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Faulty Feeder Identification and Fault Area
Localization in Resonant Grounding System

Based on Wavelet Packet and Bayesian Classifier
Jingwen Chen, Enliang Chu, Yingchun Li, Baoji Yun, Hongshe Dang, and Yali Yang

Abstract——Accurate fault area localization is a challenging
problem in resonant grounding systems (RGSs). Accordingly,
this paper proposes a novel two-stage localization method for
single-phase earth faults in RGSs. Firstly, a faulty feeder identi‐
fication algorithm based on a Bayesian classifier is proposed.
Three characteristic parameters of the RGS (the energy ratio,
impedance factor, and energy spectrum entropy) are calculated
based on the zero-sequence current (ZSC) of each feeder using
wavelet packet transformations. Then, the values of three pa‐
rameters are sent to a pre-trained Bayesian classifier to recog‐
nize the exact fault mode. With this result, the faulty feeder can
be finally identified. To find the exact fault area on the faulty
feeder, a localization method based on the similarity compari‐
son of dominant frequency-band waveforms is proposed in an
RGS equipped with feeder terminal units (FTUs). The FTUs
can provide the information on the ZSC at their locations.
Through wavelet-packet transformation, ZSC dominant fre‐
quency-band waveforms can be obtained at all FTU points. Sim‐
ilarities of the waveforms of characteristics at all FTU points
are calculated and compared. The neighboring FTU points with
the maximum diversity are the faulty sections finally deter‐
mined. The proposed method exhibits higher accuracy in both
faulty feeder identification and fault area localization compared
to the previous methods. Finally, the effectiveness of the pro‐
posed method is validated by comparing simulation and experi‐
mental results.

Index Terms——Resonant grounding system, single-phase earth
fault, faulty feeder identification, fault area localization, wavelet
packet, Bayesian classifier.

I. INTRODUCTION

IN medium- and low-voltage power distribution networks,
single-phase earth faults account for more than 80% of all

electrical faults [1]-[4], which makes the location of the single-
phase earth fault extremely important. Appendix A Fig. A1

depicts a typical single-phase earth fault in an n-feeder sys‐
tem, where phase A of feeder 1 is grounded at point F. The
phase-B and phase-C earth capacitance currents of feeder 1,
which are denoted as iB1 and iC1, respectively, flow to point
F. The earth capacitance currents iBn and iCn of the other feed‐
ers flow in the same direction. The non-fault phase-B and
phase-C earth capacitance currents of other networked power
lines, which are denoted as iBG and iCG, respectively, also
flow to point F. These capacitance currents, collectively de‐
fined as the fault current iF, highly increase electric arc risks
at point F and tend to induce multi-point earth faults. They
can even lead to power outage accidents.

To reduce the total current at the earth fault point F, an
arc suppression coil (ASC) is always connected between the
neutral point N and earth. When a single-phase earth fault
occurs, the voltage at the neural point N shifts to a higher
level. The current of the ASC iL appears and also flows to
point F, which can compensate other capacitive currents.
Then, the current of the single-phase earth fault point iF is re‐
duced to a lower level and system risks decrease according‐
ly. This kind of power system is called resonant grounding
systems (RGSs).

The zero-sequence current (ZSC) of all feeders contains
the fault information of the RGS system and is always an
important variable in fault localization. However, owing to
the ASC compensation, the ZSC of a faulty feeder has no
distinguished characteristics over that of the non-faulty feed‐
er, which makes it difficult to identify the faulty feeder and
further locate the earth fault [5], [6].

Faulty feeder identification in RGSs is a challenging prob‐
lem. The traveling-wave-based method is an effective solu‐
tion for fault analysis in power systems [7]-[9]. In [10], the
voltage and current traveling-waves of all feeders were mea‐
sured, and their polarities were compared to identify the
faulty feeder. In [11], wavelet transform was used to decom‐
pose the current traveling-waves of each feeder. The trans‐
form results of all feeders were compared in magnitude and
polarity to identify the faulty feeder. Nevertheless, since trav‐
eling waves in complex power networks are sensitive to
wave impedances, it is difficult to extract exact fault infor‐
mation, which decreases the accuracy rate in faulty feeder
identification [12], [13].

