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Abstract——Transient stability assessment (TSA) is of great im‐
portance in power system operation and control. One of the
usual tasks in TSA is to estimate the critical clearing time
(CCT) of a given fault under the given network topology and
pre-fault power flow. Data-driven methods try to obtain models
describing the mapping between these factors and the CCT
from a large number of samples. However, the influence of net‐
work topology on CCT is hard to be analyzed and is often ig‐
nored, which makes the models inaccurate and unpractical. In
this paper, a novel data-driven TSA model combining Mahala‐
nobis kernel regression and ensemble learning is proposed to
deal with the problem. The model is a weighted sum of several
sub-models. Each sub-model only uses the data of one topology
to construct a kernel regressor. The weights are determined by
both the topological similarity and numerical similarity between
the samples. The similarities are decided by the parameters in
Mahalanobis distance, and the parameters are to be trained. To
reduce the model complexity, sub-models within the same topol‐
ogy category share the same parameters. When estimating
CCT, the model uses not only the sub-model which the sample
topology belongs to, but also other sub-models. Thus, it avoids
the problem that there may be too few data under some topolo‐
gies. It also efficiently utilizes information of data under all the
topologies. Moreover, its decision-making process is clear and
understandable, and an effective training algorithm is also de‐
signed. Test results on both the IEEE 10-machine 39-bus and a
real system verify the effectiveness of the proposed model.

Index Terms——Transient stability assessment, critical clearing
time, network topology change, Mahalanobis kernel regression,
ensemble learning, data-driven.
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I. INTRODUCTION

TRANSIENT stability assessment (TSA) plays an impor‐
tant role in power system operation and control [1].

TSA analyzes the stability or stability index of a power sys‐
tem under some credible faults given in the form of a “criti‐
cal fault set” [2]. The stability index is often expressed by
the so-called critical clearing time (CCT) [3]-[5]. CCT under
a given fault is related with the following two factors: the
network topology and the pre-fault power flow. Mathemati‐
cally, the core of TSA is to find the mapping or function be‐
tween CCT and both the network topology and the pre-fault
power flow [6], [7].
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Commonly, TSA is completed by the following three
methods: the time-domain simulation (TDS) method, the di‐
rect method, and the data-driven method. The TDS method
calculates the CCT with the help of simulation softwares.
The results are generally considered to be accurate. Howev‐
er, it is time-consuming and computationally burdensome
[8], [9]. The direct method, such as the transient energy func‐
tion method, analytically solves the problem and directly
gives the results without simulation [10], [11]. However, it
highly depends on the system model and can only adopt sim‐
ple models at present, which limits its further application. In
recent years, data-driven methods have developed rapidly to
deal with the above issues [12], [13]. These methods exploit
massive simulation data and machine learning tools to con‐
struct assessment models, which describe the aforementioned
mapping between pre-fault power flow or network topology
and the CCT. When the model has been constructed at the
offline stage, the system status is then input into the model
and the CCT can be obtained very quickly at the online
stage. Although its interpretability is to be further studied, it
shows good performance in practice [14]-[17].

Compared with the pre-fault power flow, it is more signifi‐
cant yet harder to analyze the influence of network topology.
Usually the network topology can be expressed by a series
of 0-1 variables [18]. For example, we can use a 0-1 vari‐
able to describe the status of an AC line. The variable is 1
when it is working, and is 0 when it is not working due to
maintenance or outage.

Network topology changes have a greater influence on the
CCT than the pre-fault power flow. The reason is as follows.
The stability of the system is determined by a set of differen‐
tial algebraic equations (DAEs) [19]. When the pre-fault
power flow changes, it only influences the initial value of
the DAE. While the topology changes, both the initial value
and the parameters of the DAE will be influenced. So it is
harder yet more important to analyze the impact of the net‐
work topology on CCT. In the data-driven method, various
issues emerge when the topology changes are taken into con‐
sideration. Firstly, the model introduces 0-1 variables, which
are hard to deal with. Therefore, the model becomes more
complex, and the accuracy will decrease. Secondly, the re‐
quirement for data volume explodes, since we need more da‐
ta to train a more refined model. For example, assume the
data requirement is N for the model that does not consider
topology changes. Then, the model considering 10 topology
changes raises the data requirement to 10N, since it needs to
train 10 separate models. If the data are not enough, there
may be only a few data under some network topologies,
which makes the model not substantial. Thirdly, since the
model complexity increases, the parameters within the model
also boom, so the training for the model will be much harder.

In most data-driven methods, the impact of the network to‐
pology changes is not considered. With those methods which
take the network topology changes into consideration, the is‐
sue is usually solved through the following several ways.

1) The most direct method is to train a separate model for
each possible topology. The defects are obvious. Firstly, it is
computationally burdensome, since a large number of mod‐

els need to be trained, and it is nearly impossible in real
practice. Secondly, it is rough when the data under some to‐
pologies are few, and then the model will be rather inaccu‐
rate. Thirdly, it is hard to analyze the relationship between
the topology and the CCT. Finally, it wastes the information
within the data of other topologies.

