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Abstract——In recent years, as a promising option to improve
the overall efficiency of energy utilization and absorptive capaci‐
ty of renewable energies, the integrated energy system (IES)
has raised great interest in academies and industries. Multi-en‐
ergy flow (MF) calculation, which differs from the traditional
power flow calculation, plays a basic role in analyzing IES. MF
calculation based on Newton-Raphson method has been pro‐
posed in literature, but its calculation efficiency is not high. In
this paper, a fast decoupled MF (FDMF) calculation method for
IES is proposed. Its main idea is to replace the original Jacobi‐
an matrix of MF calculation based on Newton-Raphson method
with a diagonal and constant Jacobian matrix by the transfor‐
mation. The simulations demonstrate that the proposed FDMF
method can increase the calculation efficiency by at least 4
times with high calculation accuracy.

Index Terms——Integrated energy system (IES), multi-energy
flow (MF), fast decoupled solution methodology, combined elec‐
tricity-heat-natural gas system, flow calculation.

I. INTRODUCTION

IN recent years, as a promising option to improve the over‐
all efficiency of energy utilization and the absorptive ca‐

pacity of renewable energies, integrated energy system (IES)
has raised great interest in academies and industries. IES in‐
tegrates the production, storage, transportation, distribution,
conversion and consumption of multiple energy sources, i.e.,
electricity, natural gas, heat/cool, hydrogen supply, etc.
Through the comprehensive management and scientific dis‐
patch of multiple energy sources, it can realize the comple‐
mentary utilization and cascaded utilization of multiple ener‐
gy sources, so as to meet the diverse needs of users, im‐
prove the reliability of social energy supply, improve the
overall utilization efficiency of energy system, and ultimate‐

ly ensure the sustainable development of economy and soci‐
ety.

Multi-energy flow (MF) calculation is the basis of analy‐
sis, planning, scheduling and controlling for IES. Since the
material properties and MF equations of IES are different
from those of power system, traditional calculation method
of power flow (PF) cannot be used directly to MF calcula‐
tion. With the rapid development of IES, in order to realize
the rational planning, accurate prediction, accurate decision-
making and precise control of IES, it is necessary to study
the MF calculation methods.

Most of the current research focuses on the energy flow
calculation methods of combined electricity-heat system or
combined electricity-natural gas system. Reference [1] pro‐
poses an MF calculation method based on Newton-Raphson
MF (NRMF) method for combined electricity and heat sys‐
tem. References [2] and [3] investigate the MF calculation
method for electricity-heat system, but the two systems are
calculated separately and then linked with generating units.
References [4]-[8] present a combined operation planning of
electricity-natural gas system. Reference [9] presents an MF
calculation method of combined electricity-natural gas sys‐
tem and realizes the dynamic modeling. The modeling of the
combined coupling components are presented in [10] - [12],
including combined heat and power (CHP) units, heat
pumps and others. In [13] and [14], an energy hub model of
combined electricity-natural gas system is established. How‐
ever, the above studies cannot realize the coupling and mod‐
eling of three systems (electricity, heat and natural gas sys‐
tems) simultaneously. Therefore, they are also unable to per‐
form MF calculations on the more common IES consisting
of power, heat, and natural gas systems.

In [15] - [17], MF calculation method for the combined
electricity-heat-natural gas system is presented. In [18] and
[19], two approaches for calculating the optimal PF of IES
are proposed. In [20], an MF calculation model for IES is
presented and solved with NRMF method, thereby laying
the foundation for the analysis of IES. In [21], a unified
steady-state PF analysis (UMF) considering electricity, natu‐
ral gas, and district heat networks all together is proposed.
However, the defect of the method in [20] and [21] is that
the calculation efficiency is not very high, especially for
large systems with numerous nodes. The main reason for
this drawback is probably ascribed to the high dimension of
the integrated Jacobian matrix of MF equations. Besides, the
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Jacobian matrix of MF equations needs to be formed and
factorized in each iteration, which is particularly time-con‐
suming. In order to promote its practicability, it is necessary
to further improve the computation efficiency of MF calcula‐
tion method.

In the electricity system, the fast decoupled PF (FDPF)
calculation method [22]-[24] is proposed to improve the cal‐
culation efficiency of the basic PF calculation based on
NRMF method. A diagonal and constant Jacobian matrix is
applied to replace the original Jacobian matrix in PF calcula‐
tion method according to the characteristics of high-voltage
transmission network. Accordingly, we propose a fast decou‐
pled MF (FDMF) calculation method for IES through the in-
depth analysis of the characteristics of MF equations and Ja‐
cobian matrix. The main idea of the proposed FDMF calcula‐
tion method is to replace the original Jacobian matrix of MF
calculation based on NRMF method with a diagonal and con‐
stant Jacobian matrix. We demonstrate that the proposed
method can not only ensure the accuracy of calculation, but
also greatly improve the efficiency of MF calculation.

