEE Conference on Decision and Control, Miami Beach, USA, Dec.
2018, pp. 4869-4874.

[30] S. Vakili and Q. Zhao, “Risk-averse multi-armed bandit problems un‐
der mean-variance measure,” IEEE Journal of Selected Topics in Sig‐
nal Processing, vol. 10, no. 6, pp. 1093-1111, Sept. 2016.

[31] Y. Xu, L. Xie, and C. Singh, “Optimal scheduling and operation of
load aggregators with electric energy storage facing price and demand
uncertainties,” in Proceedings of 2011 North American Power Sympo‐
sium, Boston, USA, Aug. 2011, pp. 1-7.

[32] W. Lyu, J. Wu, L. Zhao et al., “Load aggregator-based integrated de‐
mand response for residential smart energy hubs,” Mathematical Prob‐
lems in Engineering, vol. 2019, pp. 1-14, Apr. 2019.

[33] F. Milano. (2006, Mar.). Power system analysis toolbox documentation
for PSAT version 2.0.0_1. [Online]. Available: http://faraday1. ucd. ie/
psat.html

Xinyi Chen received the B.S. degree in electrical engineering and automa‐
tion from China Three Gorges University, Yichang, China, in 2018. She is
currently pursuing the Ph.D. degree in the School of Electrical Engineering,
Southeast University, Nanjing, China. Her current research interests include
distributed energy resources and power system optimization.

Qinran Hu received the B.S. degree in electrical engineering from Chien-
Shiung Wu College, Southeast University, Nanjing, China, in 2010, and the
M.S. and Ph.D. degrees in electrical engineering from the University of Ten‐
nessee, Knoxville, USA, in 2013 and 2015, respectively. He was a Postdoc‐
toral Fellow with Harvard University, Cambridge, USA, from 2015 to 2018.
He joined the School of Electrical Engineering, Southeast University, in
2018. His research interests include power system optimization, demand ag‐
gregation, and virtual power plant.

Qingxin Shi received the B. S. and M. Sc. degrees in Zhejiang University,
Hangzhou, China, and University of Alberta, Alberta, Canada, in 2011 and
2014, respectively. He received the Ph.D. degree in University of Tennessee,
Knoxville, USA, in 2019, where he is working as a Research Assistant Pro‐
fessor. His research interests include demand response and distribution sys‐
tem resilience.

Xiangjun Quan received the B.S.E.E. and the M.S. degrees in electrical en‐
gineering from Chongqing University, Chongqing, China, in 2007 and
Southeast University, Nanjing, China, in 2014. In 2018, he received his Ph.
D. degree in electrical engineering from Southeast University. From Febru‐
ary 2017 to August 2017, he had studied at North Carolina State University,
Raleigh, USA. From September 2017 to August 2018, he had also studied
in University of Texas, Austin, USA, as an exchange student. He was an En‐
gineer with Huawei Technologies from 2011 to 2012. Since 2018, he has
been an Assistant Professor with Southeast University. His current research
interests include digital control technique for converters, renewable energy
generation systems and microgrid.

Zaijun Wu received his B.S.E.E. degree from Hefei University of Technolo‐
gy, Hefei, China, in 1996, and the Ph. D. degree in electrical engineering
from Southeast University, Nanjing, China, in 2004. He is currently a Pro‐
fessor with the School of Electrical Engineering, Southeast University. His
research interests include substation automation, microgrid, and power quali‐
ty.

Fangxing Li received the B.S.E.E. and M.S.E.E. degrees in electrical engi‐
neering from Southeast University, Nanjing, China, in 1994 and 1997, re‐
spectively, and the Ph.D. degree in electrical engineering from Virginia Poly‐
technic Institute and State University, Blacksburg, USA, in 2001. Currently,
he is the James McConnell Professor at The University of Tennessee, Knox‐
ville, USA. He is a Fellow of IEEE (Class of 2017) and a recipient of the
R&D 100 Award in 2020. His research interests include renewable energy
integration, demand response, power markets, power system control, and
power system computing.

1167