2) The second method is to take the statistical variables as
inputs, such as percentiles and variances [20], [21]. In this
manner, the influence of the topology changes is contained
in the statistical variables. The method is usually combined
with transfer learning, and is capable of working in two or
more different systems (or say it is self-adaptive). There are
two main disadvantages of this method. The first is that it is
relatively rough. It usually focuses on how a trained model
can be applied to a totally different system, whereas with
one system, the topology changes usually do not make such
a huge difference, so the model may not be able to distin‐
guish the difference well. Secondly, it usually needs a large
number of training data to yield a fine model. Effective data
generation methods has been invented, but not been verified
on a real system yet.

3) The third idea is to use the numerical variables to indi‐
cate the on-off states of the elements. For example, if the
line flow equals to zero, the line will be off, otherwise the
line will be on. In this way, we only need to include the nu‐
merical variables as inputs, just like models that do not con‐
sider topology changes. The topology information is implicit‐
ly contained in the values of the numerical variables. Howev‐
er, this method ignores some special situations, such as the
line is not transmitting power (the line flow is zero) but still
in operation. Moreover, since the topology changes influence
the system stability significantly, the function may change
very dramatically around 0 if we do not include 0-1 vari‐
ables, and thus bring the overfitting problem.

4) Another idea is to take the 0-1 variables as inputs.
However, without efficient models, there are problems of
lacking enough data and model complexity.

As we can see, the two main issues here are the introduc‐
tion of 0-1 variables and the exploding data requirements.
To address the issues, this paper proposes a novel data-driv‐
en TSA model via Mahalanobis kernel regression (MKR)
and ensemble learning [22], [23]. The model originates from
the reformulation of MKR, and the decision-making proce‐
dure is understandable. It introduces 0-1 variables in MKR
to describe network topology and utilizes ensemble learning
to combine different sub-models under different topology
changes. The weights of the sub-models are determined by
the topological similarities and total numerical similarities. It
makes efficient use of data under different network topolo‐
gies, and thus enhances the estimation accuracy and reduces
the need for training samples. Furthermore, the results given
by the model are informative and can enlighten further analy‐
sis, such as the relationship between similar topologies.

The rest of the paper is organized as follows. In Section
II, the basic model is introduced, which is able to yield a re‐
sult considering topology changes, but not practical in real
practice. In Section III, the advanced model is introduced
which is based on the basic model and ensemble learning.
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Further explanation about how the advanced model works is
also given. In Section IV, the training algorithm of the pro‐
posed model is given. In Section V, the practical application
flowchart of the proposed method is presented. In Section
VI, the proposed model is verified on two systems, and
shows good performances. Section VII concludes the paper
and introduces future works.

II. BASIC MODEL

A. Problem Formulation

In this paper, we use CCT as the stability index for TSA.

In the power grid, once the dynamic parameters of the ele‐
ments and the faults are given, then CCT is a function of
both the pre-fault power flow (represented by the numerical
variables x) and the network topology (represented by the to‐
pological variables ζ).

We use Y to denote the value of CCT under given x and
ζ. Then Y can be expressed as:

Y = F(x,ζ) (1)

Each element of x or ζ represents a feature (dimension).
Typical features are listed in Table I.

The features in x are continuous, and we apply normaliza‐
tion to them to yield values ranging from -1 to 1. The fea‐
tures in ζ are discrete, and we use -1 and 1 to denote the on-
off state of the corresponding element, -1 for off and 1 for
on, respectively. Note that the normalization range is [-11],
but not [01]. The reason is as follows. In the calculation of
MKR, rotation and stretch are applied to the data. Therefore,
we prefer the data evenly distributed on both sides of the ax‐
is. So we tailor the data into [-11], and in order to maintain
consistency, we use -1 and 1 to denote the on-off state, re‐
spectively.

In fact, CCT is also related with the contingencies. Under
different contingencies, the CCT is different even the power
flow and the network topology are the same. However, in re‐
al practice, the so-called severe contingency set is often em‐
ployed to consider the severest faults. It is generally agreed
that if all the contingency constraints in the severe contingen‐
cy set are satisfied, the system will be secure.

Hence the problem is clear: our target is to predict Y with
certain x and ζ. In other words, we need to find a new
mapping to make a best approximation of the real mapping,
i.e., F(·):

Ŷ = f (xζ) (2)

The mapping is highly non-linear and complex, so the ana‐
lytical solution can hardly be found. Therefore, a variety of
data-driven methods are utilized to solve the problem. Be‐
sides, the influence of ζ on Y is more critical and complicat‐
ed. That is to say, potential topology changes will raise a
challenge in terms of both model accuracy and model com‐
plexity. Therefore, topology changes are usually needed to
be specially treated in data-driven models.

