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An End-to-end Transient Recognition Method
for VSC-HVDC Based on Deep Belief Network

Guomin Luo, Jiaxin Hei, Changyuan Yao, Jinghan He, and Meng Li

Abstract——Lightning is one of the most common transient in‐
terferences on overhead transmission lines of high-voltage di‐
rect current (HVDC) systems. Accurate and effective recogni‐
tion of faults and disturbances caused by lightning strokes is
crucial in transient protections such as traveling wave protec‐
tion. Traditional recognition methods which adopt feature ex‐
traction and classification models rely heavily on the perfor‐
mance of signal processing and practical operation experiences.
Misjudgments occur due to the poor generalization perfor‐
mance of recognition models. To improve the recognition rates
and reliability of transient protection, this paper proposes a
transient recognition method based on the deep belief network.
The normalized line-mode components of transient currents on
HVDC transmission lines are analyzed by a deep belief network
which is properly designed. The feature learning process of the
deep belief network can discover the inherent characteristics
and improve recognition accuracy. Simulations are carried out
to verify the effectiveness of the proposed method. Results dem‐
onstrate that the proposed method performs well in various sce‐
narios and shows higher potential in practical applications than
traditional machine learning based ones.

Index Terms——Deep belief network, transient recognition, ma‐
chine learning, voltage source converter based high-voltage di‐
rect current (VSC-HVDC).

I. INTRODUCTION

WITH many advantages such as flexible and controlla‐
ble operation modes, friendly connection to renew‐

able energy, and convenient construction of multi-terminal or
meshed grids, voltage source converter based high-voltage
direct current (VSC-HVDC) has been developing rapidly
and plays a more and more important role in long-distance
transmission [1], [2]. Since the post-fault measurements
change quickly, and the faults must be recognized in only a
few microseconds, transient protection should be used for

VSC-HVDC transmission lines. As a highly erected over‐
head conductor in wild areas, the transmission line is at high
risk of being attacked by lightning strokes. The recognition
between fault transients and disturbance transients is critical.

Transient recognition is always an important function of
transient protection for both traditional alternative current
(AC) and direct current (DC) transmission lines. For AC
transmission lines, the sinusoidal sources produce zero-cross‐
ing points, where the transient features of grounding faults
(GFs) are unobvious; while for DC transmission lines, no ze‐
ro-crossing points exist [3]. The transient features of GFs on
DC lines are clearer than those on AC ones. However, with
more unique features, the transient recognition of DC trans‐
mission lines is not an easy job since only extremely short
data segments can be used. It is hard to balance the speed
and the precision of discriminations of faults and disturbanc‐
es. How to recognize transients quickly and reliably is the
primary consideration for VSC-HVDC transient protection
[4]-[6].

A lot of recognition methods have been proposed to dis‐
criminate faults and disturbances. But no matter which kind
of tools are used, the traditional recognition methods must
include two crucial technologies: feature extraction and clas‐
sification. Feature extraction aims to represent the unique
characteristics of measurements with lower dimension. Some
time-domain features such as principal component analysis
can extract different patterns from 3 ms transient data to dis‐
tinguish shielding failure from back-flashover [4]. Signal pro‐
cessing tools such as Fourier transform and wavelet trans‐
form [7]-[10] are generally used to reveal signal differences
in the frequency domain or time-frequency domain. Those
differences are generally measured by simple processing
methods such as amplitude-based ones or change rate-based
ones, statistic concepts such as wavelet energy, wavelet en‐
tropy, spectrum distribution, and so on [11]-[13]. With those
features, classification is performed. Two main types of clas‐
sification are based on thresholding and machine learning.
The thresholding-based classification is mostly composed of
a series of logical relationships [14]-[17]. But this linear clas‐
sification method requires complex selection and calculation
of thresholds and logic procedures. Machine learning based
classification provides a non-linear solution. Back-propaga‐
tion (BP) neural network, support vector machine (SVM),
and other intelligent algorithms [3], [18], [19] are often used
for fitting the classification boundary. Compared with thresh‐
olding-based classification, machine learning based classifica‐
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tion can generate better performance. However, the perfor‐
mance of both classifications depends heavily on the repre‐
sentation ability of features. If the feature is unstable in vari‐
ous scenarios, for example, changing with fault parameters,
these classification methods might produce misjudgments.

With the development of unsupervised learning tech‐
niques, the considerable training burden of machine learning
models can be subdivided and done layer by layer. The
depth of models can thus be easily increased to complete
more complex works. The networks with unsupervised learn‐
ing techniques, for instance, autoencoder and Boltzmann ma‐
chine, can reduce the dimension of input data, which pro‐
vides a kind of representation, or characteristics, of original
raw data. This kind of learned features is extracted with data-
based methods which are totally different from the tradition‐
al human-intervened ones. The learned features do not de‐
pend on the selection of characterization tools and the set‐
ting of parameters and have great potential in extracting
more stable representation of original data [20]. Deep belief
network (DBN), which was proposed in 2006, is a probabi‐
listic model that provides a joint probability distribution of
data and labels [21]. It is capable of unsupervised feature ex‐
traction from complex data, e.g., speech and image recogni‐
tion [22]. Its powerful characterizing ability can also be ex‐
plored in the area of electrical measurement analysis.

This paper analyzes the characteristics of three common
transients on VSC-HVDC transmission lines, including GF,
lightning fault (LF) and lightning disturbance (LD), and pro‐
poses a DBN based transient recognition method. The main
contributions are as follows:

1) An end-to-end recognition method is proposed for dis‐
tinguishing fault transients and non-fault lightning transients.
The hand-designed components such as feature extraction
and classifier selection are not needed. In this paper, the nor‐
malized raw data (line-mode current) is used as the inputs of
DBN, and the output is the transient type.