The major contributions of this paper are as follows.
1) Through the in-depth analysis of the characteristics of

MF equations and the Jacobian matrix of MF calculation
method based on NRMF method, the MF equations are de‐
coupled and a diagonal and constant Jacobian matrix is ob‐
tained by the transformation.

2) An FDMF calculation method for IES is presented. A
large number of simulation experiments demonstrate that the
proposed method is effective with high computation efficien‐
cy.

The rest of this paper is organized as follows. Section II
makes a brief review on modeling of MF calculation for
IES. The formulation of FDMF calculation method for IES
and the overall calculation procedure are presented in Sec‐
tion III. Case studies on an IES are given in Section IV. Fi‐
nally, conclusions are drawn in Section V.

II. BRIEF REVIEW ON MF FOR IES

A. Modeling of MF for IES

1) Modeling of Electricity System
The PF equations of electricity system are described by:

ì

í

î

ïï
ïï

P =Re{ }U̇ ( )YU̇
*

Q= Im{ }U̇ ( )YU̇
*

(1)

where P and Q are the active and reactive power of node in‐
jection, respectively; Y is the node admittance matrix; and U̇
is the node complex voltage phasor.
2) Modeling of Heat System

In the heat system, hot water or steam flows in the supply
pipes to deliver heat from supply nodes to load nodes, and
returns through return pipes. According to its characteristics,
the heat system can be divided into two parts: hydraulic
model and thermal model.

Hydraulic model is described as: ① the flow of each pipe‐

line should satisfy the flow continuity equation at each node
(The mass flow injected into a node minus the mass flow
that leaves the node is equal to the flow consumption at the
node); ② in a closed loop composed of pipelines, the sum
of the pressure variation around a loop is equal to zero. That
is:

{Aslm=mq

Bhhf = 0
(2)

where Asl is the node-branch incidence matrix in heat sys‐
tem; m is the mass flow in each pipe; mq is the mass flow
injected into the nodes; Bh is the loop-branch incidence ma‐
trix; and h f is the vector of pressure loss along each pipe
and it can be expressed as:

h f =Km |m | (3)

where K is the resistance coefficient matrix of pipeline.
The thermal model describes the relationship between the

temperature and heat power at each node. The thermal mod‐
el can be described by:

ì
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ï

Φ=Cpmq ( )Ts -To

Tend = ( )Tstart - Ta e
-
λL

Cpm + Ta

∑moutTout =∑minTin

(4)

where Φ is the heat power at each node; Cp is the specific
heat of water; Ts is the column vector composed of Ts and
Ts is the supply temperature of hot water entering the load
node; To is the column vector composed of To and To is the
temperature of hot water flowing out of the load node; Tend

and Tstart are the water temperatures at the start and end of
each pipe, respectively; Ta is the ambient temperature; λ is
the heat transfer coefficient; and L is the length of each
pipe; m is a scalar representing the mass flow through the
current pipeline; mout and Tout are the mass flow and tempera‐
ture of hot water flowing out of the node, respectively; and
min and Tin are the mass flow and temperature of water flow‐
ing into the node, respectively.

Note that the second and third sub-equations in (4) hold
for both the supply heat network and return heat network.
3) Modeling of Gas System

Natural gas model is used to describe the relationship be‐
tween node pressure and pipeline flow in natural gas net‐
work.

The flow continuity equation of natural gas network is:

Agl f =L (5)

where Agl is the node-branch incidence matrix of natural gas
network; f is the natural gas flow in pipeline; and L is the
natural gas consumed by nodes.

The calculation method of f is:

f = ϕ (DΠ ij)=Kr sij sij ( )Π i -Π j (6)

where ϕ is the symbol of the function; DΠ ij is the pressure
drop of the pipe ij and DΠ ij =Π i -Π j; Π i and Π j are the pres‐
sures of node i and node j, respectively; Kr is the pipe coeffi‐
cient; and sij is equal to +1 when the natural gas flow runs
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from i to j, otherwise sij =-1.
Pressure drop vectors of all natural gas pipelines DΠ can

be expressed as:

DΠ =-AT
glΠ (7)

where Π is the vector consisting of Π i.