As mentioned in Section I, there are usually four ways to

deal with the issue. The first is to train a sub-model g(x)
with each possible value ζ. The second is to take the statisti‐
cal variables as inputs. The third is to ignore the topological
variables and contain the network topology into the numeri‐
cal variables. The fourth is to take the topological variables
(0-1 variables) as inputs directly.

In this paper, we propose a novel data-driven model to
solve the issue. Generally speaking, it combines the first and
last ideas mentioned above. The model is advantageous in
the following aspects.

1) It is a non-parametric model, namely MKR, which is
more capable of shaping nonlinear complex mappings. Non-
parametric models have been utilized in TSA in many stud‐
ies and show good performances [17], [24]. However, most
of them employ additive models and the practical explana‐
tion is not quite clear. MKR used in this paper is more com‐
prehensible and has a clearer probabilistic meaning, which
makes it more practical [25].

2) It is reformed by ensemble learning to deal with the to‐
pology problem, which is more practical in usage and more
understandable. Ensemble learning has been exploited in re‐
cent researches and works as well [26], [27]. But this meth‐
od has yet not been tested in the situation with topology
changes. In this paper, we tailor the ensemble learning meth‐
od to improve the MKR model, thus addressing the issue of
topology change.

B. Basic Model

In [25], we have already proposed a non-parametric TSA
model, however, it does not take topology changes into con‐
sideration. In fact, even if we include topological variables
into the so-called the basic model, it still cannot handle the
topology changes very well.

TABLE I
TYPICAL VARIABLES DESCRIBING PRE-FAULT POWER FLOW

Element type

Bus

Branch (including
line and transformer)

Generator

Load

Numerical variable

Symbol

ekfk

P i
kjQ

i
kj

Qc
k

P g
k Q

g
k

P l
kQ

l
k

Description

Real and image part of the voltage of bus k

Active and reactive power injected from bus k through line Li
kj

Capacitive charging power of Li at the k, j side of bus k

Active and reactive power generations of the generator
connected to bus k

Active and reactive power consumptions of the load
connected to bus k

Topological variable

Symbol

τk

τ i
kj

τ g
k

τ l
k

Description

On-off state of bus k

On-off state of branch Li
kj

On-off state of the generator
connected to bus k

On-off state of the load connected to bus k
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In this part, we first briefly introduce the basic conception
of MKR. Then, we include the topological variables in the
model to construct a decoupled-distance model, which is the
basic model.

MKR is based on Nadaraya-Watson kernel regression
(NWKR) and Mahalanobis distance. NWKR uses the weight‐
ed sum of all the samples to yield an estimated value of
CCT. The weight of a sample is determined by the distance
between itself and the data to be assessed. MKR further sub‐
stitutes the Euclidean distance with Mahalanobis distance in
the Gaussian kernel. This will lead to a better model since it
considers the correlation between the features.

The basic form of MKR is:

Ŷ (x)=
∑Y train

i κMD ( )xX train
i∑κMD ( )xX train

i

(3)

κMD (αβ)= exp{ }-γ(α- β)M(α- β)T (4)

As we can see, different from Gaussian kernel, Mahalano‐
bis kernel uses the distance instead of L2 norm. When M is
an identity matrix, (4) degrades into Gaussian kernel. The pa‐
rameters γ and M are those we need to train.

In (3), we does not take the influence of ζ into consider‐
ation. In fact, we can regard [x, ζ] as a whole input for (3).
However, in real practice, we find that the overfitting prob‐
lem arises. Besides, the model is not well explainable.

In the light of this, we decouple the numerical and topo‐
logical variables in the calculation of distance in (4):

κ (αXβXαZβZ)= exp{- γX (αX - βX)M X (αX - βX) T}×
exp{- γZ (αZ - βZ)M Z (αZ - βZ) T}= κX

MD (αXβX)κZ
MD (αZβZ)

(5)

In fact, (5) computes the distances of the numerical parts
and the topological parts, respectively, and makes a weight‐
ed sum of them to yield a synthesized distance.

Replacing (4) with (5), (3) is changed into:

Ŷ (xζ)=
∑Y train

i κ ( )xX train
i ζT train

i∑κ ( )xX train
i ζT train

i

(6)

The model is able to yield a result considering topology
changes. However, it is rough and inaccurate in real prac‐
tice. The reason is that once we include topology changes,
the model will be too simple and underfitting. In the next
section, we construct it by several sub-models, and these sub-
models share the same parameters. For systems that contain
a large number of topology changes, the parameters are too
few. We should add new parameters in order to shape more
complex mappings. This is why we introduce ensemble
learning to improve the model.

III. ADVANCED MODEL CONSIDERING NETWORK TOPOLOGY

CHANGE

In this section, we first reformulate the basic model. We
will rebuild it with the idea of ensemble learning in Section III-
A. In Section III-B, we will further explain how the model
works. The detailed training procedure of the model will be

proposed in Section IV.

