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Analytical Model of Day-ahead and Real-time
Price Correlation in Strategic Wind Power Offering

Xin Fang and Mingjian Cui

Abstract——In this paper, the model of strategic wind power of‐
fering in the day-ahead (DA) market is proposed considering
the uncertainties of wind power production, and price forecast‐
ing of DA and real-time (RT) market. The wind power devia‐
tion in the RT market is settled with the two-price mechanism
based on the deviation direction and the relation between the lo‐
cational marginal prices (LMPs) of DA and RT. Instead of us‐
ing the point forecasting for the DA and RT LMPs, the uncer‐
tainties of LMP forecasting are modeled. In addition, the corre‐
lation between the forecasting errors of DA and RT LMP are
directly modeled instead of generating the correlated scenarios.
Finally, the opitmal offered quantity of wind power in the DA
market is derived using the probability theory based on the
probabilistic wind power forecasting. The case study using the
price data of actual DA and RT from Midcontinent Indepen‐
dent System Operator (MISO) validates the effectiveness of the
proposed model. It shows that the correlation of the forecasting
errors of DA and RT LMP has a significant impact on the wind
power quantity offered by DA and revenue results.

Index Terms——Electricity market, wind power, uncertainty,
correlation, strategic wind power offering.

I. INTRODUCTION

WIND power is substantially increasing in power sys‐
tems because of the environment policies and reduc‐

ing capital cost for wind technology [1]. In the United
States, most of the wind power plants are connected in the
deregulated electricity markets such as Midcontinent Inde‐
pendent System Operator (MISO) and Electric Reliability
Council of Texas (ERCOT) [2] - [4]. One important issue of
wind power producers in these deregulated electricity mar‐
kets is to maximize its revenue [5]. Most of the electricity
markets in the United States are organized with a day-ahead
(DA) forward market and a real-time (RT) deviation settle‐
ment market which settles the deviations between the actual
demand and the DA forecasted amount. A two-price mecha‐
nism is used by several European electricity markets to set‐
tle the wind power deviations between the DA and RT mar‐

kets to reduce the stochastic arbitrage potential for wind
power producers. More details about the two-price mecha‐
nism can be found in [6].

In the market operation, the wind power producers utilize
the probabilistic wind power forecasting shown in Fig. 1 to
reduce its financial loss [7] due to the wind power volatility.
The percentage value on the right side of Fig. 1 is the proba‐
bilistic quantile value in the probabilistic forecasting. In addi‐
tion, during the DA market offering, not only the actual
wind power production is uncertain, but the DA locational
marginal prices (LMPs) and the RT LMPs are also uncer‐
tain. The DA LMPs are hourly prices and RT LMPs in most
of International Standardization Organizations (ISOs) in the
United States are 5-minute prices. The joint probability distri‐
bution function of the DA and RT forecasted LMPs is depict‐
ed in Fig. 2. Therefore, in wind power DA offering method,
both the wind production and the price uncertainties from
DA and RT markets should be considered.
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Fig. 2. Joint probabilistic density function of DA and RT forcasted LMPs.
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Fig. 1. Wind power probabilistic forecasting.
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There was previous literature dealing with the wind power
offering problems such as [8]. In these studies, a set of prob‐
abilistic scenarios were generated to represent the uncertain‐
ties of the wind power production and the market prices in
which the computation burden dramatically increases with
the number of scenarios [9], [10]. In [11], the optimal wind
offer quantity was derived directly from wind power probabi‐
listic forecasting. In this paper, only the wind production un‐
certainty is considered, and the forward prices and deviation
penalty prices are deterministic.

In this paper, an analytical method to obtain the optimal
wind offering for the DA market is proposed considering
both the uncertainties of wind power production and the
LMP forecasting of the DA and RT markets. The main con‐
tributions of this paper are twofold: ① both the uncertainties
of wind power forecasting and electricity price forecasting
are considered using the probabilistic density functions of
forecasting; ② the correlation between the DA and RT pric‐
es are analytically modeled instead of generating a set of sce‐
narios.

The rest of this paper is organized as follows: Section II
proposes the method to obtain the optimal wind offered
quantity considering the uncertainties of wind production
and LMP forecasting; Section III performs the case study
with the actual MISO historical LMP data; and Section IV
concludes the paper.

