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Adaptive Three-phase Estimation of Sequence
Components and Frequency Using H∞ Filter

Based on Sparse Model
Umamani Subudhi, Harish Kumar Sahoo, and Sanjeev Kumar Mishra

Abstract——The estimation of sequence or symmetrical compo‐
nents and frequency in three-phase unbalanced power system is
of great importance for protection and relay. This paper propos‐
es a new H∞ filter based on sparse model to track the sequence
components and the frequency of three-phase unbalanced pow‐
er systems. The inclusion of sparsity improves the error conver‐
gence behavior of estimation model and hence short-duration
non-stationary PQ events can easily be tracked in the time do‐
main. The proposed model is developed using l1 norm penalty
in the cost function of H∞ filter, which is quite suitable for esti‐
mation across all the three phases of an unbalanced system.
This model uses real state space modeling across three phases
to estimate amplitude and phase parameters of sequence compo‐
nents. However, frequency estimation uses complex state space
modeling and Clarke transformation generates a complex mea‐
surement signal from the unbalanced three-phase voltages. The
state vector used for frequency estimation consists of two state
variables. The proposed sparse model is tested using distorted
three-phase signals from IEEE-1159-PQE database and the da‐
ta generated from experimental laboratory setup. The analysis
of absolute and mean square error is presented to validate the
performance of the proposed model.

Index Terms——Sequence component, Clarke transformation,
H∞ filter, state space model.

I. INTRODUCTION

THE steady-state operation condition of the three-phase
balanced power system is disrupted due to several rea‐

sons such as single-phase loading, unbalanced impedance of
transmission lines and transformers, incomplete transposition
of lines, lightning, line breaks, etc. Unbalance is considered
as one of the PQ issues which can be measured through se‐

quence components [1]. Due to the unbalanced situation of
voltage across the phases, the system performance degrades
and shortens the life of the equipment used in industry. Simi‐
larly, any deviation of system frequency from the normal val‐
ue is a clear indicator of unbalanced condition between load
and generation, which may lead to the grid failure by inade‐
quate load shedding.

Therefore, the detection and subsequent mitigation of
faults by designing protective equipment are crucial for a
healthy power grid. To protect the grid, sequence compo‐
nents across all the phases and system frequency have to be
estimated correctly. The amplitude and phase information of
all the three phases in an unbalanced system can be extract‐
ed by analyzing the sequence components in terms of zero,
positive, and negative sequence components. Adaptive filters
are efficient to estimate the sequence components and fre‐
quency by modeling the three-phase voltage and current
equations in a parametric form.

Several techniques have been proposed to estimate the
symmetrical components and frequency from three-phase
voltage and current signals. Discrete Fourier transform
(DFT) is a popular nonparametric method used for frequen‐
cy estimation, but this method suffers from inaccuracies due
to the presence of system noise, inter- and intra-harmonics
and spectral leakage [2], [3]. However, the errors due to the
effect of spectral leakage and picket-fence are mitigated by
modulated sliding discrete Fourier transform (msDFT) which
is proposed for the measurement of harmonic and sequence
components [4]. Reference [5] proposes an adaptive method
using DFT and online algorithm, which is based on convert‐
ing signal into phasor for symmetrical component estima‐
tion. Reference [6] also proposes a DFT-based technique for
frequency estimation, which has good resistance to harmon‐
ics.

Artificial intelligence and soft computing techniques such
as neural network, fuzzy logic, and genetic algorithm are
quite popular for tracking PQ disturbances [7], [8]. These
methods can track the signal parameters accurately with lon‐
ger tracking time and slower convergence. Adaptive linear
combiner structure is a single-layer model frequently used
for harmonic and frequency estimation for single-phase pow‐
er system [9]. However, the model based on multi-output
can be used to track the symmetrical components of a three-
phase system. Least mean square (LMS) is used for the up‐
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date of weight vector, which requires a proper choice of step
size and the overall convergence rate is quite slow [10].