Intelligent algorithms, including wavelet transformation
combined with neural network, adaptive fuzzy inference, and
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pattern recognition [14]-[19], have attracted considerable at‐
tention for RGS faulty feeder identification [20], [21]. How‐
ever, these algorithms require large amounts of data for mod‐
el training, and the mathematic solving process mostly in‐
volves a large number of nonlinear iterations, which makes
them strongly reliant on powerful processors. Furthermore,
when the power network is changed, the training process
should be repeated, making it inefficient in different system
applications.

In this study, we propose a novel algorithm based on a
Bayesian classifier to identify the faulty feeder in RGSs.
Three synthetic parameters of the RGS, namely the energy
ratio, impedance factor, and energy spectrum entropy, are cal‐
culated using wavelet packet transformations. The three pa‐
rameters are sent to a pre-trained Bayesian classifier to cate‐
gorize single-phase earth faults into three kinds of faulty
modes. Then, the faulty feeder can be easily identified. The
Bayesian classifier is an effective tool that requires less train‐
ing data and shorter learning time than other classifiers. We
demonstrate that with the Bayesian classifier, the accuracy
rate can be significantly improved.

Another challenging problem in RGSs is the fault area local‐
ization. Several techniques, including traveling-wave-based
methods, fuzzy inference, and neural networks, are widely
used for fault area localizations [22] - [27]. In applications of
fault area localization, these techniques have the same disad‐
vantages as in applications of faulty feeder identification [28]-
[30]. Many RGSs, especially in China, are equipped with
feeder terminal units (FTUs), which divide feeders into
many sections. The FTUs can provide information on the
ZSC at their installation location [31]. By comparing the
characteristics of ZSC at the locations of two FTUs, the pos‐
sible fault area can be restricted [32]-[35].

In [36], the fifth harmonic components of the ZSC at two
neighboring FTUs were extracted and compared. If the dif‐
ference value exceeds a predefined constant threshold, the
two FTUs demarcate the faulty section. In [37], the phase an‐
gles of the ZSC at two neighboring FTUs were determined
and compared. If the difference value exceeds a predefined
threshold, the two FTUs demarcate the faulty section. In
[38], the line voltages of each feeder are measured for Hil‐
bert transformation. The transformation result multiplied by
the transient zero-modulus current of each FTU determines
the fault direction parameter. These direction parameters can
be compared with a threshold of zero to demarcate the two
FTUs of the faulty section.

The above FTU methods generally set a constant thresh‐
old to identify the two FTUs of the faulty section for all sin‐
gle-phase earth faults. In practice, the accuracy rate of fault
area localization highly depends on the threshold, and a sin‐
gle constant threshold may not be suitable for all scenarios.
Therefore, the accuracy rate of the localization results is rela‐
tively limited.

In this study, we propose a novel fault area localization
method based on the similarity comparison of dominant fre‐
quency-band waveforms to localize the fault area in an RGS.
Through wavelet packet transformation, the ZSC dominant
frequency-band waveforms are obtained at all FTU points.

The similarities of these waveforms are further determined
and compared. The neighboring FTU points with the mini‐
mum similarity are finally determined faulty sections. Such
similarity comparison does not require thresholds and its ac‐
curacy rate is higher than that of the previous methods.

The main contributions of this paper are as follows.
1) A faulty feeder identification algorithm based on a

Bayesian classifier is proposed. The Bayesian classifier is an
effective tool that requires less training data and shorter
learning time than other classifiers. We demonstrate that
with the Bayesian classifier, the accuracy rate can be signifi‐
cantly improved.

2) A fault area localization method based on the similarity
comparison of dominant frequency-band waveforms is pro‐
posed. The waveforms after wavelet packet transformation
can greatly highlight the differentiating features of the origi‐
nal ZSCs. Their similarity comparison does not require any
thresholds and their accuracy rates are high.

The rest of this paper is organized as follows. Section II
introduces the fundamentals of wavelet packet transforma‐
tion and Bayesian classification. Section III illustrates the
proposed faulty feeder identification algorithm, and Section
IV illustrates the fault area localization method based on sim‐
ilarity comparison. Simulation and experimental results are
demonstrated in Section V to validate the proposed method,
and Section VI draws the conclusions.