A. Model Improvement via Ensemble Learning

In fact, the values of topological variables are limited in
practice. In other words, the possible unique values (pat‐
terns) of αZ and βZ in (5) are finite. Assume the number of
the possible values is S, and the possible values are {T uni

s |s=
12S}, and the row numbers of the corresponding data in

XTRAIN and TTRAIN are {Ωs|s= 12S}.
That is to say, in the matrix T TRAIN, there are only S

unique rows.
Then, the basic model (6) can be reformulated as:

Ŷ ( )xζ =∑
s= 1

S

Ps ( )xζ Ŷs (x)=∑
s= 1

S ( )Ps ( )xζ ∑
wÎΩs

ps
w (x)Y train

w (7)

Ps (xζ)=

κZ
MD ( )ζT uni

s ∑
wÎΩs

κ X
MD ( )xX train

w

∑
r = 1

S ( )κZ
MD ( )ζT uni

r ∑
wÎΩr

κ X
MD ( )xX train

w

(8)

Ŷs (x)=
∑
wÎΩs

κ X
MD ( )xX train

w Y train
w

∑
wÎΩs

κ X
MD ( )xX train

w

=∑
wÎΩs

ps
w (x)Y train

w (9)

ps
w (x)=

κX
MD ( )xX train

w∑
bÎΩs

κ X
MD ( )xX train

b
(10)

ì

í

î

ïï
ïï

∑
wÎΩs

ps
w ( )x = 1 s= 12S

∑
s= 1

S

Ps ( )xζ = 1
(11)

Based on the above derivation, the basic model (6) is for‐
mulated through the following two steps.

Step 1: we construct several sub-models Ŷs (x). Each Ŷs (x)
is established using the data in Ωs (but without topological
variables).

Step 2: we make a weighted sum of the estimated values
of the sub-models. The weight Ps ( )xζ is given by (8).

In the light of this, the basic model (6) can be regarded as
the ensemble of several sub-models, which coincides with
the idea of ensemble learning. But still, there are two main
discrepancies between the ensemble learning model and our
basic model.

1) Firstly, the weights are invariable in ensemble learning,
but are variable in basic model. In other words, with differ‐
ent inputs x and ζ, the weights take different values, and the
model tends to favor different sub-models. These weights
are related with topological and total numerical similarities
(detailed explanations can be found in Section III-B), which
makes the model able to recognize different network topolo‐
gies, and thus intelligently weigh the sub-models.

2) Secondly, in the basic model (6), the sub-models share
the same parameters, i.e., M X and γX. However, in ensemble
learning, the sub-models are usually trained to have different
parameters.
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We can modify the basic model through the second point.
The idea is to use different kernels in the sub-models. In
simpler terms, we do not use the same M X and γX in all the
sub-models, but train different parameters to improve the ac‐
curacy. Therefore, in the advanced model, the sub-models in
(10) can be changed as:

Ŷs (x)=
∑
wÎΩs

κs ( )xX train
w Y train

w

∑
wÎΩs

κs ( )xX train
w

(12)

where the kernel κs is not fixed, and it changes with s.
The intuitive idea is to assign a different M X and γX to

each kernel. However, it is unpractical in real use. Firstly, al‐
though the topology changes (or the possible values of ζ)
are finite, the number is still very large in real systems. So,
the computation of off-line training and on-line estimating is
so much that it can hardly be fulfilled. Secondly, many sub-
models are constructed with very few data, thus causing the
overfitting problem.

Therefore, we do not need to assign different M X and γX

to all the kernels. We merge similar topologies to formulate
a “topology category”. Finally, there are only I topology cat‐
egories left, i.e., {T}= {T ι|ι= 12I} (I ⩽ S).

The kernels in (12) can be expressed as:

κs ( )xX train
w = exp{ }-

γ ( )s
2

( )x -X train
w M ( )s ( )x -X train

w

T
(13)

where M(s) and γ(s) are functions that map s to the parame‐
ters. They are not injective mappings, and some sub-models
share the same parameters.

By combining (7), (12) and (13), the advanced model is
yielded.

B. Further Explanation of Advanced Model

In (8), the weight Ps ( )xζ can be rewritten as:

Ps ( )xζ =
P Z

s ( )ζ P X
s ( )x

∑
r = 1

S

P Z
r ( )ζ P X

r ( )x
(14)

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

P Z
s (ζ)=

κZ
MD ( )ζT uni

s

∑
a= 1

S

κ Z
MD ( )ζT uni

a

P X
s (x)=

∑
wÎΩs

κ X
MD ( )xX train

w

∑
b= 1

N train

κX
MD ( )xX train

b

(15)

Therefore, the weight can be regarded as the production
of the following two factors.

1) P Z
s (ζ) represents the “topological similarity” of ζ

and T uni
s .