B. MF Equations for IES

For the IES consisting of electricity, heat and natural gas
systems, the MF equations can be described as [20]:

DF ( )x =
é
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P SP -Re{ }U̇ ( )YU̇
*

QSP - Im{ }U̇ ( )YU̇
*

Cp Aslm ( )Ts -To -Φ

Bh Km ||m
CsTsload - bs

CrTrload - br

Aglϕ ( )-AT
glΠ -L

= 0 (8)

where Δ represents the imbalance; the subscripts e, h, and g
represent the electricity system, heat system and natural gas
system, respectively; p is the sum of the pressure changes
around the loops; P SP and QSP are the injection active vector
and the injection reactive vector of the node, respectively;
Tr is the column vector composed of Tr and Tr is the return
temperature of hot water; Cs and Cr are the matrices related
to the structure and mass flow of heat network and regenera‐
tive network, respectively; bs and br are the column vectors
related to heat temperature and output temperature, respec‐
tively; Tsload is the column vector composed of Tsload and
Tsload = Ts - Ta; and Trload is the column vector composed of
Tsload and Trload = Tr - Ta.

And x in (8) is given by:

x = [x T
e x T

h x T
g ]

T = [θT U T mT T T
sload T T

rload Π T ]T

(9)

where θ is the phase angle vector of all nodes except the ref‐
erence node; and U is the voltage amplitude vector of all
nodes.

The calculation method of bs and br is given in [1]. More
details of MF equations can be found in [20].

C. Solution of MF Equations Based on NRMF Method

As can be seen in (8), the MF equations of IES are nonlin‐
ear algebraic equations, which are suitable to be solved with
NRMF method [20]. Its iteration equations are given by:

{DF (k) = J ( )k Dx(k + 1)

x( )k + 1 = x( )k -Dx( )k
(10)

where k is the iterative counter; and J is the Jacobian matrix.
After several iterations until  Dx( )k £ ε, the solution of x

can be obtained, where ε is the accuracy.
From the above solution process, we can find that the

main computation burden of NRMF lies in that the Jacobian
matrix needs to be re-calculated and refactorized in each iter‐
ation, which is time-consuming. Motivated by the fast decou‐

pled method for electric PF calculation, we propose an FD‐
MF calculation method for IES. The main idea is to replace
the original Jacobian matrix with a diagonalized and con‐
stant Jacobian matrix. We demonstrate that the proposed
method can greatly enhance the efficiency of MF calculation.

III. FDMF CALCULATION METHOD FOR IES

A. Jacobian Matrix of Combined Network

J in (10) can be expressed as:

J =
é
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¶DFe

¶x T
e

¶DFe

¶x T
h

¶DFe

¶x T
g

¶DFh

¶x T
e

¶DFh

¶x T
h

¶DFh

¶x T
g

¶DFg

¶x T
e

¶DFg

¶x T
h

¶DFg

¶x T
g

(11)

where the three diagonal blocks represent the partial deriva‐
tives of each sub-system to its own state variables; the other
six off-diagonal blocks represent the partial derivatives of
each sub-system to the state variables of the other systems.
All the nine blocks are derived and analyzed below.
1) Expression of Jee

The expression of the diagonal block Jee is the same as in
the traditional electric system:

Jee =
é
ë
ê

ù
û
ú

H N
K L

=
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¶DP
¶θ

¶DP
¶U

¶DQ
¶θ

¶DQ
¶U

(12)

where H = ∂ΔP/∂θ is the derivative of the active imbalance
with respect to the phase angle vector; N = ∂ΔP/∂U is the
derivative of the active imbalance to the voltage magnitude
vector; K = ∂ΔQ/∂θ; and L = ∂ΔQ/∂U.

For IES, experiments show that Jee does not change much
during the iteration process, so Jee can be approximated as a
constant matrix evaluated at the flat start.
2) Expression of Jhh

The expression of the diagonal block Jhh is given by:

Jhh =
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¶T T
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¶Dp

¶mT

¶Dp

¶T T
sload

¶Dp

¶T T
rload

¶DTs

¶mT

¶DTs

¶T T
sload

¶DTs

¶T T
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¶DTr

¶mT

¶DTr

¶T T
sload

¶DTr

¶T T
rload

= é
ë
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ú

Jh11 Jh12

Jh21 Jh22

(13)

The expressions of each sub-block in Jhh are derived as:

Jh11 =
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¶DΦ
¶mT
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¶mT
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Cp × diag{ }Ts -To ×Asl

2Bh K ||m
(14)

953



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 5, September 2020

Jh12 =
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¶DΦ
¶T T

sload

¶DΦ
¶T T

rload

¶Dp

¶T T
sload

¶Dp

¶T T
sload

=
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Cp × diag{ }Aslm 0

0 0
(15)

Jh21 =
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Jh22 =
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¶DTs

¶T T
sload

¶DTs

¶T T
rload

¶DTr

¶T T
sload

¶DTr

¶T T
sload
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Cs 0
0 Cr

(17)

The elements in Jh21 denote the partial derivative of the
mixing temperature at the node of the heat and regenerative
network to the mass flow of water in the pipeline. Generally
speaking, compared with other non-zero elements of J, the
elements in Jh21 are very small and negligible. This has been
verified by Section IV-A and many other simulation experi‐
ments, hence we have Jh21 = 0.