2) The transients from different but similar transmission
lines are combined to enlarge the datasets and improve the
generalization of DBN. Small-size sample set is a tough is‐
sue when machine-learning models are trained for power sys‐
tems. The combination of samples with similar features can
help to increase the size of training samples and improve the
performance of trained models.

3) The recognition rate of VSC-HVDC transients has been
improved to be higher than 96% with 3 ms data length and
10 kHz sampling frequency. Both speed and reliability are
required for VSC-HVDC transient recognitions. The existing
engineering methods and machine learning based ones can‐
not fulfill these two requirements at the same time.

The rest of this paper is organized as follows. Section II
introduces the fundamentals of HVDC and the types of tran‐
sients that should be recognized in transient protection. Sec‐
tion III presents the theory of restricted Boltzmann machine
(RBM) and its training procedure. The recognition method is
given in Section IV, and simulations are performed in Sec‐
tion V. The simulation results show that the proposed meth‐
od is effective in different scenarios. The comparisons in

Section VI and VII prove the excellent generalization perfor‐
mance and stable recognition capability of the proposed
method. Finally, conclusions are drawn in Section VIII.

II. TRANSIENTS ON OVERHEAD HVDC

A. Fundamental of HVDC

The typical structure of a point-to-point VSC-HVDC trans‐
mission system is shown in Fig. 1. The system voltage is
±500 kV, the transmission power is 2000 MW, and the total
length of the line is 500 km. The middle point of the sup‐
porting capacitor is grounded, and the line voltages of both
poles are symmetrical. This grounding method could reduce
the insulation level of DC lines, and prevent large current
flowing through the grounding point under normal condi‐
tions [23], [24]. The bus voltage is controlled at the rectifier,
and the power is controlled at the inverter. In Fig. 1, L repre‐
sents the smoothing reactors, M represents the measuring de‐
vices for relay protection, and f represents the GF.

Once a fault occurs on the transmission line, two transient
pulses with opposite polarity travel to both ends of the line.
With the smoothing reactors L, the transients will be
blocked in the area of transmission lines. Only the transients
on the transmission lines should be considered for recogni‐
tion.

B. GF

GF is the most common fault for overhead HVDC trans‐
mission lines. For symmetrical single-polar structure, the
post-fault transient process is swift, and can be divided into
two stages: capacitor discharging stage and post-fault steady
stage [25], [26]. Once a fault occurs, the traveling wave will
propagate along the transmission lines, and reach the con‐
verter station where supporting capacitors are installed. The
supporting capacitor will discharge immediately, and lead to
potential drop and current rise of fault pole. However, due to
the voltage control of the converter station, the voltage be‐
tween positive and negative poles keeps unchanged, and the
potential of the non-fault pole will increase. This process is
a step response, and another steady state will be achieved
when the potential of the fault pole reaches its final value.
In the post-fault steady state, the potential of the fault pole
is almost zero, and the potential of the non-fault pole is
close to DC-bus voltage. At the same time, the fault current
will decrease due to the potential decrease of the fault pole.
A typical fault current waveform of single-pole GF is demon‐
strated in Fig. 2(a). Its current increment is quite large and
reaches its peak in only a few microseconds. It then decays
gradually to its steady value.

M

ArrestorAC 1

VSC 1 VSC 2L

AC 2

Overhead line

f

Fig. 1. Structure of VSC-HVDC transmission system.
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C. LF

Overhead HVDC transmission lines usually pass through
rural, mountainous, or empty wild areas. With a height of
tens of meters, the transmission lines are vulnerable to light‐
ning. A lightning stroke is usually regarded as a negative
pulse, and also a kind of high-frequency interference source
[27], [28]. It can be modeled mathematically by a double ex‐
ponential current source, as given by (1) [29].

i (t)=AI (e-αt - e-βt) (1)

where I is the lightning current amplitude; A is the correc‐
tion coefficient of I; and α and β are the rise and fall coeffi‐
cients, respectively.

When lightning with a number of electrons strikes the
wire or the tower top of the HVDC transmission system, in‐
sulator flashover might be caused and produce a unipolar
GF. Such a phenomenon is called an LF. However, if the
lightning amplitude is not large enough, an LD is more like‐
ly to be generated. The LD transient pulse will propagate to
both ends, and the wave energy will decay to zero due to re‐
flection and refraction [30].

Figure 2(b) and Fig. 2(c) display the typical waveforms of
LF and LD in point-to-point VSC-HVDC. The waveforms of
LF and GF decay faster than those of LD because most tran‐
sient energy dissipates quickly to ground through fault point.
In the early stage of a lightning flash, the waveforms of LF
and LD are similar. However, once the insulation breakdown
and GF occur, the waveform of LF becomes more similar to
that of GF. These similarities among the three types of sig‐
nals make accurate recognition difficult, especially for LF
and LD.

III. RECOGNITION MODEL

Deep learning can learn features from raw data and has
achieved breakthroughs in pattern recognition in recent
years. DBN, one of the popular deep learning networks, con‐
sists of multiple RBMs. RBM works well in learning fea‐
tures. A Softmax classification layer is commonly added on
the RBMs to form a shallow network, which could perform
feature extraction and classification.

A. RBM

An RBM is composed of a visible layer v and a hidden
layer h. It consists of a weight matrix w that associates with

the connection between all units in v and h, as well as bias
weights a and b, which represent the offsets of h and v, re‐
spectively. Initially, the layer comprises binary-valued ran‐
dom units, i.e., v∈{0,1}V, h∈{0,1}H, where V is the number
of visible layer units and H is the number of hidden layer
units. To process real-valued data or measured electrical tran‐
sient in HVDC transmissions, the visible layer units should
be replaced by linear units with independent Gaussian noise,
which is called Gaussian-Bernoulli RBM (GB-RBM) [31],
[32]. The structure of GB-RBM is shown in Fig. 3.