II. STRATEGIC WIND OFFERING IN TWO-PRICE MECHANISM

MARKETS WITH CORRELATED UNCERTAINTIES

The wind power deviation is settled with the two-price
mechanism [6]. The power shortage and power excess are
settled with the DA or RT LMPs based on the deviation di‐
rections. The expected revenue of this mechanism is shown
in (1).
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(3)

where R is the revenue of the wind power owner; πDA and
πRT are the DA and RT forecasted LMPs, respectively; E(X )
is the expectation of random variable X; PDA is the wind
power quantity in the DA market; PRT is the wind power out‐
put in the RT market; f (PRT) is the probability distribution
function (PDF) of forecasted wind power output; π +

RT and π -
RT

are the penalties for the wind power positive and negative
deviations, respectively; and fπDAπRT

(πDAπRT) is the joint PDF

for DA and RT LMPs.
Assume that the DA and RT LMPs are independent of the

wind power. The first order derivative of (1) to the offered
DA wind power quantity is given as (4).
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where F(PDA) is the cumulative probability function.
The optimal condition for the wind power offering is for‐

mulated as:
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Based on (2) and (3), (5) can be reformulated as:

π +
RT - π -

RT = | πRT - πDA | (6)

E(πDA)-E(π -
RT)-F(PDA)E (| πRT - πDA |)= 0 (7)

Finally, the offered optimal wind quantity is decided by:
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RT)
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(8)

If πRT and πDA are Gaussian distributed random variables,
the expectation of E(π -

RT) is determined by (9) [12] and

E ( | πRT - πDA |) is shown in (11).
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where μπDA
and μπRT

are the means of DA and RT LMPs, re‐

spectively; σπDA
and σπRT

are the standard deviations of DA

and RT LMPs, respectively; ρ is the correlation coefficient
of LMPs; Φ and ϕ are the cumulative probability function
(CDF) and PDF of Gaussian distribution, respectively; and θ
is the standard deviation of πRT - πDA considering the correla‐
tion. Note that the Gaussian distribution assumption of πRT

and πDA means that the forecasting errors of electricity prices
follow Gaussian distribution. It does not mean that the actu‐
al historical market prices follow Gaussian distribution. This
assumption for price forecasting is used in lots of literature.

III. CASE STUDY

In this section, the proposed wind power DA offering
method is tested using the historical DA hourly and RT 5-
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minute price data from MISO and the Michigan Hub data
[13]. A 115-MW wind power plant assembled from Wind
Toolkit [14] is used. The quantile regressive probabilistic
forecasting method [15] is used to obtain the wind power
probabilistic forecasting results. The tests were performed
from December 11 to 15 in 2016. The expectations of DA
and RT price are shown in Fig. 3. The standard deviations of
the forecasted DA and RT prices are 10% and 30% of their
means, respectively. The optimal quantile values for the DA
offering and the actual wind power offering are shown in
Fig. 4 and Fig. 5 with different correlation coefficients be‐
tween the DA and RT LMP forecasting errors. After obtain‐
ing the DA offering, the actual wind power output is used to
calculate the wind revenue with 20000 samples for the uncer‐
tain DA and RT LMPs. Figure 6 demonstrates the revenue
results such as the value at risk (VaR), conditional VaR
(CVaR) under 95% confidence level [8], [16] and the expect‐
ed revenue with different correlation coefficients.

Figure 4 and Fig. 5 show that the wind power is prone to
offer a high quantity in the DA market when the DA price

expectation is higher than the RT price. In contrast, when
the RT market has a higher price expectation, the wind pow‐
er DA offering is low. Both Fig. 4 and Fig. 5 demonstrate
that the wind power offering changes with the correlation co‐
efficient between the DA and RT LMP forecasting errors. In
a higher correlation scenario, the wind power will offer a
higher amount during the 8th to 17th, 28th to 47th, and 61th to
86th hours. In contrast, during the remaining hours, the wind
power offering decreases with the correlation coefficient.
The first order derivative of (8) to the correlation coefficient
ρ is shown in (12). When the sign of ¶F(PDA)/¶ρ is positive,
the wind offering increases with ρ; when this sign is nega‐
tive, the wind offering decreases with ρ.
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Figure 6 shows that the VaR, CVaR and the expectation of
revenue increase with the correlation coefficients between
the DA and RT LMP forecasting errors. For instance, the rev‐
enue expectation increases by 30.18% from $140241.20 to
$182569.50 when the correlation coefficient increases from -
1 to 1. Figure 3 shows that there is a positive correlation (ρ=
0.5) between the DA and RT prices. Thus, in the wind pow‐
er offering, this price correlation between the DA and RT
markets should be considered to obtain the optimal wind
power offering, which improves the revenue of wind power
producers.
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Fig. 6. Wind revenue results with different DA and RT LMP correlation
coefficients.
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Fig. 4. Optimal quantile values for DA offering with different LMP corre‐
lation coefficients.
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Fig. 5. Wind power offering with different DA and RT LMP correlation co‐
efficients.
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IV. CONCLUSION

In this paper, a model of strategic wind power offering in
the DA market is proposed considering the uncertainties of
both wind power production and the price forecasting of the
DA and RT markets. The optimal wind power offering is de‐
rived based on the wind power probabilistic forecasting and
the Gaussian distribution assumption for the DA and RT
price forecasting errors. The simulation results demonstrate
that the correlation coefficients between the DA and RT
LMP forecasting errors has a significant impact on the DA
wind offering. Therefore, in the market operation, the wind
power producers should consider the correlation between the
price forecasting of the DA and RT markets through the pro‐
posed method.
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