The procedures to form the matrices Cs and Cr are illus‐
trated in [1]. In a typical two-node system, the expressions
of Cs and Cr are:

Cs =
é
ë
ê

ù
û
ú

1 0
-m2Ψ2 m1

(18)

Cr =
é
ë
ê

ù
û
ú

m1 -m2Ψ2

0 1
(19)

where Ψ2 = exp ( )-λL ( )Cpm2 ; and mi ( )i = 12 denotes the

mass flow in the ith pipe of the heat network.
As can be seen from (18) and (19), Cs and Cr should be

updated in each iteration as they contain the state variables;
and the coefficient Ψ2 in Cs and Cr is also related to the tem‐
perature drop along a pipe. As a result, Jhh is non-constant
but highly sparse.
3) Expression of Jgg

The expression of the diagonal block Jgg is given by:

Jgg =
¶Df
¶Π

=Agl DAT
gl (20)

where D is a diagonal matrix and its ith diagonal element is
given by dii = fi ( )2DΠ i .

4) Expressions of Jeg, Jhg, Jhe, and Jge

In the IES, natural gas source is connected to the slack
bus and the fluctuation of natural gas network can be offset
by the change of natural gas supply at the slack bus [20].
Therefore, the electricity and the heat networks are not af‐
fected by natural gas fluctuation, and the sub-matrices Jeg

and Jhg are null matrices [20]. Similarly, the fluctuation of
the electricity network can be balanced by the grid, so Jhe

and Jge are also null matrices.
5) Expressions of Jeh and Jgh

The slack bus of the heat system is usually connected to
the CHP unit, whose working mode usually determines the

electric load by thermal load. When the state of the heat sys‐
tem changes, the fluctuation of thermal power produced by
CHP unit at slack bus will simultaneously affect the electric
power and natural gas consumption, so Jeh and Jgh are non-
zero matrices. Note that the fluctuation of thermal power of
other nodes will not affect the electric power and natural gas
consumption. Hence, only the rows corresponding to the
node connected with CHP units have non-zero elements, and
the other elements are still zero elements.

The thermal power ΦCHP, electric power P sp
CHP and the natu‐

ral gas consumption FCHP of CHP unit at slack bus are:

ì
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ï
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ï

ï
ïï

ΦCHP =Cp AslCHPmCHP ( )TsCHP -ToCHP

P sp
CHP =

ΦCHP

cm

FCHP =
ΦCHP

cmηe

(21)

where AslCHP is the row corresponding to CHP units in node-
branch incidence matrix of thermal system; Ts,CHP and To,CHP

are the column vectors composed of elements corresponding
to CHP in vectors Ts and To, respectively; cm is the thermo‐
electric scaling factor of the CHP unit; and ηe is related to
the electric power produced by the CHP unit.

According to (21), Jeh and Jgh can be obtained as:

Jeh = diag{ }TsCHP -ToCHP AslCHP cm (22)

Jgh =-diag{Ts,CHP -ToCHP}AslCHP ( )cmηe (23)

According to the above deduction process, it can be found
that: ① J in (11) is a sparse matrix, but not a constant ma‐
trix; ② in the six non-diagonal block matrices of J, two are
not zero matrices. Therefore, it is impossible to decouple
MF calculation directly.

B. Decoupling of MF Equations

1) Decoupling Modeling of Electricity System
According to the above analysis, the corresponding ele‐

ments in Jeh are 0 for electric nodes that are not connected
with CHP units, while the corresponding elements in Jeh are
not 0 for electric nodes connected with CHP units. There‐
fore, the modeling of the electric power equations should be
differentiated whether the node is connected with CHP units
or not.

1) For the electric nodes which are not connected with
CHP units, DFe is only related to Dxe, then we have:

DFe =
é
ë
ê

ù
û
ú

DP
DQ

= JeeDxe =
é
ë
ê

ù
û
ú

H N
K L

é
ë
ê

ù
û
ú

Dθ
DU

(24)

In IES (power system is often medium- and low-voltage
distribution network), the network parameters or operation
conditions violate the decoupling conditions applicable to
transmission systems, especially for ultra-high-voltage and
high-voltage transmission systems. Hence, P and Q in IES
cannot be decoupled directly.

In order to solve this problem, we have pointed out that
for PQ nodes, Pi +QiGii /Bii can be regarded as quasi active
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power, -PiGii /Bii +Qi can be regarded as quasi reactive pow‐
er, and they have good decoupling properties for different
systems even for the distribution with large ratio of resis‐
tance to reactance (R/X) in [25]. Therefore, for the ith real
and reactive power of the electricity system in IES, the fol‐
lowing decoupling correction equations can be adopted for
PQ nodes:
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ê
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DPi +

Gii

Bii

DQi
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H i +

Gii

Bii

K i 0

0 -
Gii

Bii

N i +L i

é
ë
ê

ù
û
ú

Dθ
DU

(25)

where H i, K i, N i, and L i are the corresponding rows of H, K,
N, and L, respectively. The coefficient matrices are constant.
Details can be found in [25].