Compared to Kalman filter, extended Kalman filter (EKF)
is an effective approach to estimate nonstationary PQ distur‐
bances with increased noise level. Although EKF shows
good estimation performance, it does not have stable conver‐
gence in the case of abrupt frequency change. Reference
[11] proposes unscented Kalman filter (UKF) which is a de‐
rivative-free filter for the estimation of frequency in bal‐
anced and unbalanced power systems with the reduced com‐
plexity of computation [11]. However, the estimation accura‐
cy of UKF is affected by the factors such as the divergence
of estimation error due to some poorly-chosen initial condi‐
tions and the nature of noise. To overcome the above limita‐
tions, H∞ filter is proposed, which is a robust form of Kal‐
man filter to estimate the parameters of the sinusoid corrupt‐
ed by white Gaussian noise [12], [13]. However, the filter
performance is again restricted due to computation complexi‐
ty and stable convergence for short-duration time-varying pa‐
rameters.

The research work presented in this paper is based on a
convex combination of H∞ filters with the introduction of l1

norm to the quadratic cost function for the estimation of
both sequence components and frequency in an unbalanced
three-phase power system. The proposed model is tested for
wide categories of time-varying and short-duration PQ distur‐
bances and the respective simulation results are presented.

The remainder of this paper is organized as follows. Sec‐
tion II explains the implementation steps of the H∞ filter
based on the sparse model. Section III and Section IV de‐
scribe the state space models used to estimate the symmetri‐
cal components and frequency. Simulation results are pre‐
sented in Section V to test and validate the proposed method
considering different test cases such as frequency drift, har‐
monics, fault condition, etc. Section VI presents the conclu‐
sion of the results.

II. FILTERING ALGORITHM OF SPARSE H∞

In this proposed model, l1 norm penalty is introduced to
the quadratic cost function of H∞ filter [14], [15]. The advan‐
tage of l1 relaxation to the cost function lies in the extraction
of the sparse solution compared to l0 and l2 norms with fast‐
er convergence. Moreover, in the case of Lasso regularized
regression, if the budget used in the inequality is small
enough, the solution vector is sparse but non-convex. In the
case of higher order norms, the sparsity is lost which leads
to more computation complexity [16]. The modified cost
function with norm penalty Jk can be expressed as [17]:

Jk =
1
2

e2
k + δ  x

1
(1)

where  ×
1

denotes the l1 norm of a vector; ek is the estima‐

tion error used in the cost function; x is the state vector; and
δ is the weight assigned to the penalty term. Sparse H∞ filter
is based on two equations, namely, measurement equation
and state equation which are given in (2)-(5) [12]. Measure‐
ment matrices and state transition matrices are generated us‐

ing Taylor’s series expansions of measurement and state
equations. The information about measurement matrices and
state matrices for sequence components, as well as frequen‐
cy estimation, are provided in the subsequent sections.

ŷ1k/k =Hk x̂1k/k + vk (2)

ŷ2k/k =Hk x̂2k/k + vk (3)

x̂1k + 1/k = f (x̂1k/k)+wk (4)

x̂2k + 1/k = f (x̂2k/k)+wk (5)

where ŷ1,k/k is the output vector generated through non-sparse
filter estimation during the kth instant using the predicted
state vector of the kth instant x̂1,k/k; subscripts 1k and 2k are
used to represent the convex combination using non-sparse
and sparse adaptive filtering algorithms, respectively; Hk is
the measurement matrix; vk and wk are the measurement
noise and process noise, respectively, which are both white
Gaussian noise process with zero mean; and f (×) is the sup‐
ply frequency. As convex combination is formed using
sparse and non-sparse adaptive filtering algorithms, x1k and
y1k correspond to non-sparse adaptive filtering algorithm
while x2k and y2k correspond to sparse adaptive filtering al‐
gorithm, respectively.