2) P X
s (x) represents the “total numerical similarity” of x

and Ωs, i.e., the sum of the similarities of x and the numeri‐
cal data in Ωs.

If the topological similarity P Z
s (ζ) is too small, or the total

numerical similarity P X
s ( )x is too small (due to lack of data

or other reasons), the sub-model is not likely to be chosen in
the process of determining CCT.

Figure 1 further explains how the model works. In Fig. 1,
each row represents one type of network topology, and each
topology corresponds to a weak learner. It is clearly shown
that the model tends to give weak learner Es a very high
weight and give the other weak learners low weights. The
reasons are listed as below.

1) The model does not favor weak learner Er. Although
the input sample is topologically very similar to T uni

r , the to‐
tal numerical similarity between x and Ωr is too low. This is
usually caused by too few data with in Ωr, so the sub-model
will not be given a high weight in order to avoid overfitting
problem.

2) The model does not favor weak learner ES. Although
the numerical similarity between x and ΩS is relatively high,
ζ is too different from T uni

S . Thus, the sub-model is not capa‐
ble of estimating the CCT under this topology.

3) The model does not favor weak learners E1 and E2,
since they are undesirable in terms of both P Z

s (ζ) and P X
s (x).

4) The weak learner Es is given the highest weight, since
it is topologically very similar to the input data, and the data
in Ωs are enough to make a nice predictor.

Another thing to notice is that the parameters are shared
among the weak learners. For instance, in Fig. 1, the weak
learners E1 and E2 share the same parameters. This ensures
that the complexity of the model is controlled within a cer‐
tain level.

The advantages of the advanced model can be concluded
as follows.

1) The model is a strong learner based on several weak
learners, which makes it more robust. Besides, it makes full

Weak learner

Weak learner

Weak learner

…
…

[x, ζ ] …

…
…

…

…
…

…

1%

2%

50%

40%

3%
Topological
similarity

PsZ

…
…

13 0.13

20 0.4

0.3 0.15

100 40

50 1.5

√

1O : total numerical
similarity with Ω1

O2: total numerical
similarity with Ω2

Os: total numerical
similarity with Ωs

OS: total numerical
similarity with ΩS

Or: total numerical
similarity with Ωr

E1

E2

Es

Weak learner
ES

Er

PsX Ps

M1

Mι

MI
TS

uniwith 

Topological
similarity

Ts
uniwith 

Topological
similarity

Tr
uniwith 

Topological
similarity

T2
uniwith 

Topological
similarity

T1
uniwith 

Weak learner ×

×

×

×

Fig. 1. Explanation of advanced model.
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use of all the data, thus reduces the data requirement.
2) The decision-making process is clear and understand‐

able.
3) The similarity between topologies give further informa‐

tion about the system. Topologies within the same category
are similar in terms of transient stability, therefore further
analysis can be launched based on the results.

IV. MODEL TRAINING

In the advanced model, the parameters to be trained are
the matrices MZ and M ={M ι}, and the smoothing parame‐
ters γZ and Γ ={γι}.

Therefore, we decouple the training process into two
parts: the training of the sub-models (M and Γ), and the
training of the topology-related parameters (M Z and γZ).

A. Training Algorithm for Sub-model

The training of the sub-models are actually that of M and
Γ. In this step, the training procedure does not involve MZ

and γZ, so it is comparatively simple. The least mean square
error loss is usually employed as the target function, and the
stochastic gradient descent is adopted as the solving algo‐
rithm. There are various studies focusing on this area, so we
do not repeat it in this article. Detailed training procedures
can be found in [3], [25].

B. Overall Training Algorithm for Advanced Model

Another part is the training of MZ and γZ. We train these
parameters through the optimization of the weights Ps ( )xζ .
However, as we can see from (14) and (15), the weights are
also related with M and Γ. So, an alternating iterative train‐
ing procedure is needed to train all the parameters. First, we
fix the weights Ps ( )xζ and train the sub-models. Then, we
fix the sub-models and train the weights Ps ( )xζ , and the cy‐
cle goes on until the stopping criterion is met.

The detailed procedure of the overall training algorithm is
listed in Algorithm 1.

The algorithm alternatively trains the parameters of the nu‐
merical part (step 15 to step 19) and the topological part
(step 20). The “merging” steps are from step 9 to step 11,
where the old kernels are shared when they satisfy the accu‐
racy requirement.

In fact, the algorithm is enlightened by the gradient boost
algorithm in ensemble learning [28]. The main difference is
that we replace the line search step with the training of M Z and
γZ, and we embed the training ofM and Γ into the algorithm.

The training of the overall model usually takes a long
time, especially when the scale of the system is large. But
once the inicial training is completed, incremental training
can be applied and will not take much time. For incremental
training, we just need to skip the initialization step (step 1).
Detailed analysis of the computational cost for the training
stage can be found in Section VI.

V. PRACTICAL APPLICATION

We design an overall flowchart of the proposed method in
practical application, as shown in Fig. 2.