For PV nodes, only the active power is given, at this time
we have:

DPi = [H i N i ] éë
ê

ù
û
ú

Dθ
DU

(26)

Equation (26) can be further transformed into the follow‐
ing decoupled form with constant Jacobian matrices:

DPi -N iDU =H iDθ (27)

The coefficient matrices are also constant. Details can be
found in [25].

2) For the electric nodes connected with CHP units, the
active power of CHP unit is given by (21), that is:

P sp
CHP =Cp AslCHPmCHP ( )TsCHP -ToCHP cm (28)

The active power equation corresponding to CHP unit is:

DPCHP =Cp AslCHPmCHP ( )TsCHP -ToCHP cm -Re{U̇CHP (YU̇)*}= 0

(29)

The correction equation for CHP unit is given by:

DPCHP = JeeDxe + JehDm= [ ]H iCHP N iCHP
é
ë
ê

ù
û
ú

Dθ
DU

+

diag{ }TsCHP -ToCHP AslCHP /cmDm (30)

Equation (30) can be further transformed into the follow‐
ing decoupled form with constant Jacobian matrices:

DPCHP - diag{TsCHP -ToCHP}AslCHP /cmDm-
N iCHPDU =H iCHPDθ (31)

2) Decoupling Modeling of Heat System
It should be pointed out that heat networks are typically

radial rather than meshed to reduce investments and heat
losses as well as assure the flexibility when adding new heat
load nodes due to the uncertainty of urban development.
Communicating pipes are used to improve the reliability,
whose valves are only open under fault conditions. Such de‐
sign is the most accepted in actual engineering. For simplici‐
ty, this paper only considers the heat networks without mesh‐
es.

For radial heat networks, the equation Bh Km |m |= 0 does
not exist and is not included in MF equations. The corre‐
sponding Jacobian sub-blocks should also be deleted from
Jh11 and Jh12 in (13).

Since Jhe and Jhg are zero matrices, the unbalance of the

heat system is only related to the deviation of its own state
variables, that is:

DFh =
é
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DΦ
DTs

DTr

= Jhh
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ú

Dm
DTsload

DTrload

(32)

Substituting Jhh in (13) into (8) and ignore the rows corre‐
sponding to Dp=Bh Km |m |= 0, we can get:
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DTs

DTr

=
é

ë

ê

ê
êê

ù

û

ú

ú
úú

Cp × diag{ }Ts -To ×Asl Cp × diag{ }Aslm 0

0 Cs 0
0 0 Cr

×

é

ë

ê
ê

ù

û

ú
ú

Dm
DTsload

DTrload

(33)

Equation (33) can be transformed into:

ì

í

î

ïï
ïï

DΦ-Cp × diag{ }Aslm × DTsload =Cp × diag{ }Ts -To ×AslDm

DTs =CsDTsload

DTr =CrDTrload

(34)

Although (34) has decoupling form, their Jacobian coeffi‐
cient matrices are not constant. This can be solved in the fol‐

lowing ways: ① multiplying left by (diag{Ts -To})
-1

on

both sides of the first sub-equation in (34), then a constant
Jacobian coefficient matrix can be obtained; ② in IES, a
large number of experiments show that the values of Cs and
Cr do not change much during the iteration process, so Cs

and Cr can be approximated as constant matrices evaluated
at the flat start. Then we can get the heat system equations
in decoupled form with constant Jacobi matrices:

ì

í

î

ïï
ïï

( )diag{ }Ts -To

-1 ( )DΦ-Cp × diag{ }Aslm × DTsload =Cp AslDm

DTs =C (0)
s DTsload

DTr =C (0)
r DTrload

(35)

where C (0)
s and C (0)

r are the values of Cs and Cr in the first it‐
eration, respectively.
3) Decoupling Modeling of Natural Gas System

For natural gas systems, according to (11), we have the
following correction equations:

Df = JghDxh + JggDxg = é
ë - diag{Ts,CHP -ToCHP}×

AslCHP ( )cmηe Dmù
û+Agl DAT

glDΠ (36)

Equation (36) can be transformed into the following de‐
coupled form with constant Jacobian matrices:

Df + é
ë

ù
ûdiag{Ts,CHP -ToCHP} × AslCHP ( )cmηe Dm=Agl DAT

glDΠ

(37)

C. Overall Algorithm

By the transformations given above, the MF equations of
IES are decoupled. These decoupled equations can be solved
quickly by forward-backward method until they converge.
The calculation procedure can be summarized in Algo‐
rithm 1.
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D. Comparion of NRMF and FDMF Methods

In this sub-section, the MF solution method based on
NRMF method and the proposed FDMF method are com‐
pared. The performance comparisons between them are as
follows.