B. Recognition Model

The goal of GB-RBM is to extract features from original
data. After the proper training of the network, the output da‐
ta (values of hidden units) are a characteristic representation
of the input data (values of visible units). The output of the
trained GB-RBM can serve as the input of the next GB-
RBM. With multiple GB-RBMs which process data sequen‐
tially, complex recognition problems can be solved. The net‐
work depth depends on the needs of problems and is one of
the critical factors that affect the classification accuracy.

Generally, a classification output layer needs to be added
behind the last feature layer to realize recognition or classifi‐
cation. This layer, which is essentially a neural network, can
perform classification through a transfer function. Logistic
function and Softmax function are two common transfer
functions used for classification. For multi-classification
problems, a Softmax classifier which adopts an exponential
function can amplify the differences to produce better perfor‐
mance than logistic classifier. Softmax classifier is thus ad‐
opted.

Stacked GB-RBMs (for instance, three layers) with a Soft‐
max classifier forms a DBN. The training process of the typi‐
cal DBN which includes pre-training and fine-tuning phases
is displayed in Fig. 4.

Pre-training: the training is performed layer by layer ac‐
cording to the training rules of GB-RBM. The sample data
X is used as the input of GB-RBM1, and the output of the
trained GB-RBM1 is used as the input of GB-RBM2. The
training of the following GB-RBMs is sequentially per‐
formed in the same way. The process is called unsupervised
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Fig. 2. Transient current waveforms on positive pole. (a) GF. (b) LF. (c)
LD.
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Fig. 3. Structure of GB-RBM.
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pre-training due to the absence of sample label Y.
Fine-tuning: all the pre-trained GB-RBMs are stacked up,

and the Softmax layer is then added at the end of the net‐
work. Pre-training has specified a rough optimization direc‐
tion of the entire network when fine-tuning can complete
more accurate optimization. The backward propagation algo‐
rithm is used to fine-tune the whole network for the purpose
of reducing the error between the output and the label. This

phase requires label Y, so it is called supervised fine-tuning.

IV. RECOGNITION METHOD

With a properly designed DBN, the transient measure‐
ments from HVDC transmission lines are analyzed to
achieve reliable end-to-end recognition. The flow chart of
the proposed method is shown in Fig. 5, and the details of
main steps are as follows.

A. Data Acquisition

In the first millisecond of the post-fault process of VSC-
HVDC, currents that change quickly and are less likely to
be affected by control strategies are chosen to be the ana‐
lyzed input of the recognition model. To avoid the effect of
communications and to reduce the data acquiring time, only
the local current measurements are used.

The biggest challenge of using intelligent algorithms in
transient recognition is the lack of samples. Transient current
samples from one system are limited in practical applica‐
tions. But for systems with the same voltage level and inter‐
connections, their transient currents appear similar features
when they respond to the same kind of excitation, for exam‐
ple, step excitations or double exponential impulses.

Thus, the transient currents from different but similar
transmission lines are used in this paper to enlarge the size
of samples and enhance the generalization performance of
the model.

B. Data Preprocessing

To avoid the influences from measurements such as mag‐
nitude and coupling and help to achieve fast convergence of
recognition model, the raw data should be processed before
being sent to the model. Three aspects need to be consid‐
ered: data length, decoupling, and normalization.

The data length is determined by the sampling frequency
and the length of the time window. The data length should
be the same for different systems. For example, if the sam‐
pling frequency is 10 kHz and the time window is 3 ms, the
data length is 30.

Karenbauer transform, which is shown in (2) and (3), is
adopted to decouple the influences between two poles. The
original transient currents are decoupled into two compo‐
nents: zero-mode i0 and line-mode i1. Compared with i0, i1 is
more stable with the change of frequency and line surround‐
ings. Hence, the line-mode i1 is adopted.
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where i+ and i- are the currents of the positive and negative
poles, respectively.

Normalization is generally used in processing the input da‐
ta of the recognition network to improve the convergence
speed and generalization performance. Here, the min-max
normalization shown in (4) is selected.

i*
1 =

i1 -min{ }i1

max{ }i1 -min{ }i1

(4)

where i*
1 is the normalized i1.

C. Sample Preparation

Generally, the samples used for the recognition model are
divided into the training set and the test set to avoid over-fit‐
ting and evaluate the training results.

D. Model Design and Training

The design of a network includes the selection of network
size, functions, and parameters such as learning rate, and so
on. When considering the network size, the sample dimen‐
sion and transient types are used as the size of the input lay‐
er and output layer, respectively. The depth and the size of
hidden layers depend on the samples and applications. In
this paper, the hidden layer structure is determined by in‐
creasing the number of GB-RBMs gradually, and the struc‐
ture which achieves maximum recognition rate is selected.

E. Model Application

Once the recognition model is trained, it can be used to
recognize unknown abnormal transients with great speed. Al‐
though the model training is time-consuming, the implement

result
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Fig. 5. Flow chart of transient recognition method.
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of trained model only takes a few milliseconds, which is po‐
tential to be applied in practical applications.

V. SIMULATIONS AND ANALYSIS

A. Simulation Model and Transient Data Processing

As mentioned in Section IV, a ±500 kV point-to-point
VSC-HVDC transmission system with four scenarios is mod‐
eled on the platform of PSCAD. The structure of the point-
to-point transmission system is shown in Fig. 1, and their de‐
tailed parameters are listed in Table I. The transmission ca‐
pacity, transmission distance, and wire are different in the
four scenarios, but voltage and control strategies are the
same.