Data flow

MemoriesParameters Samples

ΔX  TRAIN

ΔT TRAIN

x, t

OutputEstimation result

Online
processors

CCT
estimator

Offline
processors

Parameter
trainer

Sample
screener

Fetch data

Time line

Training cycleTraining cycle
Screening cycleScreening cycle
Estimating processEstimating process

Initial training
15 min

···

Real-time application

t

Fig. 2. Overall flowchart of proposed method.

In the training cycle, the incremental data (historical data
for the initial training) are sent to the model trainer, and the
parameters are refined and yielded through Algorithm 1.

In the screening cycle, we use certain algorithms to up‐
date and delete samples. This work is for maintaining the
size of the training set, since the training set cannot grow

Algorithm 1 Training algorithm for advanced model

Require: X TRAIN, T TRAIN, Y TRAIN, ϵZ

Ensure: parameters for the numerical part M , Γ; parameters for the topo‐
logical part M Z, γZ; the mappings M(s) and γ(s).

1: Initialize parameters:
M={×}Γ ={×}I = 0; M Z =M Z

0 γ
Z = γZ

0.
2: for e = 1 to NE do
3: Update all the weights using (14): αi =Ps (X train

i T train
i ), iÎΩs.

4: fstop = true
5: for s = 1 to S do
6: fZ = true
7: for ι= 1 to I do
8: Assuming the sub-model adopts Mι and γι as parameters, cal‐

culate its loss function:

Lt =∑
s= 1

S ∑
iÎΩs

λi ( )Y train
i - Ŷs ( )X train

i

2

9: if Lt< ϵZ then
10: The sub-model does not need to set a new kernel:

M(s) = Mιγ(s) = γι fT = false.
break

11: end if
12: end for
13: if fT then
14: The sub-model needs to set a new kernel, which means that

the training process should continue: fstop = false.
15: Train the sub-model with loss function (16) and stochastic

gradient descent (mentioned in Section IV-A), and we get M *

and γ*. Note that λi is set to be constant in this step.

16: I = I + 1, MI = M *, γI = γ*

17: M=M + MI, Γ =Γ + γI

18: end if
19: end for
20: Adjust M Z: fix M(s), and train the weak learner in (7) using

stochastic gradient descent, and we get M Z* and γZ* .
21: M Z = M Z* , γZ = γZ*

22: end for
23: return M,Γ, M Z , γZ,{M(s)},{γ(s)}.
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without limitation. The algorithms are what we are now
working on.

In the estimation process, (12) is employed to obtain the
final estimation result.

These three threads run simultaneously. The training cycle
and the screening cycle run on offline processors, and the es‐
timation process runs on the online processor.

VI. CASE STUDY

We do experiments on two systems, and verify the effec‐
tiveness of our model, as elaborated behind.

A. IEEE 10-machine 39-bus System

The single line diagram of the IEEE 10-machine 39-bus
(IEEE-10M39B) system is shown in Fig. 3.

We apply a three-phase short-circuit fault on line 4-14
near bus 4. This fault is to show the case where the instabili‐
ty of the system is caused by the tripping-off of the tie-line
interconnecting two areas. Governors, exciters, and stabiliz‐
ers are applied to the generators.

There are 34 AC lines in the system. We consider all the N -
1 and N - 2 outages, and get 562 topologies in total. We ran‐
domly generate 100000 samples, and calculate their CCT. We
use 80000 training samples and 20000 testing samples.

We employ the following data-driven models to make a
comparison: ① artificial neural network (ANN); ② convolu‐
tional neural network (CNN); ③ least absolute shrinkage
and selection operator (LASSO); ④ Bayesian linear regres‐
sion (BLR); ⑤ classification and regression tree (CART); ⑥
the basic model proposed in Section II, namely MKR; ⑦
the advanced model proposed in Section III, namely
“MKR+ ”; ⑧ the advanced model with input disturbances,
namely “MKR+(d)”.

We add some input disturbances to the model. For numeri‐
cal variables, we add a Gaussian white noise. For each fea‐
ture, the variance is set to be 0.02; for topological variables,
we randomly choose 0.1% of the variables to take wrong
values. This is to simulate the situation where there are mea‐
surement errors, and to prove the robustness of our method.

The frequency densities of the estimate error of CCT with

these methods are shown in Fig. 4.

Further, some statistics are listed in Table II, including the
mean error (ME), the root mean square error (RMSE), the
mean error rate (MER) and the mean accuracy rate (MAR).

We also compute some statistical indices of the absolute
errors, as shown in Table III. These indices include the 1st,
2nd and 3rd quartiles of the absolute errors, and the index P,
which is the proportion of the testing samples where the ab‐
solute error of our method is smaller than others. In other
words, P can be regarded as the probability that our method
is better than others.