II. FUNDAMENTALS OF WAVELET PACKET TRANSFORMATION

AND BAYESIAN CLASSIFIER

A. Wavelet Packet Transformation

Wavelet packet transformation is an elaborate analysis
tool specifically developed for transient signals. It imple‐
ments multi-scale decomposition for both high- and low-fre‐
quency bands. It can provide detailed information on a non-
periodic signal with both the time and frequency domains.

Wavelet packet transformation uses a series of low-pass
filters h(k) and high-pass filters g(k) to decompose an input
signal yn(t). The transformation process can be expressed as
follows:

{ym2j - 1 (t)= h(k)ym- 1j (t)

ym2j (t)= g(k)ym- 1j (t)
(1)

where ym2j - 1 (t) and ym2j (t) are the (2j - 1)th and 2j th wavelet
packets in the mth decomposition layer, respectively; and
ym- 1j (t) is the jth wavelet packet in the (m- 1)th decomposi‐
tion layer.

Figure 1 shows a schematic of the three-layer wavelet
packet transformation process. The sampling frequency of
the input signal yn(t) is defined as fs. An m-layer decomposi‐
tion generates 2j frequency bands. The range of each frequen‐
cy band can be written as:

Fmj =
é

ë
ê

fs

2m+ 1
j

fs

2m+ 1
( j + 1)

ù

û
ú j = 122m (2)

where fs is the sample frequency; and j is the number of fre‐
quency bands.

dbN wavelet packet transformation is widely used in sig‐
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nal processing. It applies compact-support orthogonal wave‐
let-basis with an N-order vanishing-moment, and its support
region is within [0, 2N - 1]. It can provide more detailed in‐
formation on the input signal.

After dbN wavelet packet transformation, we can derive
the wavelet coefficient of every frequency band as well as
the frequency-band energy. The frequency-band energy can
be expressed as:

emj =∑
nw = 1

N

(cmj (nw))2
(3)

where emj and cmj are the energy and wavelet coefficient of
the jth frequency band in mth decomposition layer, respectively.

With the energy of each frequency band, three parameters
can be calculated. The energy spectrum entropy H can be
calculated as in (4), which is an indicator of the distribution
complexity of the frequency-band energies of the input sig‐
nal yn(t).

H =-∑
j

emj∑
j

emj

ln
emj∑
j

emj
(4)

The frequency-band energy ratio α is calculated as in (5),
and it is the ratio of the energy of the lowest frequency band
em0 to the total energy of the rest frequency bands.

α=
em0∑

j

emj- em0
(5)

The frequency band with the maximum energy, defined as
the dominant frequency band FB, can be calculated as in (6),
and it is an indicator of the amplitude and phase angle of
the input signal yn(t).

FB = |Fmj
max{ }emj

(6)

B. Bayesian Classifier

The Bayesian classifier is based on Bayes theorem. Naive
Bayesian classifiers assume that the effect of an attribute val‐
ue on a given class is independent of the values of the other
attributes. This assumption is called the class conditional in‐
dependence and is made to simplify the required computations.

Let T be a training set of samples, each with their class la‐
bels. There are k classes, C1, C2, ..., Ck. Each sample is repre‐
sented by an n-dimension vector, X=[x1, x2, …, xn], depicting
n measured values of the n attributes, A1, A2, … , An, respec‐

tively.
Given a sample X, the classifier will predict which class

having the highest posteriori probability X belongs to, condi‐
tioned on X. That is, X is predicted to belong to the class Ci

if and only if:
P(Ci|X)>P(Cj|X) j ¹ i (7)

Thus, we find the class that maximizes P(Ci|X). The class
Ci by which P(Ci|X) is maximized is called the maximum
posteriori hypothesis. According to Bayes theorem,

P(Ci|X)=
P(X|Ci)P(Ci)

P(X)
(8)

Given data sets with many attributes, it would be computa‐
tionally expensive to compute P(X|Ci). In order to reduce the
computations required to evaluate P(X|Ci)P(Ci), the naive as‐
sumption of conditional independence of class is made. This
presumes that the values of the attributes are conditionally
independent of each other, given the class label of the sam‐
ple. Mathematically, this can be expressed as:

P(X|Ci)»∏
k = 1

n

P(xk|Ci) (9)

The probabilities P(x1|Ci), P(x2|Ci), … , P(xn|Ci) can easily
be estimated from the training set.