The three types of transients mentioned in Section II are
also simulated. For GFs which are modeled by step voltage
functions, only grounding resistances are considered. While
for lightning strokes which are modeled by double exponen‐
tial functions, both time constants and amplitudes are used
to simulate different lightning strokes. The location of tran‐
sients changes arbitrarily in the simulations. A GF is applied
0.1 ms later than lightning strokes when simulating LF tran‐
sients. Table II lists the setting ranges of parameters of tran‐
sient signals, where the time constant 1.2(50) represents that
the rise time is 1.2 μs and the fall time is 50 μs.

With the simulation setting in Tables I and II, three types
of transients are generated. The time window is set to be 3
ms, and the sampling frequency is 10 kHz. Once a transient
surge is detected, the measurements 0.2 ms before and 2.8
ms after the detected instant are recorded. Figure 6(a), (c),
and (e) shows the line-mode components of three types of
transients, while Fig. 6(b), (d), and (f) shows their normal‐
ized waveforms. It can be seen from Fig. 6 that the system
parameters affect the attenuation speed and the reference val‐
ue of the waveforms. However, the changing trend remains
roughly consistent for the same type of signals.

B. Sample Preparation

For each simulation model, different sizes of sample sets
are built. The longer the transmission line is, the more simu‐
lation scenarios will be produced. To analyze the reliability
of trained model, the number of test samples is raised. Each
sample set is randomly divided into the training set and the
test set with equal numbers. Table III lists the detailed sam‐
ple distributions. For each kind of transients, 200 samples
are produced. Thus, 600 samples are used in total.

C. Model Design and Training

According to the design and training procedure in Section
IV, the recognition model is built and trained. In pre-training
and fine-tuning, the minimum-batch size is set to be the
number of classes 3, the learning rate ε is set to be 0.01, and
the momentum factor mc is set to be 0.5. The number of iter‐

TABLE I
DETAILED PARAMETERS OF FOUR SCENARIOS

Scenario

1

2

3

4

Power (MW)

1500

2000

2500

3000

Distance (km)

250

500

750

1000

Transmission line

4×LGJ-400

4×LGJ-500

4×LGJ-630

4×LGJ-720

TABLE II
PARAMETERS OF TRANSIENT SIGNALS

Type

GF

LF

LD

Location

Random

Random

Random

Grounding
resistance (Ω)

0.01-100

0.01-30

Time constant
(μs)

1.2(50), 2.6(50),
8(20)

1.2(50), 2.6(50),
8(20)

Lightning current
amplitude (kA)

25-80

10-30

Scenario 1; Scenario 2; Scenario 3; Scenario 4
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Fig. 6. Waveforms of different transients. (a) Line-mode raw data of GF.
(b) Normalized waveforms of GF. (c) Line-mode raw data of LF. (d) Nor‐
malized waveforms of LF. (e) Line-mode raw data of LD. (f) Normalized
waveform of LD.

TABLE III
SAMPLE DISTRIBUTIONS

Scenario

1

2

3

4

Total

No. of samples

20

40

60

80

200

No. of training samples

10

20

30

40

100

No. of test samples

10

20

30

40

100
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ations, which is determined by the convergence curve of the
error, is set to be 500 and 300 for pre-training and fine-tun‐
ing, respectively. Such training is repeated 10 times to calcu‐
late the average misjudgment rate.

The number of neurons cannot be too small or too large,
or else the features cannot be adequately represented or the
learning process will cost much more time. Figure 7 illus‐
trates the average misjudgment rates with different numbers
of neurons. Here, only one hidden layer is used. After 200 it‐
erations or epoches, the average misjudgment rate reaches
convergence. For both training sets and test sets, the chang‐
ing trends of the rate keep the same: the rate decreases with
the increase of the number of neurons and rises slightly after
reaching its minimum. In this research, the hidden layer with
30 neurons (h1 = 30) always has smaller values than the oth‐
ers: 2.57% for training sets and 3.60% for test sets. Thus, 30
is chosen as the number of neurons in the first hidden layer.

The second hidden layer is then added, and the training
process is repeated. The average misjudgment rates of the
network with two hidden layers are demonstrated in Fig. 8.
It can be seen that the rates do not vary a lot after conver‐
gence. The lowest average misjudgment rates are 3.83% and
4.30% for training sets and test sets, respectively, when the
second hidden layer contains 30 neurons (h2 = 30). However,
they are larger than the rates with only one hidden layer.

To determine the most suitable network depth, the effect
of the number of hidden layers on the average recognition
rates is demonstrated in Fig. 9. The increase in network
depth is unable to improve the average recognition rate.
Therefore, the network structure is designed to be 30-30-3,
which means that the number of neutrons in the input layer
is 30, in the hidden layer is 30, and in the output layer is 3.
The input layer size equals to the sample dimension which

is actually the length of normalized line-mode currents, and
the output size equals to the number of transient types 3.
Here, 100, 010 and 001 are used for GFs, LFs, and LDs, re‐
spectively.

D. Recognition Results

The samples from the four scenarios are recognized with
the trained network, and the recognition rates are shown in
Table IV. All GFs can be accurately recognized, while some
of the lightning transients will be misjudged. The results
show that the proposed method is efficient in recognizing
transients in VSC-HVDC systems.

VI. PERFORMANCE ANALYSIS AND DISCUSSIONS

To demonstrate the effectiveness of the proposed method,
its performance is discussed with different inputs, signal-to-
noise ratios (SNRs), sample sizes, normalizations, and sam‐
pling frequencies.