Two state update equations for convex combination are
given in (6) and (7).

x̂1k/k = x̂1k/k - 1 +K1k (yk -Hk x̂1k/k - 1) (6)

x̂2k/k = x̂2k/k - 1 - ρsgn(x̂2k/k - 1)+K2k (yk -Hk x̂2k/k - 1) (7)

where K1k and K2k are the Kalman gains of individual filter‐
ing algorithm which are time-varying parameters to control
the weight adjustment in both the equations; and ρ is a value
greater than 1. Similarly, the estimation error covariance up‐
date equations are given in (8) and (9).

p̂1k + 1/k =Fk p̂1k/k - 1 F *T
k + β2GkG

T
k -

Fk p̂1k/k - 1 [H *T
k H *T

k ]R-1
ek
é
ë
ê

ù
û
ú

Hk

Hk

p̂1k/k - 1 F *T
k +Qk (8)

p̂2k + 1/k =Fk p̂2k/k - 1 F *T
k + β2GkG

T
k -

Fk p̂2k/k - 1 [H *T
k H *T

k ]R-1
ek
é
ë
ê

ù
û
ú

Hk

Hk

p̂2k/k - 1 F *T
k +Qk (9)

where β is a constant between 0 and 1; Fk is the state transi‐
tion matrix; p̂1k/k - 1 and p̂2k/k - 1 are the initial estimation error
covariances used in update equation for filters 1 and 2, re‐
spectively; Qk is the process noise covariance; H *

k is the con‐
jugate of the measurement matrix; Re,k is the updated value
of measurement covariance as shown in (10); and Gk =H *T

k .

ì

í

î

ï
ï
ï
ï

Rek =Rk +
é
ë
ê

ù
û
ú

Hk

Hk

p̂1k/k - 1 [H *T
k H *T

k ]

Rk =
é
ë
ê

ù
û
ú

I 0
0 -γ2

f I

(10)

where Rk is the initial value of measurement covariance; γ f

is the controlling parameter greater than 1; and I is the iden‐
tity matrix. The net output across convex combination based
sparse filtering algorithm is given as:

ŷk = λk ŷ1k/k + (1- λk) ŷ2k/k (11)
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where λk = sgm ak = 1 (1+ e-ak). The role of the sigmoid func‐

tion is to restrict the value of λk between 0 and 1 using ak

and reduce the gradient noise during error convergence [18].

III. MODEL OF SYMMETRICAL COMPONENT ESTIMATION

Mathematically, unbalanced three-phase quantities are ex‐
pressed in terms of symmetrical components as shown in
(12) [10], [19]-[21].

ì

í

î

ï
ï
ïï

ï
ï
ïï

vak =V0 sin(ωkTs + ϕ0)+Vp sin(ωkTs + ϕp)+Vn sin(ωkTs + ϕn)

vbk =V0 sin(ωkTs + ϕ0)+Vp sin(ωkTs + ϕp - 120°)+
Vn sin(ωkTs + ϕn + 120°)

vck =V0 sin(ωkTs + ϕ0)+Vp sin(ωkTs + ϕp + 120°)+
Vn sin(ωkTs + ϕn - 120°)

(12)

where Vak, Vbk, Vck are the voltage magnitudes of phases a, b,
c, respectively; Vp, Vn, V0 are the positive, negative, and zero
sequence components and ϕp, ϕn, ϕ0 are their respective
phase angles, respectively; and ω, k, Ts are the angular fre‐
quency, discrete time instant and sampling time, respectively.

Using the equality, sin (A+B)= sin Acos A+ cos Asin B,
(12) can be expanded as (13) and the discrete measurement

equation used in state space model can be represented
as (14).