1) The NRMF method has a good convergence rate (qua‐
dratic). The Jacobian matrix in NRMF needs to be re-calcu‐
lated and refactorized in each iteration, which is very time-
consuming. The approximation made in the FDMF method
generally results in a small increase in the number of itera‐
tions. However, the computation effort is significantly re‐
duced since the Jacobian matrix in FDMF needs to be calcu‐
lated and factorized only in the first iteration. The conver‐
gence rate of the proposed FDMF method is linear as com‐
pared with the quadratic rate of the NRMF method. In gener‐
al, the computation efficiency of FDMF method is much
higher than that of NRMF method, which has been verified
in a large number of simulation experiments.

2) Compared with NRMF method, the proposed FDMF
method requires less memory in the process of calculation.

IV. CASE STUDY

A. Test on a Small IES

1) Introduction of Test System
To test the performance of the proposed FDMF method,

the simulations with the same network and parameters in
[15] are firstly conducted. The topology of the IES is shown
in Fig. 1.

Natural

station
CHP2

CHP1

EB4EB3

EB10EB9
EB5

EB11EB8

EB7
EB6

EB1

EB13

EB2

EB12
HB6

HB8
HB10

HB11
HB12

HB4
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GB4

GB6

Power
gridgas

Fig. 1. Structure of test IES.

In Fig. 1, EBi, HBi and GBi denote the electricity node,
heat node and natural gas node, respectively. Details can be

found in [15]. The algorithm is coded in MATLAB and per‐
formed on an Intel(R) Core(TM) i5 PC, 2.40 GHz processor
with 8 GB RAM. The convergence accuracy is 10-4.
2) Accuracy Test

1) Test results with original load
With the original load in [15], we have calculated the MF

of the above IES system with NRMF method, UMF method
proposed in [21] and the proposed FDMF method. Tables I-
IV shows the estimates of complex voltage for electricity
system, the supply temperature and return temperature as
well as the pipeline mass rate for heat system, and the esti‐
mates of node pressure for natural gas system, respectively,
where No. denotes the number of nodes, Br. denotes the
branch number of heat system.

As shown in Tables I-IV, the calculation results given by
the NRMF method, the UMF method and the proposed FD‐
MF method are exactly the same. This proves the correct‐
ness of the proposed FDMF method in this paper.

Algorithm 1: FDMF

1: (initialization) let x(0) be the flat start state variables. Set the conver‐
gence tolerance ε = 10-3. Set the iteration count k=0.
2: calculate all the constant Jacobian matrices.

3: solve (25), (27) and (31) for [DθTDU T ]T
; solve (35) for

[DmTDT T
sloadDT T

rload ]
T
; solve (37) for DΠ.

4: correct the state variables by x( )k + 1 = x( )k -Dx( )k .
5: judge whether convergence by  Dx( )k £ ε, If yes, then go to 7; else go

to 6.
6: set k = k + 1, go to 3.
7: output the optimal solution.

TABLE I
ESTIMATES OF COMPLEX VOLTAGE FOR ELECTRICITY SYSTEM

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

Voltage (p.u.)

NRMF

1.0484

1.0460

1.0220

1.0099

1.0187

0.9986

0.9957

0.9959

1.0005

0.9866

1.0500

1.0500

1.0838

UMF

1.0484

1.0460

1.0220

1.0099

1.0187

0.9986

0.9957

0.9959

1.0005

0.9866

1.0500

1.0500

1.0838

FDMF

1.0484

1.0461

1.0220

1.0099

1.0187

0.9986

0.9957

0.9959

1.0005

0.9866

1.0500

1.0500

1.0838

Angle (°)

NRMF

3.1173

2.8477

4.4581

5.1790

5.3422

6.2685

6.4188

-6.3694

-5.8714

-6.3003

-5.2796

-2.1312

0

UMF

3.1173

2.8477

4.4581

5.1790

5.3422

6.2685

6.4188

-6.3694

-5.8714

-6.3003

-5.2796

-2.1312

0

FDMF

3.1173

2.8477

4.4581

5.1790

5.3422

6.2685

6.4188

-6.3694

-5.8714

-6.3003

-5.2796

-2.1312

0

TABLE II
ESTIMATES OF PIPELINE MASS RATE FOR HEAT SYSTEM

Br.