A. Effect of Inputs

As aforementioned in Section IV, line-mode components
of transients are more stable than zero-mode components.
The recognition results of transients with line-mode compo‐
nents and zero-mode components are compared and shown
in Fig. 10. With a stable representation of transients, the rec‐
ognition rates of the model with line-mode inputs are higher
than thoses with zero-mode inputs. It is suitable to adopt the
line-mode components of transients as the input of the recog‐
nition model.
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TABLE IV
RECOGNITION RESULTS OF TRANSIENTS

Type

GF

LF

LD

Overall

Recognition rate (%)

Training set

100.00

93.80

98.50

97.43

Test set

100.00

91.20

98.00

96.40
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B. Effect of SNRs

Gaussian white noises are the primary source that pollutes
measured data. Its impact on the recognition results should
be considered and discussed. Simulated Gaussian white nois‐
es are added to original transient samples and recognized by
the proposed DBN model. Figure 11 shows the average rec‐
ognition rates under different SNRs. With the decrease of
SNRs, the recognition rates of faults decrease a little, but the
recognition rates of disturbances vary a lot. However, even
the SNR is as low as 30 dB, the recognition rate of GF
keeps around 98%, while the recognition rates of LF and
LD are around 90%. The proposed method can reflects the
effect of noise.

C. Effect of Sample Sizes

The number of samples affects the performance of recog‐
nition models. While for electrical power systems, samples
of transients on VSC-HVDCs are limited. This paper investi‐
gates the recognition rates of the proposed method under dif‐
ferent sizes of training sample sets. The results are shown in
Fig. 12. The recognition rates can be improved with the in‐
crease of the number of training samples. When only 25
training samples from each type of transients, i.e., 75 train‐
ing samples in total, are adopted, the recognition rates of
GF, LD, and LF are close to 100%, 95%, and 80%, respec‐
tively. When the training samples of each type of transients
reach 100, i.e., 300 training samples in total, the recognition
rate of LF is slightly higher than 90%, and the overall recog‐
nition rate of three types of transients is close to 95%. In
summary, the proposed method can recognize transients ef‐
fectively with a limited number of training samples, and the
recognition performance can be improved with more training
samples.

D. Effect of Normalizations

For neural networks, normalizations of the input and out‐
put data can generally speed up learning rates and leads to
faster convergence. Different kinds of normalizations are
used, for example, min-max normalization, z-score normal‐
ization, median absolute deviation (MAD) normalization,
and sigmoid normalization [33], [34]. Some of these normal‐
izations are robust to outliers, and some of them can change
the original distributions of data. The recognition perfor‐
mance of proposed method is tested with different kinds of
normalizations, as illustrated in Fig. 13.

Although the min-max normalization is not robust to outli‐
ers, the recognition rates of min-max normalization are bet‐
ter than the other normalizations. Both sigmoid and MAD
normalizations are robust. They transform the input values to
follow the Gaussian distribution, and the normalized input
values are clustered around 0. It makes the features of differ‐
ent transients unclear. Min-max and z-score normalizations
focus more on the waveforms. In particular, min-max nor‐
malization ensures that all input values fall in the interval
[0, 1]. The maximum and minimum are 1 and 0 for each in‐
put value, respectively. The waveform features of different
transients are clearly revealed.

E. Effect of Sampling Frequencies

More information can be included for a certain time win‐
dow when sampling frequency is increased. Here, the effect
of sampling frequency is discussed, and the recognition re‐
sults are shown in Fig. 14. To avoid the influence from
DBN models, only the size of input layer is changed. Thus,
the DBN structure is 30-30-3 for 10 kHz scenario, 300-30-3
for 100 kHz scenario, and 3000-30-3 for 1 MHz scenarios.
All GB-RBM parameters keep the same. Three hundred sam‐
ples are used for training and test, respectively.
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As illustrated by Fig. 14, the recognition rate decreases
when sampling frequency increases. With the increase of in‐
put size, the number of hidden layer and the sample size of
each layer are not changed accordingly. It is hard for DBN
models to reach convergence. The overall training errors of
full batch (all training samples) can be about 1 when 1 MHz
sampling data are used. The recognition rate of GF is 0 and
the overall rate is only 43%. Thus, when sampling frequency
increases, both the width and depth of DBN model must be
adjusted to generate better recognition results.

F. Generalization Performance of Different Systems

To further analyze the generalization performance, all the
training samples in scenario 1 are removed from the original
training set and used as the test set. Thus, the new training
set does not include any sample in scenario 1, and the gener‐
alization performance of the proposed model can be tested.
The same experiment is also implemented in scenarios 2, 3,
and 4, respectively. Figures 15 presents the recognition re‐
sults of each scenario. When the method is applied to the
modified scenarios, it has a recognition rate of 100% for GF
and a recognition rate of more than 95% for LD. However,
the system difference has a more significant impact on the
recognition rate of LF, which is about 90% for scenarios 2
and 3, and about 80% for scenarios 1 and 4.

VII. COMPARISONS WITH TRADITIONAL METHODS

To illustrate the effectiveness of the proposed method, its
performance is compared with existing methods.

A. Existing Machine Learning Based Recognition Methods

1) Features with Classifiers
Feature extraction with the trained classifier is one of the

most common methods in traditional pattern recognition.
When characterizing the features of electrical transients,
some feature extraction methods are often used, for example,
wavelet energy and principle component analysis (PCA).
The recognition performance of the two methods are dis‐
cussed in this paper.

Wavelet energy reveals the spectrum of signals with multi-
resolution analysis. The definition of wavelet energy is
shown in (5)-(7) [35], [36].

Ei =  c i = sqrt (∑
j = 1

n

c2
ij) (5)

Eo = [E1 E2 ... EN ] (6)

E = Eo  Eo (7)

where Ei is the wavelet energy of the ith layer; cij (j = 1, 2,
, n) is the jth element in the wavelet coefficient vector of
the ith layer c i; and E is the normalized Eo. The dimension of
the feature vector is selected as 4 in this paper, and
Daubechies “db4” wavelet is applied.