ì

í

î

ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

Vak = V0 sin (ωkTs)cos ϕ0 + V0 cos (ωkTs)sin ϕ0 +
Vp sin (ωkTs)cos ϕp + Vp cos (ωkTs)sin ϕp +
Vn sin (ωkTs)cos ϕn + Vn cos (ωkTs)sin ϕn

Vbk = V0 sin (ωkTs)cos ϕ0 + V0 cos (ωkTs)sin ϕ0 +

Vpsin (ωkTs - 120° )cos ϕp + Vp cos (ωkTs -
120° )sin ϕp + Vn sin (ωkTs + 120° )cos ϕn +

Vn cos (ωkTs + 120° )sin ϕn

Vck = V0 sin (ωkTs)cos ϕ0 + V0 cos (ωkTs)sin ϕ0 +

Vp sin (ωkTs + 120° )cos ϕp + Vp cos (ωkTs +

120° )sin ϕp + Vn sin (ωkTs - 120° )cos ϕn +

Vn cos (ωkTs - 120° )sin ϕn

(13)

yk =Hk xk + vk (14)

where xk is the state vector. vk must be included as the over‐
all transmission of the power signal is always corrupted by
noise.

By using the Taylor’s series expansion measurement, Hk

can be generated as given in (15) and the corresponding
state vector xk can be expressed in (16).

Hk =
é

ë

ê
ê
êê

ù

û

ú
ú
úú

sin(ωkTs) cos(ωkTs) sin(ωkTs) cos(ωkTs) sin(ωkTs) cos(ωkTs)

sin(ωkTs) cos(ωkTs) sin(ωkTs - 120°) cos(ωkTs - 120°) sin(ωkTs + 120°) cos(ωkTs + 120°)
sin(ωkTs) cos(ωkTs) sin(ωkTs + 120°) cos(ωkTs + 120°) sin(ωkTs - 120°) cos(ωkTs - 120°)

(15)

xk = [ ]V0cos ϕ0 V0sin ϕ0 Vp cos ϕp Vp sin ϕp Vn sin ϕn Vn sin ϕn

T
(16)

The state equation for the above model is given by xk + 1 =
f (xk)+wk, where f (xk) is a functional mapping of state vari‐
able from the kth instant to the (k + 1)th instant and can be rep‐
resented as given in (17). This functional mapping is re‐
quired to generate a state transition matrix, which is a deriva‐
tive based matrix obtained by using Taylor’s series expan‐
sions. The amplitudes and phases of symmetrical compo‐
nents can be estimated by (18)-(23).

f (xk)= [ xk (1) xk (2) xk (3) xk (4) xk (5) xk (6) ] (17)

V̂0k = x̂2
k (1)+ x̂2

k (2) (18)

V̂pk = x̂2
k (3)+ x̂2

k (4) (19)

V̂nk = x̂2
k (5)+ x̂2

k (6) (20)

ϕ̂0k = arctan
x̂2

k (2)

x̂2
k (1)

(21)

ϕ̂pk = arctan
x̂2

k (4)

x̂2
k (3)

(22)

ϕ̂nk = arctan
x̂2

k (6)

x̂2
k (5)

(23)

IV. FREQUENCY ESTIMATION MODEL

To develop an adaptive frequency estimation model,
Clarke transformation is used to generate a complex phasor

through αβ components [22]-[24]. The discrete form of volt‐
ages across three phases of unbalanced system can be ex‐
pressed as:

ì

í

î

ïï
ïï

vak =Vaksin(ωkTs + θ)

vbk =Vbk sin(ωkTs + θ - 2π 3)

vck =Vck sin(ωkTs + θ + 2π 3)
(24)

where ω= 2πf, f is the system frequency; and θ is the initial
phase angle. Using Clarke transformation, αβ components
corresponding to (24) can be written mathematically as:

é
ë
ê

ù
û
ú

Vαk

Vβk

=
2
3
é

ë
ê

ù

û
ú

1 -1/2 -1/2

0 3 /2 - 3 /2
[Vak Vbk Vck ]

T
(25)

The measured complex signal generated through αβ com‐
ponents is corrupted by additive white Gaussian noise and
can be expressed as [25]:

yk =Vαk + jVβk = (A+ jB)cos(ωkTs + θ)+ (B+ jC)sin(ωkTs + θ)+ vk

(26)

where A= 2 3 Vak + (Vbk +Vck) 2 6, B= (Vbk -Vck) 2 2, C=

3 2 (Vbk +Vck) 2.