13-1

1-2

2-3

4-3

12-4

1-5

1-6

2-7

2-8

3-9

3-10

4-11

Mass rate (kg/s)

NRMF

5.6043

2.6826

0.7013

2.7929

4.7346

0.9811

0.9768

0.5037

0.5011

1.4984

1.0027

0.9748

UMF

5.6043

2.6826

0.7013

2.7929

4.7346

0.9811

0.9768

0.5037

0.5011

1.4984

1.0027

0.9748

FDMF

5.6043

2.6826

0.7013

2.7929

4.7346

0.9811

0.9768

0.5037

0.5011

1.4984

1.0027

0.9748
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At the same time, it can be found that Jacobian matrix
has the following characteristics in the estimation process:
① during the iteration process, the values of Cs and Cr do
not change much, which verifies the correctness of the mod‐
el (35); ② during the iteration process, the Jacobian matrix
of FDMF is indeed close to the constant diagonal matrix,
which further proves the correctness of the proposed FDMF
method; ③ the largest element in Jh21 in this case does not

exceed 10-3, and most of the elements in Jh21 are close to
10-4, as a result, Jh21 can be considered as null matrix in the
calculation.

2) Test results with increased load
For more tests, we have changed the boundary conditions

of the same system in Fig. 1 by increasing the load. Specifi‐
cally, the loads of nodes 3 and 4 in the heat system are in‐
creased to 0.25 MW. Before and after loads increase, the
supply temperatures of all the nodes in the heat system with
NRMF and FDMF methods are shown in Fig. 2.

As shown in Fig. 2, whether before or after loads in‐
crease, the supply temperatures of all the nodes in the heat
system with FDMF method are equal to those with NRMF
method, thereby demonstrating the correctness of FDMF
method regardless of the IES operation state.
3) Test of Computation Efficiency

1) Flat-start is used as initial points
The computation efficiency of NRMF method, UMF meth‐

od in [21] and the proposed FDMF method are also tested.
They are firstly tested with the original load, then all the
electrical, heat and natural gas loads are gradually increased
by 2% each time. In all tests, flat-start is used as the initial
points and the results obtained by the three methods are the
same. The average number of iterations and the average cal‐
culation time of the above three methods under different
load levels in 1000 experiments are shown in Table V, where
computation efficiency ratio denotes the ratio of the compu‐
tation efficiency of FDMF to that of NRMF.

As shown in Table V, with the original load, the NRMF
method needs 7 iterations to converge, and the average calcu‐
lation time is about 11.58 s. Whereas the FDMF method

needs 11 iterations to converge, and the average calculation
time is about 2.7278 s. Among all the tests, the calculation
efficiency of the proposed FDMF method is the highest, fol‐

TABLE IV
ESTIMATES OF NODE PRESSURE FOR NATURAL GAS SYSTEM

No.

1

2

3

4

5

6

7

Pressure (bar)

NRMF

5.0000

5.0000

4.4973

4.4839

4.4397

4.4394

4.4323

UMF

5.0000

5.0000

4.4973

4.4839

4.4397

4.4394

4.4323

FDMF

5.0000

5.0000

4.4973

4.4839

4.4397

4.4394

4.4323

FDMF before loads increase; FDMF after loads increase
NRMF before loads increase; NRMF after loads increase
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Fig. 2. Supply temperatures of all the nodes in heat system with NRMF
and FDMF methods.

TABLE III
ESTIMATES OF SUPPLY TEMPERATURE AND RETURN TEMPERATURE FOR

HEAT SYSTEM

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

Supply temperature (℃)

NRMF

99.6168

98.9800

98.1566

99.4562

98.7473

98.9611

97.4723

97.7154

97.8757

97.6953

99.0621

100.0000

100.0000

UMF

99.6168

98.9800

98.1566

99.4562

98.7473

98.9611

97.4723

97.7154

97.8757

97.6953

99.0621

100.0000

100.0000

FDMF

99.6168

98.9800

98.1566

99.4562

98.7473

98.9611

97.4723

97.7154

97.8757

97.6953

99.0621

100.0000

100.0000

Return temperature (℃)

NRMF

49.4211

49.3185

49.8853

49.7354

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

49.4954

49.2533

UMF

49.4211

49.3185

49.8853

49.7354

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

49.4954

49.2533

FDMF

49.4211

49.3185

49.8853

49.7354

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

49.4954

49.2533

TABLE V
AVERAGE NUMBER OF ITERATIONS AND CPU TIME UNDER DIFFERENT LOAD LEVELS

Load level

Original load

Load increased by 2%

Load increased by 4%

Load increased by 6%

Load increased by 8%

Load increased by 10%

Iteration count

NRMF

7

7

7

7

7

7

UMF

7

7

7

7

7

7

FDMF

11

11

11

11

11

11

CPU time (s)

NRMF

11.5800

11.5800

11.5800

11.5801

11.5801

11.5802

UMF

10.1200

10.1200

10.1200

10.1202

10.1205

10.1205

FDMF

2.7278

2.7278

2.7278

2.7278

2.7278

2.7278

Computation
efficiency ratio

4.2452

4.2452

4.2452

4.2452

4.2452

4.2452

957



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 5, September 2020

lowed by UMF method, and that of NRMF method is the
lowest.