PCA is a dimensionality-reduction method. It transforms a
large variable set into a smaller one that still contains most
of the information in the large set. Its definition is shown in
(8) and (9) [4].
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where S is the variance-covariance matrix, which is used to
calculate eigenvalues λ and eigenvectors V; X is the original
raw data; and Σ is the largest principal component. The oth‐
er principal components can be calculated likewise. The larg‐
est k components are used as the features of k-dimension
vector. In this research, the raw data is condensed to a 6-di‐
mension vector.

For classifiers, BP neural network and SVM are widely
used ones. Therefore, with a different combination of fea‐
tures and classifiers, three feature-based recognition methods
are discussed: method 1 is the combination of wavelet ener‐
gy and BP neural network; method 2 is the combination of
wavelet energy and SVM; and method 3 is the combination
of PCA and BP neural network. The structure of BP neural
network is 4-28-3 for method 1 and 6-4-3 for method 3. The
activation function is the hyperbolic tangent function, and
the training procedure uses the gradient descent algorithm
with momentum BP and dynamic adaptive learning rate. The
number of iterations is 500, and the learning rate is 0.01.
For method 2, classification is carried out by using SVM
with a typical “one-to-one” construction. That is, an SVM
needs to distinguish two types of samples, and three SVMs
in total are needed for three-type recognitions. All SVMs
use the radial basis function (RBF) as the kernel function.
2) Raw Data with Classifiers

When the input number is not massive enough, the super‐
vised learning algorithms can also process raw data without
feature extraction. However, such a procedure will cost more
time to get converged. Therefore, the normalized line-mode
components of transients are also used as the input of tradi‐
tional classifiers: BP neural network (method 4) and SVM
(method 5). For method 4, the parameters of the BP neural
network are the same as those in method 1, but the network
structure is chosen as 30-15-3. For method 5, the SVMs are
constructed the same as for method 2.
3) Comparison Results and Analysis

The same transient samples are used for the five methods
mentioned above, as well as the proposed method. The rec‐
ognition results are shown in Table V.
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It can be seen from Table V that no matter which method
is used, GF can be effectively recognized. All recognition
rates of GF of the six methods are higher than 98%. Both
method 3 and the proposed method have the highest recogni‐
tion rates of 100%.

The recognition rates of LD and LF vary a lot. In particu‐
lar, the recognition rates of feature-based methods, i.e., meth‐
ods 1, 2 and 3, are about 70%-80%. This phenomenon might
result from the low sampling frequency (10 kHz) and a short
data window (3 ms). As only 30 data values are adopted for
recognition, the time-domain or the time-frequency domain
features of different kinds of transients cannot be fully re‐
vealed. Among the feature-based methods, method 3 has bet‐
ter performance. Its overall recognition rate is higher than
80%. For feature-based methods, the overall recognition
rates are lower than 90%, while non-feature-based ones have
higher overall recognition rates. Two independent processes,
i.e., feature extraction and classification, are needed for fea‐
ture-based methods. Their recognition performance depends
on both the quality of features and the design of classifiers.
As the dimension of raw data is only 30, it is also possible
to apply end-to-end recognition with traditional machine-
learning models, such as BP neural network and SVM. The
end-to-end solution can avoid the errors induced by hand-de‐
signed processes such as feature extraction. Without the di‐
mension reduction of feature extraction, the end-to-end rec‐
ognition methods can generate higher recognition rates. Com‐
pared with traditional classifier-based methods, the proposed
method can perform better. DBN learns features from raw
data with unsupervised learning algorithms, thus more robust
features of raw data can be learnt. The unsupervised learning
algorithms included in the proposed methods provide more ef‐
fective characterizing ability than traditional supervised ones.

B. Existing Engineering Method

Since LD is an interference which will disappear after a
short duration, the electrical measurements will get back to
their values in normal operations. In practical engineering,
the integration of voltage, as demonstrated in (10), is used to
discriminate LD from the faults on a current-controlled
HVDC transmission line [3]. Generally, the integration re‐
quires a delay of 0.5 ms to avoid the transient voltage spike
caused by lightning.

| ∑
k =NS +Nshift

N

Du(k) |>Vth (10)

where NS is the starting instant of lightning stroke at measur‐
ing unit; Nshift is the time delay which is 0.5 ms; N is the
time length of data, which is usually tens of milliseconds;
Du(k) is the voltage gradient; and Vth is a threshold. Table VI
illustrates the recognition results of practical integration-
based recognition method and the proposed method.

Since only 3 ms data are used, the voltage of LD cannot
reach the post-transient stability. The recognition perfor‐
mance of the practical integration-based method is ineffec‐
tive. Due to the large-amplitude currents of lightning
strokes, the voltage gradient of LF is much larger than those
of GF and LD, and better recognition rate (100%) can be ob‐
tained.

VIII. CONCLUSION

This paper proposes a DBN-based transient recognition
method for VSC-HVDC transmission systems. This method
provides reliable end-to-end recognition without complex da‐
ta processing. Fundamentals and characteristics of three typi‐
cal types of transients on transmission lines are analyzed for
designing an effective recognition model. The simulation re‐
sults illustrate the effectiveness of the proposed method with
a low sampling frequency within an extremely short-time
window. The following conclusions can be achieved.

1) The proposed method can generate excellent recogni‐
tion results within a short time with low sampling frequency.
The overall recognition rate is higher than 96%. With more
training samples, the recognition rates can be further im‐
proved.

2) Compared with existing methods, the proposed method
shows better performance. The machine learning based meth‐
ods discussed in this paper has better performance than the
practical integration-based method. The overall recognition
rate of the proposed method is about 40% higher than practi‐
cal methods.