TABLE III
STATISTICAL INDICES OF ESTIMATE ERROR AND PROBABILITY INDEX IN

IEEE-10M39B SYSTEM

Method

MKR+

MKR+(d)

MKR

CNN

ANN

LASSO

BLR

CART

1st quartile (ms)

1.27

1.27

1.78

1.93

2.19

3.07

3.99

3.51

2nd quartile (ms)

2.72

2.73

3.80

4.19

4.83

6.50

8.74

7.96

3rd quartile (ms)

4.96

4.97

7.06

7.75

8.96

11.20

15.96

14.96

P (%)

81.88

85.07

75.26

74.34

83.37

81.20

As shown in Table III, the advanced model MKR+ shows
the best performance under all the indices. The performance

Bus; AC-line; Transformer; Generator; Load; Fault
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Fig. 3. Single line diagram of IEEE-10M39B system.
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TABLE II
STATISTICAL INDICES OF ESTIMATE ERROR IN IEEE-10M39B SYSTEM

Method

MKR+

MKR+(d)

MKR

CNN

ANN

LASSO

BLR

CART

ME (ms)

3.66

3.67

5.47

6.80

7.97

12.16

11.27

13.48

RMSE (ms)

5.00

5.02

8.39

9.85

10.35

17.17

16.16

21.20

MER (%)

1.32

1.33

1.97

2.42

2.92

4.37

4.06

4.80

MAR (%)

98.68

98.67

98.03

97.58

97.08

95.63

95.94

95.20
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of the proposed method is significantly better than other
methods in terms of these statistical indices. Besides, in the
situation where there are input disturbances, the model still
performs well, thus demonstrating the robustness of our mod‐
el. In Fig. 4, the curves of MKR+ and MKR+ (d) are so
close that it is hard to distinguish them.

Furthermore, we can excavate more information from the
results. Through the procedure, we get 18 topology catego‐
ries in total. The topology category of each N - 1 outage is
shown in Fig. 5.

The color of each line represents the topology category of
the corresponding N - 1 outage. The regularities are shown
as follows.

1) The distribution of the categories shows a “regional ef‐
fect”. For example, the N - 1 topologies corresponding to
lines 16-24, l6-21, 21-22, 22-23, and 23-24 fall into the
same category. This is because they formulate a loop, and
tripping off each line within this loop will cause similar ef‐
fects on the transient stability of the system.

2) Some topologies are treated specially. For example, the
N - 1 outage corresponding to line 16-19 does not share the
same category with any other lines. The reason is that the
tripping-off of this line will directly result in the loss of two
generators, thus bringing a relatively big impact on the system.

For N - 2 topologies, although they cannot be reflected in
one single line diagram as for N - 1 topologies, some critical
information can be found in Fig. 6.
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Fig. 5. Topology category of each N - 1 outage.
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Fig. 6. Topology category of each N - 2 outage.
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The two axes represents two tripping-off lines in the N - 2
topologies, respectively. In fact, the figure also reflects situa‐
tions under N - 1 topologies.

As we can see, the regularities are also obvious.
1) In some N - 2 outage changes, there exists a “dominant

line”. With this line tripped off, the influence of another trip-
off line is insignificant. For example, in the 3rd and 4th col‐
umn, there is a “main color”, suggesting that the tripping-off
of line 1-2 or line 39-1 is of greater importance in the N - 2
outages corresponding to them.

2) The two red-circled topologies are classified to the
same topology category. This is because they actually refer
to the same interface, as shown in Fig. 7. In this case, our
model precisely identifies the “similar topologies”. The re‐
sult is also supported by intuitive knowledges.

As we can see, the model can automatically explore some
useful conclusions, which is helpful in the further analysis.

B. A Real System

We also test our model on a real system. The skeleton of
the real system is shown in Fig. 8.

The system consists of 6 areas which are interconnected
with AC lines and DC lines. For confidentiality, we do not
show the names of the nodes, and we apply some transfor‐
mations to the geometrical shape.

Approximately, the system contains 3000 stations, 15000
AC lines, 6300 transformers, 4000 generators, and 25000
loads. The total capacity of the system is about 1000 GW.
We collected about 13000 samples (data of half a year) to
make an analysis. We set three-phase short-circuit faults on
4 main interfaces to calculate the CCT. For topology chang‐
es, we only take the main elements into consideration in Fig.
8. There are about 450 topologies in the original data.

We do experiments under the following two situations.
Situation 1: we train and test our model using the original

13000 samples, 3000 of which are used as the testing set.
Situation 2: we trip off one pair of lines in the original

samples for five times to generate 65000 more samples
(80000 samples in total), 20000 of which are used as the
testing set.

The samples in situation 1 contain relatively small topolo‐
gy changes, whereas the samples in situation 2 contain large
topology changes. This is to investigate how the performanc‐
es of the models will change under large topology changes.
The error distribution and the statistical indices are shown in
Fig. 9, Tables IV, and V.