With the gradual increase of all load levels step by step,
the computation efficiency of NRMF method, UMF method
and FDMF method basically remains unchanged. At all load
levels, the computation efficiency of FDMF method is more
than four times that of NRMF. This is due to the fact that in
the iteration process of the FDMF method, the Jacobian ma‐
trix only needs to be calculated and factorized in the first it‐
eration. Whereas in the iteration process of the NRMF meth‐

od, the Jacobian matrix needs to be reconstructed and refac‐
torized in each iteration. The test results demonstrate that the
proposed FDMF method has better computation efficiency
than the existing NRMF method.

2) Other initial points used
We further test the effects of different initial points on the

performances of NRMF and FDMF methods. In the tests,
we gradually shift the initial points from the flat start points,
and then test NRMF and FDMF. The test results are shown
in Table VI.

As shown in Table VI, with the initial points gradually de‐
viating from the flat start points, the convergence of NRMF
method becomes worse while that of the proposed FDMF
method remains unchanged, which proves that compared
with NRMF, the FDMF method is less sensitive to the initial
points.

B. Test on a Large IES

To further test the performance of the proposed method, a
large IES with 4 small IESs connected with IEEE-118 bus
system is constructed as shown in Appendix A Fig. A1. This

large IES consists of 170 power nodes, 52 heat nodes, 28
natural gas nodes and 8 CHPs. The parameters of the 4
small IESs are the same as those in the system of Fig. 1.

The MFs of the large IES with NRMF method, UMF
method [21] and the proposed FDMF method are calculated.
The estimation values of state variables obtained by the
above three methods are exactly the same. The comparisons
of computation efficiency are shown in Table VII, where the
computation efficiency ratio denotes the ratio of the compu‐
tation efficiency of FDMF to that of NRMF.

The maximum error of state variables obtained by the pro‐
posed FDMF method and the NRMF method is no more
than 10-4 . This proves that the FDMF method proposed in
this paper is still correct for large IES.

As shown in Table VII, in this large IES, the calculation
efficiency of the proposed FDMF method is still the highest,
followed by UMF method, and the calculation efficiency of
NRMF method is the lowest. Compared with that of NRMF
method, it can be concluded that the larger the system is, the
more efficient the calculation of FDMF method is. Since
that Jacobian matrix of the NRMF method will be sparser

for large IES, much computation is redundant in the NRMF
method. At this time, the proposed FDMF method is more
adaptable and has higher computation efficiency.

V. CONCLUSION

In this paper, an FDMF calculation method for IES is pro‐
posed through replacing the original Jacobian matrix of MF
calculation based on NRMF method with a diagonal and con‐
stant Jacobian matrix by the transformation. Detailed theoret‐
ical derivation and modeling process are given. Test cases
on IES systems demonstrate that the proposed FDMF meth‐

TABLE VI
AVERAGE NUMBER OF ITERATIONS AND CPU TIME OF DIFFERENT INITIAL POINTS

Initial point

Flat start point

Flat start point increased by 2%

Flat start point increased by 4%

Flat start point increased by 6%

Flat start point increased by 8%

Flat start point increased by 10%

Iteration count

NRMF

7

7

8

8

9

10

FDMF

11

11

11

11

11

11

CPU time (s)

NRMF

11.5800

11.5800

13.2343

13.2343

14.8885

16.5429

FDMF

2.7278

2.7278

2.7278

2.7278

2.7278

2.7278

Computation efficiency
ratio

4.2452

4.2452

4.8516

4.8516

5.4581

6.0646

TABLE VII
AVERAGE NUMBER OF ITERATIONS AND CPU TIME IN LARGE IES

Load level

Original load

Load increased by 2%

Load increased by 4%

Load increased by 6%

Load increased by 8%

Load increased by 10%

Iterations

NRMF

8

8

8

8

8

8

UMF

8

8

8

8

8

8

FDMF

11

11

11

11

11

11

CPU time (s)

NRMF

59.5441

59.5441

59.5441

59.5441

59.5441

59.5442

UMF

58.1339

58.1339

58.1339

58.1339

58.1339

58.1340

FDMF

11.7295

11.7295

11.7295

11.7295

11.7295

11.7295

Computation efficiency
ratio

5.0764

5.0764

5.0764

5.0764

5.0764

5.0764
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od possesses good convergence and high computation effi‐
ciency.

APPENDIX A

The topology of a large-scale IES is shown in Fig. A1.
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