3) The proposed method has good recognition capability
and generalization performance, and it has high potential in
practical applications.

4) In future work, the recognition will be focused on dis‐
criminating faults and disturbances. The misjudgment rates
of LFs can be reduced because those recognized to be LFs
will not be counted.

REFERENCES

[1] J. Beerten, S. Cole, and R. Belmans, “Modeling of multi-terminal
VSC HVDC systems with distributed DC voltage control,” IEEE
Transactions on Power Systems, vol. 29, no. 1, pp. 34-42, Jan. 2014.

TABLE V
COMPARISON OF RECOGNITION RATES WITH DIFFERENT METHODS

Method

1

2

3

4

5

Proposed method

Recognition rate (%)

GF

99.45

99.20

100.00

98.98

99.10

100.00

LF

64.78

69.00

80.00

83.30

84.40

91.20

LD

67.87

68.10

69.70

94.18

97.80

98.00

Overall

77.37

78.77

83.23

92.15

93.77

96.40

TABLE VI
RECOGNITION RATES OF DIFFERENT TYPES OF TRANSIENTS

Type

GF

LF

LD

Overall

Recognition rate (%)

Practical method

30.20

100.00

39.50

56.56

Proposed method

100.00

91.20

98.00

96.40

1078



LUO et al.: AN END-TO-END TRANSIENT RECOGNITION METHOD FOR VSC-HVDC BASED ON DEEP BELIEF NETWORK

[2] L. Zhang, L. Harnefors, and H. Nee, “Interconnection of two very
weak AC systems by VSC-HVDC links using power-synchronization
control,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp.
344-355, May 2011.

[3] F. Kong, Z. Hao, S. Zhang et al., “Development of a novel protection
device for bipolar HVDC transmission lines,” IEEE Transactions on
Power Delivery, vol. 29, no. 5, pp. 2270-2278, Mar. 2014.

[4] J. Morales, E. A. Orduña, and C. Rehtanz, “Identification of lightning
stroke due to shielding failure and back flashover for ultra-high-speed
transmission-line protection,” IEEE Transactions on Power Delivery,
vol. 29, no. 4, pp. 2008-2017, Jul. 2014.

[5] J. A. Morales, E. Orduña, and C. Rehtanz, “Classification of lightning
stroke on transmission line using multi-resolution analysis and ma‐
chine learning,” International Journal of Electrical Power & Energy
Systems, vol. 58, pp. 19-31, Jun. 2014.

[6] J. A. Morales, E. Orduña, C. Rehtanz et al., “Comparison between
principal component analysis and wavelet transform filtering methods
for lightning stroke classification on transmission lines,” Electric Pow‐
er Systems Research, vol. 118, pp. 37-46, Jan. 2015.

[7] K. Satpathi, Y. M. Yeap, A. Ukil et al., “Short-time Fourier transform
based transient analysis of VSC interfaced point-to-point DC system,”
IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 4080-
4091, Oct. 2018.

[8] K. D. Kerf, K. Srivastava, M. Reza et al., “Wavelet-based protection
strategy for DC faults in multi-terminal VSC HVDC systems,” IET
Generation, Transmission & Distribution, vol. 5, no. 4, pp. 496-503,
Apr. 2011.

[9] R. Bertho, V. A. Lacerda, R. M. Monaro et al., “Selective nonunit pro‐
tection technique for multiterminal VSC-HVDC grids,” IEEE Transac‐
tions on Power Delivery, vol. 33, no. 5, pp. 2106-2114, Sept. 2018.

[10] F. Deng, X. Li, and X. Zeng, “Single-ended travelling wave protection
algorithm based on full waveform in the time and frequency do‐
mains,” IET Generation, Transmission & Distribution, vol. 12, no. 15,
pp. 3680-3691, Aug. 2018.

[11] G. Luo, Q. Lin, L. Zhou et al., “Recognition of traveling surges in
HVDC with wavelet entropy,” Entropy, vol. 19, no. 5, May 2017.

[12] G. Luo, C. Yao, Y. Liu et al., “Entropy SVM-based recognition of
transient surges in HVDC transmissions,” Entropy, vol. 20, no. 6, pp.
1-13, May 2018.

[13] H. Xiao, Y. Li, R. Liu et al., “Single-end time-domain transient electri‐
cal signals based protection principle and its efficient setting calcula‐
tion method for LCC-HVDC lines,” IET Generation, Transmission &
Distribution, vol. 11, no. 5, pp. 1233-1242, Mar. 2017.

[14] Z. He, L. Fu, S. Lin et al., “Fault detection and classification in EHV
transmission line based on wavelet singular entropy,” IEEE Transac‐
tions on Power Delivery, vol. 25, no. 4, pp. 2156-2163, Oct. 2010.

[15] Q. Huai, K. Liu, L. Qin et al., “Backup-protection scheme for multi-
terminal HVDC system based on wavelet-packet-energy entropy,”
IEEE Access, vol. 7, pp. 49790-49803, Apr. 2019.

[16] Z. Liu, Z. Han, Y. Zhang et al., “Multiwavelet packet entropy and its
application in transmission line fault recognition and classification,”
IEEE Transactions on Neural Networks and Learning Systems, vol.
25, no. 11, pp. 2043-2052, Feb. 2014.

[17] W. Fan and Y. Liao, “Wide area measurements based fault detection
and location method for transmission lines,” Protection and Control of
Modern Power Systems, vol. 4, no. 1, pp. 53-64, Mar. 2019.

[18] S. R. Samantaray, P. K. Dash, and S. K. Upadhyay, “Adaptive Kalman
filter and neural network based high impedance fault detection in pow‐
er distribution networks,” International Journal of Electrical Power &
Energy Systems, vol. 31, no. 4, pp. 167-172, May 2009.