It is easy and fast to predict the class of the test data set.
Naive Bayesian classifier also performs well in multi-class
predictions. When the assumption of independence holds, a
naive Bayesian classifier performs better than other models
such as logistic regression and classifiers with supervised
learning. Furthermore, naive Bayesian classifiers require less
training data.

III. FAULTY FEEDER IDENTIFICATION BASED ON BAYESIAN

CLASSIFIER

Figure 2 shows the RGS with FTUs on n feeders consid‐
ered in this study. The RGS has FTUs on its feeders, and
each FTU can provide current information at its location.
During system operation, the current waveforms of every
phase are automatically recorded.

When one single-phase earth fault occurs, current wave‐
forms of every phase before and after the fault will be ex‐
tracted. Firstly, the ZSC at the head terminal of each feeder,
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defined as Head-ZSC iH(t), is calculated. Then, the Head-
ZSCs are further processed through a db10 wavelet packet
transformation, as commonly performed in other literatures.
According to (3), (4), and (5), the energy spectrum entropy
and frequency-band energy ratio of the Head-ZSCs can be
derived as [H1, H2, …, Hn] and [α1, α2, …, αn], respectively.
Their average values are derived as two system synthetic pa‐
rameters of the RGS.

HRGS =
1
n

(H1 +H2 ++Hn) (10)

αRGS =
1
n

(α1 + α2 ++ αn) (11)

Another system synthetic parameter is the impedance fac‐
tor hRGS. After zero-sequence voltages of the RGS are mea‐
sured, the impedance ratio hRGS can be calculated by:

hRGS =
S1

S2

=
∑

i = 1

n
2

|| ui DT

∑
i = 1+

n
2

n

|| ui DT
=
∑

i = 1

n
2

|| ui

∑
i = 1+

n
2

n

|| ui

(12)

where S1 and S2 are the integral areas of the front and back
half waves of the first cycle, respectively; ui is the zero-se‐
quence voltage sample; and ∆T is the sampling period.

The impedance ratio hRGS is a direct indicator of the zero-
sequence voltage of the system after earth fault occurs. Gen‐
erally, hRGS⩾0.7 indicates that the earth impedance is low,
and hRGS < 0.7 indicates that the earth impedance is high.

The three system synthetic parameters, namely HRGS, αRGS ,
and hRGS, can provide comprehensive fault information of the
RGS. They are sent to a pre-trained high-efficiency Bayesian
classifier for fault mode recognition. Generally, single-phase
earth faults in RGSs can be categorized into three modes:
strong fault mode, small-angle fault mode, and weak fault
mode. In these modes, the dominant frequency-band of the
Head-ZSCs mainly locates in the high-frequency, power-fre‐
quency, and low-frequency regions, respectively. For a cer‐
tain fault mode, the existing method performs excellently in
the faulty feeder identification. In strong fault mode, the Head-
ZSC correlation of every two feeders is first calculated by:

ρ ij =
∑
k = 1

N - 1

iHi (k)iHj (k)

( )∑
k = 1

N - 1

i2
Hi (k)i2

Hj (k)

1
2

ij = 12n (13)

where ρ ij is the correlation coefficient; and iHi(k) and iHj(k)
are the Head-ZSCs of certain feeders. Then, a Head-ZSC
correlation matrix considering all feeders can be derived as
in (14). By comparing the row sums of this matrix, the one
with the smallest sum indicates the faulty feeder.

ρRGS =

é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

ρ11 ρ12  ρ1n

ρ21 ρ22  ρ2n

  
ρn1 ρn2  ρnn

(14)

For the small-angle fault mode, the fundamental compo‐
nent of the Head-ZSC of each feeder is first extracted. Then,

using (3), the power-frequency band energy eω of each Head-
ZSC is calculated. The one with the maximum eω indicates
the faulty feeder.

eω = [ eω1 eω2 ... eωn ] (15)

For the weak fault mode, the Head-ZSC energy spectrum
entropies of the feeders are compared, and the feeder with
the minimum energy spectrum entropy indicates the faulty
feeder.

min{Hi}=min [H1 H2 ... Hn ] (16)

In the proposed faulty feeder identification algorithm, the
pre-trained Bayesian classifier can easily and quickly predict
the fault mode of the RGS. Its inherent high-efficiency char‐
acter will greatly improve the accuracy rate in the faulty
feeder identification.