It shows that with relatively large topology changes, our
model still remains a high level of accuracy (although a lit‐
tle decline compared with small topology changes), whereas
some other models suffer from a significant degradation. Sta‐
tistically, our model still shows a significantly better perfor‐
mance than other methods and a nice robustness against in‐
put disturbances.
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C. Computation Cost

We divide the computation cost into two parts: the cost at
the training stage and the cost at the estimating stage. The
following results are worked out on a workstation with 8
cores, each with a 3.50 GHz CPU (Intel Xeon CPU E5-
2637). Python and TensorFlow are used for coding.
1) Training Efficiency

The training time depends on the system dimension. For

the real system, the feature number is about 50000, and the
convergence process is shown in Fig. 10.

In real practice, such a training time is enough to satisfy
the real need of a large power system. In fact, since we use
mini-batch algorithm in the training process and there are a
large number of matrix operations, the training process can
be accelerated by parallel computation, and the training time
can be decreased to wihtin 1 h. Besides, this is the cost for
the initial training. Once the initial training is finished, the
cost for the incremental training will be much smaller.
2) Estimation Efficiency

The computation of (12) can be transformed into a series
of matrix operations, so the estimation can be accelerated in
most cases. Our test results show that the estimation time
for each scenario is 0.5 to 0.6 s, which is enough for online
usage.

VII. CONCLUSION

In this paper, we proposed a data-driven model to fulfill
TSA considering network topology changes. The model is
based on MKR and ensemble learning. We include the topo‐
logical variables in the kernel regression, and the model is
constructed by several sub-models. The weights are deter‐
mined by both the topological and total numerical similari‐
ties. We use ensemble learning to rebuild the model, thus the
data under different topologies are utilized effectively. The
model is advanced in the following aspects.

1) It is able to efficiently exploit the information within

TABLE V
STATISTICAL INDICES OF ESTIMATE ERROR AND PROBABILITY INDEX

IN REAL SYSTEM

Method

MKR+

MKR+(d)

MKR

CNN

ANN

LASSO

BLR

CART

1st quartile
(ms)

Situa‐
tion 1

1.18

1.18

1.68

1.90

2.76

2.47

2.42

2.58

Situa‐
tion 2

2.22

2.23

3.23

3.67

3.20

4.85

3.77

5.12

2nd quartile
(ms)

Situa‐
tion 1

2.60

2.59

3.42

3.90

5.99

5.28

5.02

5.67

Situa‐
tion 2

4.37

4.38

6.24

7.08

6.79

10.01

7.98

10.98

3rd quartile
(ms)

Situa‐
tion 1

4.46

4.47

5.82

6.61

10.21

9.26

8.51

9.85

Situa‐
tion 2

6.67
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Fig. 10. Convergence process of real system.
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Fig. 9. Frequency densities of estimate error under multiple data-driven
methods in real system. (a) Considering small topological changes. (b) Con‐
sidering N - 2 topological changes.

TABLE IV
STATISTICAL INDICES OF ESTIMATE ERROR IN REAL SYSTEM

Method

MKR+

MKR+(d)

MKR

CNN

ANN

LASSO

BLR

CART

ME (ms)

Situa‐
tion 1

3.34

3.34

4.48

4.97

7.10

6.74

5.99

7.06

Situa‐
tion 2

4.67

4.68

6.55

7.35

8.26

11.61

9.21

13.16

RMSE (ms)

Situa‐
tion 1

4.78

4.79

6.66

6.95

8.99

9.15

7.56

9.44

Situa‐
tion 2

5.59

5.60

7.78

8.76

15.39

15.05

11.39

16.82

MER (%)

Situa‐
tion 1

1.23

1.23

1.75

1.90

2.48

4.09

2.02

2.82

Situa‐
tion 2

1.50

1.51

2.13

2.40

2.36

4.59

2.75

4.36

MAR (%)

Situa‐
tion 1

98.77

98.77

98.25

98.10

97.52

95.91

97.98

97.18

Situa‐
tion 2

98.50

98.49

97.87

97.60

97.64

95.41

97.25

95.64
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the data of all the topologies, thus the model is robust and
could make full use of the data.

2) The decision-making procedure of the model is clear
and understandable.

3) The results of the model are informative and can sup‐
port further researches.

The model is tested on two systems, and the experiments
demonstrate its effectiveness and practicability.

Still there are some practical limitations for our method.
For example, as is discussed in Section V, the training set
cannot expand infinitely, so the strategies for sample update
and deletion are needed. Besides, experiments show that
when the number of topology changes is large, the converg‐
ing speed of the proposed algorithm is slow, and the model
performance decreases. In fact, all sorts of data-driven meth‐
ods encounter with these issues; they need larger data with
more information. In this paper, we proposed a refined mod‐
el which is able to dig out more information from the data,
thus decreasing the data requirement. However, there is still
room for improvement.

Further work includes efficient data generation techniques
linked to the proposed model, and a model capable of larger
number of topology changes.
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