To model the complex phasor, measurement equation of
sparse H∞ filtering algorithm can be used as (14) where the
corresponding measurement matrix is given by Hk = [01 ].
The state vector used in the estimation process is:

xk = [ xk (1) xk (2) ] (27)

983



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 5, September 2020

where xk (1)= ejωTs ; xk (2)= αke
jωkTs + ϕ1; αk is the magnitude; and

ϕ1 is the initial phase angle of the signal.
The functional mapping of state variable from the kth in‐

stant to the (k + 1)th instant is:

f (xk)= [ xk (1) xk (1)xk (2) ] (28)

The state transition matrix can be obtained from function‐
al mapping by using Taylor’s series expansion:

Fk =
é
ë
ê

ù
û
ú

1 0
xk (2) xk (1) (29)

Thus, the frequency can be estimated from updated state
variables by using the mathematical equation as:

f ̂k = Im ( )log xk (1)

2πTs

(30)

The state vector is updated by using the implementation
steps of H∞ filtering algorithm as given in Section II.

V. SIMULATION RESULTS AND DISCUSSIONS

In the following analysis, different cases of unbalanced
power signals are simulated and the corresponding compari‐
son results are presented using sparse and non-sparse adap‐
tive filtering algorithms including EKF, sparse EKF, H∞ fil‐
tering algorithm and proposed sparse H∞ filtering algorithm.
For the simulation purpose, the controlling parameter δ and
the parameter β in (8) are 0.98 and 0.10, respectively. The esti‐
mation error covariance matrix is also initialized as P0 = ρI.
The mixing parameter value λk is judiciously chosen be‐
tween 0 and 1 to develop a convex combination. The re‐
sponse of the sparse H∞ filtering algorithm is studied for dif‐
ferent categories of PQ disturbances and comparison results
are generated using MATLAB/Simulink.

A. Frequency Estimation of Three-phase Unbalanced Signals

For the purpose of simulation, three-phase voltage equa‐
tions for a unbalanced system are considered as:

ì

í

î

ïï
ïï

vak =Vak cos(2πfkTs + θ)

vbk =Vbkcos(2πfkTs + θ - 2π 3)

vck =Vckcos(2πfkTs + θ + 2π 3)

(31)

The amplitudes of unbalanced three-phase signals are 1,
1.2 and 1.1 p.u. for phases a, b, and c, respectively. The sig‐
nal frequency is chosen as 50 Hz. The complex phasor gen‐
erated through αβ transform is corrupted by white Gaussian
noise of 30 dB signal noise ratio (SNR). The comparison is
made to test the estimation accuracy between different adap‐
tive filtering algorithms and the frequency estimation plot is
shown in Fig. 1(a). Figure 1(b) represents a comparison of
mean square estimation error between the filtering algo‐
rithms. The results indicate that the sparse model-based H∞

filtering algorithm has a faster error convergence compared
to other filtering algorithms.

Absolute frequency error is obtained by calculating the dif‐
ference between the desired value and estimated filter out‐
put. Absolute frequency errors at different noise levels using
different algorithms and the execution time are listed in Ta‐

ble I. Although EKF, sparse EKF and H∞ filtering algorithms
are capable of estimating frequency components, their perfor‐
mance deteriorates under high-noise conditions.