IV. METHOD OF FAULT AREA LOCALIZATION BASED ON

SIMILARITY COMPARISON

After faulty feeder identification, the fault area is local‐
ized. This paper proposes a novel fault area localization
method based on the similarity comparison of dominant fre‐
quency-band waveforms in an RGS equipped with FTUs.

As displayed in Fig. 2, FTUs are equipped on all feeders
in the target RGS. Firstly, the ZSC data at each FTU points
before and after the fault moment, denoted as FTU-ZSC, are
exported. Then, using (6), the dominant frequency-bands of
each FTU-ZSC on the faulty feeder can be calculated as fol‐
lows:

FB = [FB1 FB2 ... FBn ] (17)

The similarity between two dominant frequency-band
waveforms can be represented by their correlations. Two
kinds of correlation coefficients of the dominant frequency-
band waveforms are calculated. The first correlation coeffi‐
cient is the cross-correlation coefficient C C

ij (τ) expressed in
(18), which describes the distance between two waveforms
in the time domain.

C C
ij (τ)= lim

T ®¥

1
T ∫0T FBi (t)FBj (t + τ)dt (18)

The second is the Pearson correlation coefficient C P
ij calcu‐

lated in (19), which describes the linear correlation degree of
two dominant frequency-band waveforms.

C P
ij =

N∑FBi FBj-∑FBi∑FBj

( )N∑F 2
Bi- ( )∑FBi

2 ( )N∑F 2
Bj- ( )∑FBj

2 (19)

The two correlation coefficients can reveal the correlation
degree of neighboring FTU-ZSCs in two different dimen‐
sions. In this work, we combine them together with average
weights as in (20).

Cij =
C C

ij +C P
ij

2 ( )1
N∑F 2

Bi ( )1
N∑F 2

Bj

(20)

The coefficient Cij of every neighboring FTU-ZSC is cal‐
culated, and the two with the lowest similarity indicate the
faulty section on the feeder.
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The coefficient Cij is a more comprehensive and distinc‐
tive similarity index, leading to a more accurate fault area lo‐
calization result. The proposed similarity comparison method
does not require any thresholds and thus, leads to a higher
accuracy rate.

V. SIMULATIONS AND EXPERIMENTS

A. Simulation Verification

A four-feeder RGS simulation model is built on ATP/EM‐
TP, as shown in Fig. 3, where RASC is the internal resistance
of the ASC; LASC is the inductance of the ASC; and Rf is the
earth resistance. The FTU interval of every feeder is set to
be 1 km.

The values of the parameter set in the simulation are list‐
ed in Table I. After single-phase earth fault occurs, three sys‐
tem synthetic parameters, namely the energy spectrum entro‐
py HRGS, frequency-band energy ratio αRGS , and impedance
factor hRGS, can be derived through db10 wavelet packet
transformation. Then, the three parameters are sent to a
Bayesian classifier, which is pre-trained with 500 sets of da‐
ta, including 100 sets of non-fault data.

We design 600 fault scenarios to evaluate the Bayesian
classifier, 200 for each fault mode. The results indicate that
583 of them are correctly classified, which account for
97.2% of all observations. The confusion matrix is shown in

Fig. 4, where the rows represent the true classes of the test
sets, and the columns represent the classes recognized by the
Bayesian classifier. For a certain fault mode, the existing
methods can correctly identify the faulty feeder. Therefore,
the final accuracy rate of the proposed faulty feeder identifi‐
cation algorithm is also 97.2%.

For the faulty area localization, 570 of the 582 identified
fault scenarios are correctly localized. The final accuracy
rate of the proposed fault area localization method is 97.9%.

We compare the proposed method with some existing
methods. In faulty feeder identification, the typical travelling-
wave-based method used in [9] is applied for comparison.
With the same test data sets, its accuracy rate is about
93.3%. In faulty area localization, the threshold-based meth‐
od reported in [36] is applied for comparison. Dominant-fre‐
quency-band waveforms are compared with a constant
threshold to find the fault area. With the same test data sets,
its accuracy rate reaches 94.2%.