[19] L. Guo, Y. Lei, S. Xing et al., “Deep convolutional transfer learning
network: a new method for intelligent fault diagnosis of machines
with unlabeled data,” IEEE Transactions on Industrial Electronics,
vol. 66, no. 9, pp. 7316-7325, Oct. 2019.

[20] T. Wu and W. U. Bajwa, “Learning the nonlinear geometry of high-di‐
mensional data: models and algorithms,” IEEE Transactions on Signal
Processing, vol. 63, no. 23, pp. 6229-6244, Dec. 2015.

[21] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” Science, vol. 313, no. 5786, p. 504,
Jul. 2006.

[22] Y. Bengio, Learning Deep Architectures for AI. New York: Now Foun‐
dations and Trends, 2009.

[23] B. Chang, O. Cwikowski, M. Barnes et al., “Point-to-point two-level
converter system faults analysis,” in Proceedings of 7th IET Interna‐
tional Conference on Power Electronics, Machines and Drives (PEMD

2014), Manchester, UK, Apr. 2014, pp. 1-6.
[24] N. Flourentzou, V. G. Agelidis, and G. D. Demetriades, “VSC-based

HVDC power transmission systems: an overview,” IEEE Transactions
on Power Electronics, vol. 24, no. 3, pp. 592-602, Feb. 2009.

[25] L. Jiang, Q. Chen, L. Wang et al., “Novel protection method for VSC-
HVDC transmission lines,” The Journal of Engineering, vol. 2019, no.
16, pp. 2142-2146, Apr. 2019.

[26] A. Moawwad, M. S. E. Moursi, W. Xiao et al., “Novel configuration
and transient management control strategy for VSC-HVDC,” IEEE
Transactions on Power Systems, vol. 29, no. 5, pp. 2478-2488, Jun.
2014.

[27] J. Takami and S. Okabe, “Observational results of lightning current on
transmission towers,” IEEE Transactions on Power Delivery, vol. 22,
no. 1, pp. 547-556, Dec. 2007.

[28] S. Okabe, T. Tsuboi, and J. Takami, “Analysis of aspects of lightning
strokes to large-sized transmission lines,” IEEE Transactions on Di‐
electrics and Electrical Insulation, vol. 18, no. 1, pp. 182-191, Jan.
2011.

[29] J. Takami and S. Okabe, “Characteristics of direct lightning strokes to
phase conductors of UHV transmission lines,” IEEE Transactions on
Power Delivery, vol. 22, no. 1, pp. 537-546, Dec. 2007.

[30] J. A. Martinez and F. Castro-Aranda, “Lightning performance analysis
of overhead transmission lines using the EMTP,” IEEE Transactions
on Power Delivery, vol. 20, no. 3, pp. 2200-2210, Jun. 2005.

[31] X.-H. He, D. Wang, Y.-F. Li et al., “A novel bearing fault diagnosis
method based on gaussian restricted Boltzmann machine,” Mathemati‐
cal Problems in Engineering, vol. 2016, no. 3, pp. 1-8, Dec. 2016.

[32] V. T. Tran, F. Al-Thobiani, and A. Ball, “An approach to fault diagno‐
sis of reciprocating compressor valves using Teager-Kaiser energy op‐
erator and deep belief networks,” Expert Systems with Applications,
vol. 41, no. 9, pp. 4113-4122, Jul. 2014.

[33] A. Ross and K. Nandakumar, “Fusion, score-level,” in Encyclopedia
of Biometrics, 2nd ed. New York: Springer, 2015, pp. 610-614.

[34] T. Jayalakshmi and A. Santhakumaran, “Statistical normalization and
back propagation for classification,” International Journal of Comput‐
er Theory and Engineering, vol. 3, no. 1, pp. 89-93, Feb. 2011.

[35] G. Luo, D. Zhang, K. J. Tseng et al., “Impulsive noise reduction for
transient earth voltage-based partial discharge using wavelet-entropy,”
IET Science, Measurement & Technology, vol. 10, no. 1, pp. 69-76,
Jan. 2016.

[36] B. Li, J. He, Y. Li et al., “A review of the protection for the multi-ter‐
minal VSC-HVDC grid,” Protection and Control of Modern Power
Systems, vol. 4, no. 3, pp. 239-249, Nov. 2019.

Guomin Luo received the B.Sc. and M.Sc. degrees from Southwest Jiao‐
tong University, Chengdu, China, in 2005 and 2008, respectively, and the
Ph.D. degree from Nanyang Technological University, Singapore, Singapore,
in 2013. She is currently an Associate Professor with Beijing Jiaotong Uni‐
versity, Beijing, China. Her research areas include online monitoring, signal
processing, and protection of power systems.

Jiaxin Hei is currently a research student in the School of Electrical Engi‐
neering, Beijing Jiaotong University, Beijing, China. His research interests
include DC system fault location and artificial intelligence.

Changyuan Yao is an engineer in State Grid Shandong Electric Power
Company, Jinan, China. His research interest is maintenance of transmission
system.

Jinghan He received the B.Sc. and M.Sc. degrees in automation from Tian‐
jing University, Tianjing, China, in 1987 and 1994, respectively, and the
Ph.D. degree from Beijing Jiaotong University, Beijing, China. She is cur‐
rently a Professor with Beijing Jiaotong University, Beijing, China. Her
main research interests include online monitoring, protection and control of
power systems, power quality, new energy and smart grid, and electrical rail
transportation.

Meng Li received the B.S. and Ph.D. degrees in electrical engineering from
North China Electric Power University, Beijing, China, in 2003 and 2018,
respectively. He is currently a Lecturer at the School of Electrical Engineer‐
ing, Beijing Jiaotong University, Beijing, China. His research interest is DC
grid protection.

1079