A step change in frequency is introduced between 0.02 s
and 0.04 s to the power signal of fundamental frequency of
50 Hz. In Fig. 1(c), it is observed that sparse H∞ filtering al‐
gorithm tracks the frequency variation more accurately than
other algorithms.
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Fig. 1. Frequency estimation results. (a) Estimated frequency comparison.
(b) Mean square error in frequency estimation. (c) Estimated frequency of
power signal with step change in frequency. (d) Estimated frequency of
power signal with ramp change in frequency.
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Further, a ramp change in frequency from 55 Hz to 45 Hz
is considered between 0.3 s to 0.5 s and then the frequency
remains constant at 45 Hz for the rest of the time in the un‐
balanced three-phase signal which is expressed in (31). It is
observed that the proposed method is efficiently tracking the
ramp change of signal with convergence time less than a
half cycle and has good estimation accuracy as shown in
Fig. 1(d). In the case of H∞ filtering algorithm, the tracking
starts beyond 0.3 s, i. e., around 0.48 s, which leads to the
wrong result. Similarly, sparse EKF tracks the ramp varia‐
tion from 40 Hz instead of 55 Hz, which is clearly visible
from the figure.

B. Symmetrical Component Estimation of Unbalanced Signals

For the estimation of sequence components, the voltage
signals for an unbalanced three-phase system are considered
in (32). The estimation of zero, positive and negative se‐
quence components are being carried out using state space
modeling as explained in Section III.

ì

í

î

ïï
ïï

vak = 100sin(ωkTs + 30°)
vbk = 50sin(ωkTs + 300°)
vck = 30sin(ωkTs + 180°)

(32)

The steady-state errors for symmetrical components are
shown in Fig. 2. It is observed from Fig. 2 that the conver‐
gence time of sparse H∞ filter is less than 2.5 ms, which is
the least.

Table II gives the absolute information of steady-state er‐
rors under different noise conditions. It is observed that the

proposed model has lesser error value even under high-noise
conditions such as 20 dB SNR.

C. Symmetrical Component Estimation of Unbalanced Signals
with Voltage Sag

The three-phase unbalanced signal is now considered with
sag condition as shown in (32). The sag is introduced in a
non-uniform manner from 0.050 s to 0.065 s across all the
phases with 30% in phase a, 20% in phase b and 66% in

phase c, respectively, which strictly follows IEEE standard
(10%-90%).

In the case of zero--sequence and positive-sequence com‐
ponents, the disturbance caused by the sag is tracked with
greater accuracy with the proposed sparse H∞ filtering algo‐
rithm as shown in Fig. 3(a) and (b).

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS

Algorithm

EKF

Sparse EKF

H∞

Sparse H∞

Frequency estimation error (Hz)

20 dB

0.2020

0.1425

0.0860

0.0310

30 dB

0.151

0.107

0.035

0.008

40 dB

0.0832

0.0741

0.0120

0.0010

Execution time (ms)

1.530
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Fig. 2. Estimated steady-state errors. (a) Zero-sequence component. (b)
Positive-sequence component. (c) Negative-sequence component.

TABLE II
ABSOLUTE STEADY-STATE ERROR

Algorithm

EKF

Sparse EKF

H∞

Sparse H∞

Zero-sequence estimation error (V)

20 dB

0.0140

0.0136

0.0137

0.0102

30 dB

0.0139

0.0092

0.0109

0.0032

40 dB

0.0089

0.0051

0.0061

0.0022

Positive-sequence estimation error (V)

20 dB

0.0151

0.0046

0.0087

0.0033

30 dB

0.0055

0.0037

0.0053

0.0021

40 dB

0.00380

0.00210

0.00230

0.00018

Negative-sequence estimation error (V)

20 dB

0.0162

0.0149

0.0158

0.0073

30 dB

0.0146

0.0118

0.0121

0.0035

40 dB

0.0144

0.0071

0.0065

0.0011
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The same has also been reflected through the estimation
of negative-sequence components shown in Fig. 3(c), but the
magnitude is less than the other two sequence components.
In this case, the proposed algorithm has a superior perfor‐
mance.