The results in some of the 600 investigated fault scenari‐
os, including faulty feeder identification and fault area local‐
ization, are reported in Table II, where “∆” denotes a small-
angle fault mode, “↑” denotes a strong fault mode, “↓” de‐
notes a weak fault mode, and (x, y) is the faulty section indi‐
cated by FTUs.

A case study is described in this paper, in which a single-
phase earth fault occurs at 0.02 s with a fault angle of 0° .
The faulty feeder is feeder 2, the faulty phase is B, and the
faulty section is (2, 3). The measured transient Head-ZSC
waveforms of the four feeders are shown in Fig. 5.

After db10 wavelet packet transformation, the three param‐
eters are calculated as αRGS = 3.337, hRGS = 0.271, and HRGS =
0.756. The above three parameters are sent to the Bayesian
classifier, which correctly recognize the small-angle fault
mode. Then, the faulty feeder is correctly identified as feed‐
er 2.

After db10 wavelet packet transformation, the dominant
frequency-band waveforms of all FTU-ZSCs of feeder 2 are
derived. Their similarities are calculated and compared. The
results are demonstrated in Fig. 6. It can be seen from the
figure that the minimum similarity 0.126 locates in feeder 2.
Then, it indicates that (2, 3) is the faulty section, which is
the correct result.

110 kV 10 kV
Feeder 1

Feeder 2

Feeder 3

Feeder 4

 

RASC

LASC

Rf

Head-ZSC

Fig. 3. Four-feeder RGS model used in the simulation.

TABLE I
PARAMETERS OF RGS USED IN SIMULATION

Parameter

Voltage level of substation

Number of feeders

Length of feeder 1

Length of feeder 2

Length of feeder 3

Length of feeder 4

Positive-sequence impedance

Zero-sequence impedance

Positive-sequence admittance

Zero-sequence admittance

Inductance of ASC LASC

Resistance of ASC RASC

Sample frequency fs

Value

110 kV/10 kV

4

6 km

10 km

15 km

20 km

0.17+j0.38 Ω/km

0.23+j1.72 Ω/km

j3.045 μS/km

j1.884 μS/km

10.22 H

321 Ω

6 kHz

0.97
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Fig. 4. Performance evaluation diagram of Bayesian classifier.
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The dominant frequency-band waveforms of section (2, 3),
as well as those of neighboring sections (1, 2) and (3, 4) are
presented in Fig. 7; the calculated similarities are 0.835,
0.126 and 0.831, respectively. Finally, the calculated mini‐
mum similarity locates in section (2, 3). The two waveforms
have almost opposite polarities; therefore, their similarity is

small.

B. Experiment Verification

For the experiments, we develope a prototype for faulty
feeder identification, which is shown in Appendix A Fig. A2.
The relay protection tester ONLLY is utilized to simulate
grid faults. The PC is used as an interactive tool, and the
faulty feeder identification device with display panel shows
the results. We designed 44 earth fault scenarios on Real
Time Digital Simulator (RTDS) in China Kaipu Lab. Further‐
more, we collected 35 actual single-phase earth fault data
from Anhui Province, China.

For the 44 designed earth fault scenarios on RTDS and
the 35 sets of field data, the proposed faulty feeder identifi‐
cation algorithm correctly identified the faulty feeder with
an accuracy rate of 100%.

VI. CONCLUSION

To localize single-phase earth faults in RGSs with FTUs,
this study proposes a faulty feeder identification algorithm
based on a Bayesian classifier and a fault area localization
method based on the similarity comparison of dominant fre‐
quency-band waveforms. We use db10 wavelet packet trans‐
formation to calculate the energy spectrum entropy, frequen‐
cy-band energy ratio, and impedance factor, and a pre-
trained Bayesian classifier to recognize the exact fault mode.
The faulty feeder is effectively identified, and the exact
faulty section is correctly localized. We collect the results of
600 simulation scenarios and 79 experiments for verifica‐
tion. The results indicate that the accuracy rate of faulty
feeder identification reaches 97.2%, and the accuracy rate of
fault area localization reaches 97.9%. The proposed method
has an improved accuracy rate and can greatly benefit fault
area localization and fault clearance in RGSs.
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FAULTY FEEDER IDENTIFICATION AND FAULT AREA LOCALIZATION RESULTS
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