D. Symmetrical Component Estimation of Harmonic Distorted
Unbalanced Signals

The proposed model is tested considering unbalanced
three-phase voltages which are contaminated with the 3rd
harmonics. Its magnitudes equal to half those of the corre‐
sponding fundamental frequency components shown as:

ì

í

î

ïï
ïï

vak = 100sin(ωkTs + 30°)+ 50sin(ωkTs + 20°)
vbk = 50sin(ωkTs + 300°)+ 25sin(ωkTs + 100°)
vck = 30sin(ωkTs + 180°)+ 15sin(ωkTs + 70°)

(33)

Table III shows the estimated fundamental and third har‐
monic magnitudes along with their exact values. It is quite
apparent from the results that the estimation errors lie in the
range of 10-3, whereas for other filters, the difference be‐
tween the actual value and estimated value lies in the range
of 10-2. Also, it is observed from the results that the symmet‐
rical components of fundamental and harmonics are estimat‐
ed independently, i. e., the 3rd harmonics have no effect on
the estimations.

E. Unbalanced Signal Estimation of Unbalanced Signals
with Time-varying Amplitude

Three-phase unbalanced signals with time-varying ampli‐
tudes are taken into consideration in (34). The time variation
in amplitudes is incorporated through slowly-varying sinusoi‐
dal components of frequency 1, 3 and 6 Hz, respectively.

ì

í

î

ïï
ïï

vak =A1 (kTs)sin(ωkTs + π/6)

vbk =A2 (kTs)sin(ωkTs + π/3)

vck =A3 (kTs)sin(ωkTs + π)

(34)

ì

í

î

ïï
ïï

A1 (kTs)= 0.15sin(2πf1kTs)+ 0.05sin(2πf5kTs)

A2 (kTs)= 0.05 sin(2πf3kTs)+ 0.02 sin(2πf5kTs)

A3 (kTs)= 0.025 sin(2πf1kTs)+ 0.005 sin(2πf5kTs)

(35)

Comparison of estimated signals for three phases using
different algorithms is shown in Fig. 4(a)-(c).

Though all algorithms track the time-varying signals, the
proposed algorithm estimates the amplitude parameters more
accurately than others. Mean square error plot is shown in
Fig. 4(d). Average mean square error values of all phases for
all algorithms are tabulated in Table IV. It is observed that
mean square error is in the order of 10-7 with the proposed
algorithm, which is much less than other algorithms.
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Fig. 3. Estimated amplitude. (a) Zero-sequence component. (b) Positive-se‐
quence component. (c) Negative-sequence component.

TABLE III
SEQUENCE COMPONENTS ESTIMATION WITH HARMONICS

Algorithm

EKF

Sparse EKF

H∞

Sparse H∞

Actual

Fundamental amplitude (V)

Zero-sequence

27.2774

27.2759

27.2756

27.2828

27.2926

Positive-sequence

57.9842

57.9822

57.9802

57.9719

57.9709

Negative-sequence

18.9857

18.9832

18.9841

18.9845

18.9872

The 3rd harmonic amplitude (V)

Zero-sequence

24.4484

24.4518

24.4533

24.4610

24.4894

Positive-sequence

13.0195

13.0145

13.0143

13.0100

12.9682

Negative-sequence

18.6931

18.6910

18.6908

18.6881

18.6735
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F. Estimation of Unbalanced Signals with IEEE Database

Using IEEE-1159-PQE database, three-phase unbalanced
signals are generated as shown in Fig. 5(a) [26]. For the pur‐
pose of testing, reconstructed signals obtained by all algo‐
rithms are compared with the original signals.

The respective comparison plots for the individual phases
are shown in Fig. 5(b) - (d). Also, the mean square value of
the difference between the desired response and estimated fil‐
ter output is calculated and tabulated in Table V. In Table V,
it is quite apparent that the proposed model convergence be‐
havior has substantially improved.

G. Experimental Studies and Results

To validate the performance of the proposed algorithm for
the estimation of harmonics, an experimental setup is taken
as shown in Fig. 6 in the laboratory. The setup uses the volt‐
age source inverter (VSI) with three-phase 180° conduction
mode.

Unbalanced resistive loads of 100 W, 40 W, 200 W are
connected to phases a, b, and c, respectively. The specifica‐

tions of the system are: ① DC supply: 75 V; ② inverter:
three-phase, 180° mode VSI (Frax); ③ load: 100W , 40 W,
200 W; ④ digital storage oscilloscope: 100 MHz, sample
rate 50 ks/s, four channels, personal computer (PC) connec‐
tivity-universal serial bus port; ⑤ PC: 2.4 GHz, 2 GB RAM.

The load voltage waveforms are stored in a digital storage
oscilloscope (Gwinstek) across the load resistors and then ac‐
quired data are transferred to PC through communication
software.

Figure 7 represents the signal generated in all three phases
of the experimental setup. Figure 8 shows the estimation of
voltage signals across all the phases employing different al‐
gorithms using the data obtained from the setup. It is ob‐
served that the proposed algorithm estimates very close to
the actual signal than other algorithms.

The performance of the algorithms which gives the accura‐
cy of estimation is estimated by:

p=
∑
k = 1

N

(yk - ŷk )2

∑
k = 1

N

ŷ2
k

´ 100% (35)

The less the value of p, the more is the estimation accura‐
cy. The performance of the algorithms is shown in Table VI.

Along with the above performance index, the mean square
estimation error is also calculated to validate the perfor‐
mance of the proposed model in Table VII. It is seen from
the values that the proposed method achieves more signifi‐
cant estimation accuracy than others.
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Fig. 4. Estimated signal and mean square error. (a) Phase a. (b) Phase b. (c) Phase c. (d) Mean square error.

TABLE IV
AVERAGE MEAN SQUARE ESTIMATION ERROR

Algorithm

EKF

Sparse EKF

H∞

Sparse H∞

Mean square estimation error (p.u)

1.06´ 10-2

2.60´ 10-3

9.53´ 10-4

6.44´ 10-7
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Fig. 5. Signals. (a) From IEEE database. (b) Estimated in phase a. (c) Estimated in phase b. (d) Estimated in phase c.

TABLE V
MEAN SQUARE ESTIMATION ERROR OF SIGNALS IN DIFFERENT PHASES

Algorithm

EKF

Sparse EKF

H∞

Sparse H∞

Mean square estimation error (p.u.)

Phase a

2.5000×10-3

1.1000×10-3

9.4723×10-6

2.4672×10-8

Phase b

1.3000×10-3

3.3031×10-3

6.5344×10-5

4.0371×10-7

Phase c

2.4000×10-3

5.2126×10-3

5.3988×10-5

5.0840×10-7

Main
supply

Three-phase
voltage source

inverter module

Three-phase
unbalanced

load

DSO PC

Fig. 6. Experimental setup for real data generation.
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VI. CONCLUSION

The proposed sparse model is tested using three-phase un‐
balanced voltages to estimate sequence components and fre‐
quency similar to practical systems. The estimation error is
bounded due to norm penalty introduced in the cost func‐
tion. The most important advantage of this method lies in de‐
veloping a general-purpose processing unit for three-phase
unbalanced conditions with less computation burden. The
proposed model is also able to resolve the three-phase volt‐
ages in terms of sequence components and the estimated pa‐
rameters across all the phases can provide accurate informa‐
tion about the dominant harmonics presenting in three-phase
power system. With the proper knowledge about the order of
harmonics, harmonic elimination filter can be designed for
power system protection.
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TABLE VI
COMPARISON OF PERFORMANCE INDICES OF PRACTICAL DATA

Algorithm

EKF

Sparse EKF

H∞

Sparse H∞

Parameter p
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0.0301

0.0118

TABLE VII
MEAN SQUARE ESTIMATION ERROR

Algorithm

EKF

Sparse EKF

H∞

Sparse H∞

Mean square estimation error (p.u.)
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